Corneal changes after fulguration and cross-linking in experiment

Rafik Boutaba , Sergey V. Trufanov , Inna A. Riks , Maggie Ezugbaya , Galina Yu. Yukina , Elena G. Sukhorukova , Sanasar S. Papanyan , Svetlana L. Nikolaenko , Olga V. Gorchakova

Ophthalmology Reports ›› 2023, Vol. 16 ›› Issue (4) : 67 -77.

PDF
Ophthalmology Reports ›› 2023, Vol. 16 ›› Issue (4) : 67 -77. DOI: 10.17816/OV568953
Experimental trials
research-article

Corneal changes after fulguration and cross-linking in experiment

Author information +
History +
PDF

Abstract

BACKGROUND: Severe progressive forms of infectious keratitis are often associated with the risk of violation of the structural integrity of the eyeball and the development of endophthalmitis. In the presence of negative dynamics against the background of conservative etiotropic therapy for severe keratitis, it is advisable to use surgical methods of treatment. The combination of two surgical methods of influencing a pharmacoresistant infectious process in the cornea — cross-linking and fulguration — is promising and requires further investigation.

AIM: In the experiment, to evaluate the effect on the corneal tissue of various modes of direct current fulguration, as well as in combination with cross-linking as well.

MATERIALS AND METHODS: An in vivo experimental study was carried out on 19 rabbits (38 eyes) of the Soviet Chinchilla breed, the average body weight of the animals was 2.5–4.0 kg. Depending on the stage of the study, the type and power of exposure during fulguration, the rabbits were divided into 3 groups.

RESULTS: When the cornea was exposed to fulguration in mode 5, the changes covered only 10–15 % of the anterior stroma, about 50 μm, and both clinically and histologically were not sufficient. When exposed to mode 6 and 7 after 3 months, changes in the stromal structure extended by about 150 µm. When using mode 8, there was a slight proliferation of connective tissue between the Descemet’s membrane and the endothelium. The combination of cross-linking with fulguration made it possible to obtain a more compact structure of the anterior layers of the corneal stroma and stability of the epithelium.

CONCLUSIONS: Fulguration may be a relatively safe treatment for the cornea in pharmacoresistant progressive keratitis. Fulguration and corneal cross-linking can potentiate each other’s effect. Fulguration mode 7 (1.5 W) is optimal at corneal exposition for the eradication of infectious agents.

Keywords

cornea / cross-linking (PACK-CXL) / fulguration / pharmacoresistant infectious keratitis / cornea / morphological analysis

Cite this article

Download citation ▾
Rafik Boutaba, Sergey V. Trufanov, Inna A. Riks, Maggie Ezugbaya, Galina Yu. Yukina, Elena G. Sukhorukova, Sanasar S. Papanyan, Svetlana L. Nikolaenko, Olga V. Gorchakova. Corneal changes after fulguration and cross-linking in experiment. Ophthalmology Reports, 2023, 16(4): 67-77 DOI:10.17816/OV568953

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Raj A, Bahadur H, Dhasmana R. Outcome of therapeutic penetrating keratoplasty in advanced infectious keratitis. J Curr Ophthalmol. 2018;30(4):315–332. DOI: 10.1016/j.joco.2018.04.0017

[2]

Raj A., Bahadur H., Dhasmana R. Outcome of therapeutic penetrating keratoplasty in advanced infectious keratitis // J Curr Ophthalmol. 2018. Vol. 30, No. 4. P. 315–332. DOI: 10.1016/j.joco.2018.04.0017

[3]

Tuli S, Gray M. Surgical management of corneal infections. Curr Opin Ophthalmol. 2016;27(4):340–347. DOI: 10.1097/ICU.0000000000000274

[4]

Tuli S., Gray M. Surgical management of corneal infections // Curr Opin Ophthalmol. 2016. Vol. 27, No. 4. P. 340–347. DOI: 10.1097/ICU.0000000000000274

[5]

Trufanov SV, Shakhbazyan NP, Zaitsev AV, Rozinova VN. Surgical management of infectious keratitis. The Russian Annals of Ophthalmology. 2021;137(4):128135. (In Russ.) DOI: 10.17116/oftalma2021137041128

[6]

Труфанов С.В., Шахбазян Н.П., Зайцев А.В., Розинова В.Н. Хирургические методы лечения инфекционных кератитов // Вестник офтальмологии. 2021. Т. 137, № 4. С. 128–135. DOI: 10.17116/oftalma2021137041128

[7]

Trufanov SV, Zaitsev AV, Shakhbazyan NP. Crosslinking and fulguration in the treatment of Acanthamoebic keratitis. Ophthalmology in Russia. 2020;17(4):725–732. (In Russ.) DOI: 10.18008/1816-5095-2020-4-725-732

[8]

Труфанов С.В., Зайцев А.В., Шахбазян Н.П. Кросслинкинг и фульгурация в лечении акантамебного кератита // Офтальмология. 2020. Т. 17, № 4. С. 725–732. DOI: 10.18008/1816-5095-2020-4-725-732

[9]

Tsugita A, Okada Y, Uehara K. Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta. 1965;103(2):360–363. DOI: 10.1016/0005-2787(65)90182-6

[10]

Tsugita A., Okada Y., Uehara K. Photosensitized inactivation of ribonucleic acids in the presence of riboflavin // Biochim Biophys Acta. 1965. Vol. 103, No. 2. P. 360–363. DOI: 10.1016/0005-2787(65)90182-6

[11]

Goodrich RP, Edrich RA, Li J, Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus Apher Sci. 2006;35(1):5–17. DOI: 10.1016/j.transci.2006.01.007

[12]

Goodrich R.P., Edrich R.A., Li J., Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends // Transfus Apher Sci. 2006. Vol. 35, No. 1. P. 5–17. DOI: 10.1016/j.transci.2006.01.007

[13]

Marschner S, Goodrich R. Pathogen reduction technology treatment of platelets, plasma and whole blood using riboflavin and UV light. Transfus Med Hemother. 2011;38(1):8–18. DOI: 10.1159/000324160

[14]

Marschner S., Goodrich R. Pathogen reduction technology treatment of platelets, plasma and whole blood using riboflavin and UV light // Transfus Med Hemother. 2011. Vol. 38, No. 1. P. 8–18. DOI: 10.1159/000324160

[15]

Ruane PH, Edrich R, Gampp D, et al. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion. 2004;44(6):877–885. DOI: 10.1111/j.1537-2995.2004.03355

[16]

Ruane P.H., Edrich R., Gampp D., et al. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light // Transfusion. 2004. Vol. 44, No. 6. P. 877–885. DOI: 10.1111/j.1537-2995.2004.03355

[17]

Reddy HL, Dayan AD, Cavagnaro J, et al. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev. 2008;22(2):133–153. DOI: 10.1016/j.tmrv.2007.12.003

[18]

Reddy H.L., Dayan A.D., Cavagnaro J., et al. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation // Transfus Med Rev. 2008. Vol. 22, No. 2. P. 133–153. DOI: 10.1016/j.tmrv.2007.12.003

[19]

Khan YA, Kashiwabuchi RT, Martins SA, et al. Riboflavin and ultraviolet light а therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis. Ophthalmology. 2011;118(2): 324–331. DOI: 10.1016/j.ophtha.2010.06.041

[20]

Khan Y.A., Kashiwabuchi R.T., Martins S.A., et al. Riboflavin and ultraviolet light a therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis // Ophthalmology. 2011. Vol. 118, No. 2. P. 324–331. DOI: 10.1016/j.ophtha.2010.06.041

[21]

Garduño-Vieyra L, Gonzalez-Sanchez CR, Hernandez-Da Mota SE. Ultraviolet — a light and riboflavin therapy for Acanthamoeba keratitis. Case Rep Ophthalmol. 2011;2(2):291–295. DOI: 10.1159/000331707

[22]

Garduño-Vieyra L., Gonzalez-Sanchez C.R., Hernandez-Da Mota S.E. Ultraviolet — a light and riboflavin therapy for Acanthamoeba keratitis // Case Rep Ophthalmol. 2011. Vol. 2, No. 2. P. 291–295. DOI: 10.1159/000331707

[23]

Berra M, Galperin G, Boscaro G, et al. Treatment of Acanthamoeba keratitis by corneal cross-linking. Cornea. 2013;32(2):174–178. DOI: 10.1097/ICO.0b013e31825cea99

[24]

Berra M., Galperin G., Boscaro G., et al. Treatment of Acanthamoeba keratitis by corneal cross-linking // Cornea. 2013. Vol. 32, No. 2. P. 174–178. DOI: 10.1097/ICO.0b013e31825cea99

[25]

Del Buey MA, Cristobal JA, Casas P, et al. Evaluation of in vitro efficacy of combined riboflavin and ultraviolet A for Acanthamoeba isolates. Am J Ophthalmol. 2012;153(3):399–404. DOI: 10.1016/j.ajo.2011.07.025

[26]

Del Buey M.A., Cristobal J.A., Casas P., et al. Evaluation of in vitro efficacy of combined riboflavin and ultraviolet A for Acanthamoeba isolates // Am J Ophthalmol. 2012. Vol. 153, No. 3. P. 399–404. DOI: 10.1016/j.ajo.2011.07.025

[27]

Lamy R, Chan E, Good SD, et al. Riboflavin and ultraviolet A as adjuvant treatment against Acanthamoeba cysts. Clin Exp Ophthalmol. 2016;44(3):181–187. DOI: 10.1111/ceo.12644

[28]

Lamy R., Chan E., Good S.D., et al. Riboflavin and ultraviolet A as adjuvant treatment against Acanthamoeba cysts // Clin Exp Ophthalmol. 2016. Vol. 44, No. 3. P. 181–187. DOI: 10.1111/ceo.12644

[29]

Kashiwabuchi RT, Carvalho FRS, Khan YA, et al. Assessing efficacy of combined riboflavin and UV-A light (365 nm) treatment of Acanthamoeba trophozoites. Investig Ophthalmol Vis Sci. 2011;52(13):9333–9338. DOI: 10.1167/iovs.11-8382

[30]

Kashiwabuchi R.T., Carvalho F.R.S., Khan Y.A., et al. Assessing efficacy of combined riboflavin and UV-A light (365 nm) treatment of Acanthamoeba trophozoites // Investig Ophthalmol Vis Sci. 2011. Vol. 52, No. 13. P. 9333–9338. DOI: 10.1167/iovs.11-8382

[31]

Price MO, Price FW Jr. Corneal cross-linking in the treatment of corneal ulcers. Curr Opin Ophthalmol. 2016;27(3):250–255. DOI: 10.1097/ICU.0000000000000248

[32]

Price M.O., Price F.W. Jr. Corneal cross-linking in the treatment of corneal ulcers // Curr Opin Ophthalmol. 2016. Vol. 27, No. 3. P. 250–255. DOI: 10.1097/ICU.0000000000000248

[33]

Kasparova EA, Zajcev AV, Kasparova EA, Kasparov AA. Micro diathermocoagulation in the treatment of infectious corneal ulcers. Ophthalmology in Russia. 2016;13(3):157–162. (In Russ.) DOI: 10.18008/1816-5095-2016-3-157-162

[34]

Каспарова Е.А., Зайцев А.В., Каспарова Е.А., Каспаров А.А. Микродиатермокоагуляция в лечении инфекционных язв роговицы // Офтальмология. 2016. Т. 13, № 3. С. 157–162. DOI: 10.18008/1816-5095-2016-3-157-162

[35]

Patent RU No. 2732696/ 2020 Sept 21. Nespor Radek (CZ). A portable device used primarily for cauterization and drying by spark for cauterization and drying by means of a spark discharge. Moscow: FIPS. (In Russ.)

[36]

Патент РФ на изобретение № 2732696/ 21.09.2020. Неспор Радек (CZ). Портативное устройство, используемое главным образом для прижигания и высушивания посредством искрового разряда. Москва: ФИПС.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/