The evaluation of cytoxicity of ocular hypotensive therapy to cultured human corneal epithelial cells

Natalia V. Fisenko , Yusef N. Yusef , Anastasia M. Subbot , Grigory A. Osipyan

Ophthalmology Reports ›› 2023, Vol. 16 ›› Issue (4) : 55 -66.

PDF
Ophthalmology Reports ›› 2023, Vol. 16 ›› Issue (4) : 55 -66. DOI: 10.17816/OV553340
Experimental trials
research-article

The evaluation of cytoxicity of ocular hypotensive therapy to cultured human corneal epithelial cells

Author information +
History +
PDF

Abstract

BACKGROUND: Corneal epithelial defect is a corneal epithelial cells’ (CEpC) disruption of various origin. In patients with corneal epithelial defect, glaucoma is a frequent concomitant disease demanding prescription of hypotensive medications, most of which containing benzalkonium chloride.

AIM: The aim of this study is to evaluate cytotoxicity of antiglaucoma drugs, as well as benzalkonium chloride (BAK), to human CEpC in vitro.

MATERIALS AND METHODS: The study was carried out on primary cultures of human CEpC. Cytotoxicity of dorzolamide, brimonidine, timolol (dilutions 1/100, 1/50, 1/20, 1/10, a 24-hour exposure) and of BAK was estimated on the model of intact epithelium (monolayer). Benzalkonium chloride was evaluated in concentrations equals to its concentration in tested ophthalmic solutions. Cytotoxicity of dorzolamide, brimonidine, timolol (dilutions 1/100, 1/20, a 48-hour exposure) was evaluated on the model of corneal epithelial defect (damage of the monolayer). The medication’s cytotoxicity was estimated by cellular changes (phase-contrast microscopy) and by the MTS-test’s results.

RESULTS: Among BAK-free medications: dorzolamide (1/50, 1/20, 1/10 dilutions), brimonidine (1/10 dilution) — induce CEpCs’ pathological changes, whereas timolol (all tested dilutions) is non-toxic. BAK-preserved drugs: dorzolamide, brimonidine, timolol (1/100, 1/50, 1/20, 1/10 dilutions) — induce CEpCs’ damage, their viability reduction, and corneal epithelial defect closure inhibition. BAK shows similar effect in tested concentrations.

CONCLUSIONS: Cytotoxicity of antiglaucoma drugs is attributed to their component — benzalkonium chloride. Administration of preserved drugs is not reasonable in eyes with corneal epithelial defect of various origin.

Keywords

dorzolamide / brimonidine / timolol / benzalkonium chloride / corneal epithelial cells / cytotoxicity / epithelial defect

Cite this article

Download citation ▾
Natalia V. Fisenko, Yusef N. Yusef, Anastasia M. Subbot, Grigory A. Osipyan. The evaluation of cytoxicity of ocular hypotensive therapy to cultured human corneal epithelial cells. Ophthalmology Reports, 2023, 16(4): 55-66 DOI:10.17816/OV553340

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190–194. DOI: 10.4103/ijo.IJO_646_17

[2]

Sridhar M.S. Anatomy of cornea and ocular surface // Indian J Ophthalmol. 2018. Vol. 66, No. 2. P. 190–194. DOI: 10.4103/ijo.IJO_646_17

[3]

Dahlgren MA. Persistent epithelial defects. In: Albert DM, Miller JW, editors. Albert and Jakobiec’s principles and practice of ophthalmology. Philadelphia: Elsevier, 2008. P. 749–759.

[4]

Dahlgren M.A. Persistent epithelial defects. Albert and Jakobiec’s principles and practice of ophthalmology / D.M. Albert, J.W. Miller, editors. Philadelphia: Elsevier, 2008. P. 749–759.

[5]

Vaidyanathan U, Hopping GC, Liu HY, et al. Persistent corneal epithelial defects: a review article. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):163–176.

[6]

Vaidyanathan U., Hopping G.C., Liu H.Y., et al. Persistent corneal epithelial defects: a review article // Med Hypothesis Discov Innov Ophthalmol. 2019. Vol. 8, No. 3. P. 163–176.

[7]

European Glaucoma Society terminology and guidelines for glaucoma, 5th edition. Br J Ophthalmol. 2021;105(S1):1–169. DOI: 10.1136/bjophthalmol-2021-egsguidelines

[8]

European Glaucoma Society terminology and guidelines for glaucoma, 5th edition // Br J Ophthalmol. 2021. Vol. 105, No. S1. P. 1–169. DOI: 10.1136/bjophthalmol-2021-egsguidelines

[9]

Steven DW, Alaghband P, Lim KS. Preservatives in glaucoma medication. Br J Ophthalmol. 2018;102(11):1497–1503. DOI: 10.1136/bjophthalmol-2017-311544

[10]

Steven D.W., Alaghband P., Lim K.S. Preservatives in glaucoma medication // Br J Ophthalmol. 2018. Vol. 102, No. 11. P. 1497–1503. DOI: 10.1136/bjophthalmol-2017-311544

[11]

Goldstein MH, Silva FQ, Blender N, et al. Ocular benzalkonium chloride exposure: problems and solutions. Eye (Lond). 2022;36(2):361–368. DOI: 10.1038/s41433-021-01668-x

[12]

Goldstein M.H., Silva F.Q., Blender N., et al. Ocular benzalkonium chloride exposure: problems and solutions // Eye (Lond). 2022. Vol. 36, No. 2. P. 361–368. DOI: 10.1038/s41433-021-01668-x

[13]

Thacker M, Sahoo A, Reddy AA, et al. Benzalkonium chloride-induced dry eye disease animal models: Current understanding and potential for translational research. Indian J Ophthalmol. 2023;71(4):1256–1262. DOI: 10.4103/IJO.IJO_2791_22

[14]

Thacker M., Sahoo A., Reddy A.A., et al. Benzalkonium chloride-induced dry eye disease animal models: Current understanding and potential for translational research // Indian J Ophthalmol. 2023. Vol. 71, No. 4. P. 1256–1262. DOI: 10.4103/IJO.IJO_2791_22

[15]

Ayaki M, Yaguchi S, Iwasawa A, Koide R. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin Exp Ophthalmol. 2008;36(6):553–559. DOI: 10.1111/j.1442-9071.2008.01803.x

[16]

Ayaki M., Yaguchi S., Iwasawa A., Koide R. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells // Clin Exp Ophthalmol. 2008. Vol. 36, No. 6. P. 553–559. DOI: 10.1111/j.1442-9071.2008.01803.x

[17]

Fisenko NV, Subbot AM, Fisenko VP. Evaluation of the cytotoxicity of antiglaucoma drugs and auxiliary components against primary culture of human corneal endothelial cells. Experimental and Clinical Pharmacology. 2022;85(8):26–33. (In Russ.) DOI: 10.30906/0869-2092-2022-85-8-26-33

[18]

Фисенко Н.В., Суббот А.М., Фисенко В.П. Исследование цитотоксичности антиглаукомных лекарственных средств на первичной культуре эндотелиальных клеток роговицы человека // Экспериментальная и клиническая фармакология. 2022. Т. 85, № 8. С. 26–33. DOI: 10.30906/0869-2092-2022-85-8-26-33

[19]

Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6): 735–754. DOI: 10.1007/s13346-016-0339-2

[20]

Agrahari V., Mandal A., Agrahari V., et al. A comprehensive insight on ocular pharmacokinetics // Drug Deliv Transl Res. 2016. Vol. 6, No. 6. P. 735–754. DOI: 10.1007/s13346-016-0339-2

[21]

Durairaj C. Ocular Pharmacokinetics. In: Whitcup S, Azar D, editors. Pharmacologic therapy of ocular disease. Handbook of experimental pharmacology. Vol. 242. Springer, Cham, 2017. P. 31–55. DOI: 10.1007/164_2016_32

[22]

Durairaj C. Ocular Pharmacokinetics. Pharmacologic therapy of ocular disease. Handbook of experimental pharmacology. Vol. 242. Whitcup, D. Azar, editors. Springer, Cham, 2017. P. 31–55. DOI: 10.1007/164_2016_32

[23]

Abysheva LD, Avdeev RV, Alexandrov AS, et al. Influence of local hypotensive glaucoma therapy on the development and progression of dry eye syndrome. RMJ. Clinical ophthalmology. 2017;17(2):74–82. (In Russ.) DOI: 10.21689/2311-7729-2017-17-2-74-82

[24]

Абышева Л.Д., Авдеев Р.В., Александров А.С., и др. Влияние местной гипотензивной терапии глаукомы на развитие и прогрессирование синдрома «сухого глаза» // РМЖ. Клиническая офтальмология. 2017. Т. 17, № 2. С. 74–82. DOI: 10.21689/2311-7729-2017-17-2-74-82

[25]

Andole S, Senthil S. Ocular surface disease and anti-glaucoma medications: various features, diagnosis, and management guidelines. Semin Ophthalmol. 2023;38(2):158–166. DOI: 10.1080/08820538.2022.2094714

[26]

Andole S., Senthil S. Ocular surface disease and anti-glaucoma medications: various features, diagnosis, and management guidelines // Semin Ophthalmol. 2023. Vol. 38, No. 2. P. 158–166. DOI: 10.1080/08820538.2022.2094714

[27]

Pozarowska D, Pozarowski P, Darzynkiewicz Z. Cytometric assessment of cytostatic and cytotoxic effects of topical glaucoma medications on human epithelial corneal line cells. Cytometry B Clin Cytom. 2010;78B(2):130–137. DOI: 10.1002/cyto.b.20493

[28]

Pozarowska D., Pozarowski P., Darzynkiewicz Z. Cytometric assessment of cytostatic and cytotoxic effects of topical glaucoma medications on human epithelial corneal line cells // Cytometry B Clin Cytom. 2010. Vol. 78B, No. 2. P. 130–137. DOI: 10.1002/cyto.b.20493

[29]

Ammar DA, Noecker RJ, Kahook MY. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv Ther. 2010;27(11):837–845. DOI: 10.1007/s12325-010-0070-1

[30]

Ammar D.A., Noecker R.J., Kahook M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells // Adv Ther. 2010. Vol. 27, No. 11. P. 837–845. DOI: 10.1007/s12325-010-0070-1

[31]

Epstein SP, Ahdoot M, Marcus E, Asbell PA. Comparative toxicity of preservatives on immortalized corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther. 2009;25(2):113–119. DOI: 10.1089/jop.2008.0098

[32]

Epstein S.P., Ahdoot M., Marcus E., Asbell P.A. Comparative toxicity of preservatives on immortalized corneal and conjunctival epithelial cells // J Ocul Pharmacol Ther. 2009. Vol. 25, No. 2. P. 113–119. DOI: 10.1089/jop.2008.0098

[33]

Meloni M, Cattaneo G, De Servi B. Corneal epithelial toxicity of antiglaucoma formulations: in vitro study of repeated applications. Clin Ophthalmol. 2012;6:1433–1440. DOI: 10.2147/OPTH.S35057

[34]

Meloni M., Cattaneo G., De Servi B. Corneal epithelial toxicity of antiglaucoma formulations: in vitro study of repeated applications // Clin Ophthalmol. 2012. Vol. 6. P. 1433–1440. DOI: 10.2147/OPTH.S35057

[35]

Kucukoduk A, Durmus IM, Aksoy M, Karakurt S. Cytotoxic, apoptotic, and oxidative effects of preserved and preservative-free brimonidine in a corneal epithelial cell line. J Ocul Pharmacol Ther. 2022;38(8):576–583. DOI: 10.1089/jop.2022.0053

[36]

Kucukoduk A., Durmus I.M., Aksoy M., Karakurt S. Cytotoxic, apoptotic, and oxidative effects of preserved and preservative-free brimonidine in a corneal epithelial cell line // J Ocul Pharmacol Ther. 2022. Vol. 38, No. 8. P. 576–583. DOI: 10.1089/jop.2022.0053

[37]

Liang H, Baudouin C, Daull P, et al. In vitro corneal and conjunctival wound-healing assays as a tool for antiglaucoma prostaglandin formulation characterization. Front Biosci (Landmark Ed). 2022;27(5):147. DOI: 10.31083/j.fbl2705147

[38]

Liang H., Baudouin C., Daull P., et al. In vitro corneal and conjunctival wound-healing assays as a tool for antiglaucoma prostaglandin formulation characterization // Front Biosci (Landmark Ed). 2022. Vol. 27, No. 5. ID 147. DOI: 10.31083/j.fbl2705147

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/