Optical coherence tomography-angiography in diabetic retinopathy diagnosis and monitoring

Natalia V. Pomytkina , Evgenii L. Sorokin

Ophthalmology Reports ›› 2021, Vol. 14 ›› Issue (3) : 49 -60.

PDF (426KB)
Ophthalmology Reports ›› 2021, Vol. 14 ›› Issue (3) : 49 -60. DOI: 10.17816/OV52973
Reviews
research-article

Optical coherence tomography-angiography in diabetic retinopathy diagnosis and monitoring

Author information +
History +
PDF (426KB)

Abstract

Optical coherence tomography-angiography is a modern noninvasive method of 3D imaging and quantitative analysis of the retinal and choroidal microvasculature. It allows detecting manifestation and progression of diabetic retinopathy, planning treatment and evaluating its results.Optical coherence tomography angiography expands our understanding of microvascular changes in retinal vascular plexuses at different disease stages and deepens the understanding of its pathogenesis.

Keywords

optical coherence tomography-angiography / fluorescein angiography / diabetic retinopathy / foveal avascular zone / retinal blood flow

Cite this article

Download citation ▾
Natalia V. Pomytkina, Evgenii L. Sorokin. Optical coherence tomography-angiography in diabetic retinopathy diagnosis and monitoring. Ophthalmology Reports, 2021, 14(3): 49-60 DOI:10.17816/OV52973

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hwang TS, Jia Y, Gao SS, et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina. 2015;35(11): 2371–2376. DOI: 10.1097/IAE.0000000000000716

[2]

Hwang T.S., Jia Y., Gao S.S., et al. Optical coherence tomography angiography features of diabetic retinopathy // Retina. 2015. Vol. 35, No. 11. P. 2371–2376. DOI: 10.1097/IAE.0000000000000716

[3]

Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44. DOI: 10.1016/j.ajo.2015.04.021

[4]

Ishibazawa A., Nagaoka T., Takahashi A., et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study // Am J Ophthalmol. 2015. Vol. 160, No. 1. P. 35–44. DOI: 10.1016/j.ajo.2015.04.021

[5]

de Carlo TE, Chin AT, Bonini Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–2370. DOI: 10.1097/IAE.0000000000000882

[6]

de Carlo T.E., Chin A.T., Bonini Filho M.A., et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography // Retina. 2015. Vol. 35, No. 11. P. 2364–2370. DOI: 10.1097/IAE.0000000000000882

[7]

Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–4725. DOI: 10.1364/OE.20.004710

[8]

Jia Y., Tan O., Tokayer J., et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography // Opt Express. 2012. Vol. 20, No. 4. P. 4710–4725. DOI: 10.1364/OE.20.004710

[9]

Mastropasqua R, Di Antonio L, Di Staso S, et al. Optical coherence tomography angiography in retinal vascular diseases and choroidal neovascularization. J Ophthalmol. 2015;2015:343515. DOI: 10.1155/2015/343515

[10]

Mastropasqua R., Di Antonio L., Di Staso S., et al. Optical coherence tomography angiography in retinal vascular diseases and choroidal neovascularization // J Ophthalmol. 2015. Vol. 2015 P. 343515. DOI: 10.1155/2015/343515

[11]

Lumbroso B, Huang D, Chen CJ, et al. Clinical OCT Angiography Atlas. Moscow; 2017. (In Russ.)

[12]

Лумбросо Б., Хуанг Д., Чен Ч. Дж., и др. ОКТ-ангиография. Клинический атлас. М., 2017.

[13]

Geitzenauer W, Hitzenberger C, Schmidt-Erfurth UM. Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol. 2011;95(2):171–177. DOI: 10.1136/bjo.2010.182170

[14]

Geitzenauer W., Hitzenberger C., Schmidt-Erfurth U.M. Retinal optical coherence tomography: past, present and future perspectives // Br J Ophthalmol. 2011. Vol. 95. No. 2. P. 171–177. DOI: 10.1136/bjo.2010.182170

[15]

Leitgeb R, Schmetterer L, Drexler W, et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express. 2003;11(23):3116–3121. DOI: 10.1364/oe.11.003116

[16]

Leitgeb R., Schmetterer L., Drexler W., et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography // Opt Express. 2003. Vol. 11. No. 23. P. 3116–3121. DOI: 10.1364/oe.11.003116

[17]

Wang Y, Bower BA, Izatt JA, et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2007;12(4):041215. DOI: 10.1117/1.2772871

[18]

Wang Y., Bower B.A., Izatt J.A., et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2007. Vol. 12, No. 4. P. 041215. DOI: 10.1117/1.2772871

[19]

Ruminski D, Bukowska D, Gorczynska I, et al. Angiogram visualization and total velocity blood flow assessment based on intensity information analysis of OCT data. Proceedings Volume 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI; 821306 (2012). San Francisco, California, United States. DOI: 10.1117/12.911573

[20]

Ruminski D., Bukowska D., Gorczynska I., et al. Angiogram visualization and total velocity blood flow assessment based on intensity information analysis of OCT data. Proceedings Volume 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI; 821306 (2012). San Francisco, California, United States. DOI: 10.1117/12.911573

[21]

Gill A, Cole ED, Novais EA, et al. Visualization of changes in the foveal avascular zone in both observed and treated diabeticmacular edema using optical coherence tomography angiography. Int J Retina Vitreous. 2017;3:19. DOI: 10.1186/s40942-017-0074-y

[22]

Gill A., Cole E.D., Novais E.A., et al. Visualization of changes in the foveal avascular zone in both observed and treated diabeticmacular edema using optical coherence tomography angiography // Int J Retina Vitreous. 2017. Vol. 3. P. 19. DOI: 10.1186/s40942-017-0074-y

[23]

Wang Q, Chan S, Yang JY, et al. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol. 2016;168:95–109. DOI: 10.1016/j.ajo.2016.05.005

[24]

Wang Q., Chan S., Yang J.Y., et al. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography // Am J Ophthalmol. 2016. Vol. 168. P. 95–109. DOI: 10.1016/j.ajo.2016.05.005

[25]

Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901. DOI: 10.1117/1.JBO.20.10.100901

[26]

Zhang A., Zhang Q., Chen C.L., Wang R.K. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison // J Biomed Opt. 2015. Vol. 20, No. 10. P. 100901. DOI: 10.1117/1.JBO.20.10.100901

[27]

Kurysheva NI, Maslova EV. Optical coherence tomography angiography in glaucoma diagnosis. Vestnik oftalmologii. 2016;132(5): 98–102. (In Russ.) DOI: 10.17116/oftalma2016132598-102

[28]

Курышева Н.И., Маслова Е.В. Оптическая когерентная томография с функцией ангиографии в диагностике глаукомы // Вестник офтальмологии. 2016. Т. 132. № 5. С. 98–102. DOI: 10.17116/oftalma2016132598-102

[29]

Neroev VV, Okhotsimskaya TD, Fadeeva VA. An account of retinal microvascular changes in diabetes acquired by OCT angiography. Russian Ophthalmological Journal. 2017;10(2):40–45. (In Russ.) DOI: 10.21516/2072-0076-2017-10-2-40-45

[30]

Нероев В.В., Охоцимская Т.Д., Фадеева В.А. Оценка микрососудистых изменений сетчатки при сахарном диабете методом ОКТ-ангиографии // Российский офтальмологический журнал. 2017. Т. 10, № 2. С. 40–45. DOI: 10.21516/2072-0076-2017-10-2-40-45

[31]

Ioyleva EE, Krivosheeva MS, Andrusyakova EP. OCT-angiography parameters of the macular area of the retina and optic nerve in healthy young people. Rossiyskaya detskaya oftal’mologiya. 2019;(3):38–42. (In Russ.) DOI: 10.25276/2307-6658-2019-3-38-42

[32]

Иойлева Е.Э., Кривошеева М.С., Андрусякова Е.П. Параметры ОКТ-ангиографии макулярной зоны сетчатки и диска зрительного нерва у здоровых лиц молодого возраста // Российская детская офтальмология. 2019. № 3. С. 38–42. DOI: 10.25276/2307-6658-2019-3-38-42

[33]

Mariampillai A, Leung M K, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature. Opt Lett. 2010;35(8):1257–1259. DOI: 10.1364/OL.35.001257

[34]

Mariampillai A., Leung M.K., Jarvi M., et al. Optimized speckle variance OCT imaging of microvasculature // Opt. Lett. 2010. Vol. 35, No. 8. P. 1257–1259. DOI: 10.1364/OL.35.001257

[35]

Maslova EV. Issledovaniye roli i mesta OKT-angiografii v diagnostike glaukomy [dissertation]. Moscow; 2016. (In Russ.)

[36]

Маслова Е.В. Исследование роли и места ОКТ-ангиографии в диагностике глаукомы: дис. … кандидат медицинских наук. Москва, 2016.

[37]

Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35(11):2196–2203. DOI: 10.1097/IAE.0000000000000635

[38]

Savastano M.C., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography // Retina. 2015. Vol. 35, No. 11. P. 2196–2203. DOI: 10.1097/IAE.0000000000000635

[39]

Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. DOI: 10.1001/jamaophthalmol.2014.3616

[40]

Spaide R.F., Klancnik J.M., Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography // JAMA Ophthalmol. 2015. Vol. 133, No. 1. P. 45–50. DOI: 10.1001/jamaophthalmol.2014.3616

[41]

Tultseva SN, Astakhov YS, Rukhovets AG, Titarenko AI. Diagnostic value of OCT-angiography and regional hemodynamic assessmentin patients with retinal vein occlusion. Ophthalmology Journal. 2017;10(2):40–48. (In Russ.) DOI: 10.17816/OV10240-48

[42]

Тульцева С.Н., Астахов Ю.С., Руховец А.Г., Титаренко А.И. Информативность ОКТ-ангиографии в сочетании с исследованиями регионарной гемодинамики при окклюзии вен сетчатки // Офтальмологические ведомости. 2017. Т. 10. № 2. С. 40–48. DOI: 10.17816/OV10240-48

[43]

Freiberg FJ, Pfau M, Wons J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(6):1051–1058. DOI: 10.1007/s00417-015-3148-2

[44]

Freiberg F.J., Pfau M., Wons J., et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy // Graefes Arch Clin Exp Ophthalmol. 2016. Vol. 254, No. 6. P. 1051–1058. DOI: 10.1007/s00417-015-3148-2

[45]

Budzinskaya MV, Shelankova AV, Mikhaylova MA, et al. Analysis of changes in central macular thickness based on optical coherence tomography angiography findings in retinal vein occlusion. Vestnik oftalmologii. 2016;132(5):15–22. (In Russ.) DOI: 10.17116/oftalma2016132515-22

[46]

Будзинская М.В., Шеланкова А.В., Михайлова М.А., и др. Изменения центральной зоны глазного дна при ретинальных венозных окклюзиях по данным оптической когерентной томографии-ангиографии // Вестник офтальмологии. 2016. Т. 132, № 5. С. 15–22. DOI: 10.17116/oftalma2016132515-22

[47]

Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016;36(11):2039–2050. DOI: 10.1097/IAE.0000000000001077

[48]

Park J.J., Soetikno B.T., Fawzi A.A. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes // Retina. 2016. Vol. 36, No. 11. P. 2039–2050. DOI: 10.1097/IAE.0000000000001077

[49]

Alexandrov AA, Aznabaev BM, Mukhamadeev TR, et al. Quantitative and qualitative evalution of microcirculatory blood vessels of the posterior segment using OCT angiography. Kataraktal’naya i refraktsionnaya khirurgiya. 2015;15(3):4–9. (In Russ.)

[50]

Александров А.А., Азнабаев Б.М., Мухамадеев Т.Р., и др. ОКТ-ангиография: количественная и качественная оценка микрососудистого русла заднего сегмента глаза // Катарактальная и рефракционная хирургия. 2015. Т. 15. № 3. С. 4–9.

[51]

Tokayer J, Jia Y, Dhalla AH, Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. 2013;4(10):1909–1924. DOI: 10.1364/boe.4.001909

[52]

Tokayer J., Jia Y., Dhalla A.H., Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography // Biomed Opt Express. 2013. Vol. 4, No. 10. P. 1909–1924. DOI: 10.1364/boe.4.001909

[53]

Carpineto P, Mastropasqua R, Marchini G, et al. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br J Ophthalmol. 2016;100(5):671–676. DOI: 10.1136/bjophthalmol-2015-307330

[54]

Carpineto P., Mastropasqua R., Marchini G., et al. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography // Br J Ophthalmol. 2016. Vol. 100, No. 5. P. 671–676. DOI: 10.1136/bjophthalmol-2015-307330

[55]

Lei J, Durbin MK, Shi Y, et al. Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 2017;135(10):1092–1098. DOI: 10.1001/jamaophthalmol.2017.3431

[56]

Lei J., Durbin M.K., Shi Y., et al. Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images // JAMA Ophthalmol. 2017. Vol. 135, No. 10. P. 1092–1098. DOI: 10.1001/jamaophthalmol.2017.3431

[57]

Lee M, Kim K, Lim H, et al. Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases. Br J Ophthalmol. 2019;103:704–710. DOI: 10.1136/bjophthalmol-2018-312516

[58]

Lee M., Kim K., Lim H., et al. Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases // Br J Ophthalmol. 2019. Vol. 103. P. 704–710. DOI: 10.1136/bjophthalmol-2018-312516

[59]

Takase N, Nozaki M, Kato A, et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–2383. DOI: 10.1097/IAE.0000000000000849

[60]

Takase N., Nozaki M., Kato A., et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography // Retina. 2015. Vol. 35, No. 11. P. 2377–2383. DOI: 10.1097/IAE.0000000000000849

[61]

Ho J, Dans K, You Q, et al. Comparison of 3 mm × 3 mm versus 6 mm × 6 mm optical coherence tomography angiography scan sizes in the evaluation of non-proliferative diabetic retinopathy. Retina. 2019;39(2):259–264. DOI: 10.1097/IAE.0000000000001951

[62]

Ho J., Dans K., You Q., et al. Comparison of 3 mm × 3 mm versus 6 mm × 6 mm optical coherence tomography angiography scan sizes in the evaluation of non-proliferative diabetic retinopathy // Retina. 2019. Vol. 39, No. 2. P. 259–264. DOI: 10.1097/IAE.0000000000001951

[63]

Zhu Y, Cui Y, Wang JC, et al. Different scan protocols affect the detection rates of diabetic retinopathy lesions by wide-field swept-source optical coherence tomography angiography. Am J Ophthalmol. 2020;215:72–80. DOI: 10.1016/j.ajo.2020.03.004

[64]

Zhu Y., Cui Y., Wang J.C., et al. Different scan protocols affect the detection rates of diabetic retinopathy lesions by wide-field swept-source optical coherence tomography angiography // American Journal of ophthalmology. 2020. Vol. 215. P. 72–80. DOI: 10.1016/j.ajo.2020.03.004

[65]

Goudot MM, Sikorav A, Semoun O, et al. Parafoveal OCT angiography features in diabetic patients without clinical diabetic retinopathy: a qualitative and quantitative analysis. J Ophthalmol. 2017;2017:8676091. DOI: 10.1155/2017/8676091

[66]

Goudot M.M., Sikorav A., Semoun O., et al. Parafoveal OCT angiography features in diabetic patients without clinical diabetic retinopathy: a qualitative and quantitative analysis // J Ophthalmol. 2017. Vol. 2017. P. 8676091. DOI: 10.1155/2017/8676091

[67]

Burnasheva MA, Kulikov AN, Maltsev DS. Personalized analysis of foveal avascular zone with optical coherence tomography angiography. Ophthalmology Journal. 2017;10(4):32–40. (In Russ.) DOI: 10.17816/OV10432-40

[68]

Бурнашева М.А., Куликов А.Н., Мальцев Д.С. Персонализированный анализ фовеальной аваскулярной зоны с помощью оптической когерентной томографии-ангиографии // Офтальмологические ведомости. 2017. Т. 10. № 4. С. 32–40. DOI: 10.17816/OV10432-40

[69]

Choi W, Mohler KJ, Potsaid B, et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS ONE. 2013;8(12): e81499. DOI: 10.1371/journal.pone.0081499

[70]

Choi W., Mohler K.J., Potsaid B., et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography // PLoS ONE. 2013. Vol. 8, No. 12. P. e81499. DOI: 10.1371/journal.pone.0081499

[71]

Johnson RN, Fu AD, McDonald HR., et al. Fluorescein angiography: basic principles and interpretation. In: Ryan SJ, Sadda SR, Hinton DR, eds. Retina. London: Elsevier Saunders; 2012. Vol. 1. P. 2–50. DOI: 10.1016/B978-1-4557-0737-9.00001-1

[72]

Johnson R.N., Fu A.D., McDonald H.R., et al. Fluorescein angiography: basic principles and interpretation // Retina. 2012. Vol. 1. P. 2–50. DOI: 10.1016/B978-1-4557-0737-9.00001-1

[73]

Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. DOI: 10.1016/S0140-6736(09)62124-3

[74]

Cheung N, Mitchell P, Wong TY. Diabetic retinopathy // Lancet. 2010. Vol. 376, No. 9735. P. 124–136. DOI: 10.1016/S0140-6736(09)62124-3

[75]

Bradley PD, Sim DA, Keane PA, et al The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(2):626–631. DOI: 10.1167/iovs.15-18034

[76]

Bradley P.D., Sim D.A., Keane P.A., et al The evaluation of diabetic macular ischemia using optical coherence tomography angiography // Invest Ophthalmol Vis Sci. 2016. Vol. 57, No. 2. P. 626–631. DOI: 10.1167/iovs.15-18034

[77]

Bresnick GH, Condit R, Syrjala S, et al. Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol. 1984;102(9):1286–1293. DOI: 10.1001/archopht.1984.01040031036019

[78]

Bresnick G.H., Condit R., Syrjala S., et al. Abnormalities of the foveal avascular zone in diabetic retinopathy // Arch Ophthalmol. 1984. Vol. 102, No. 9. P. 1286–1293. DOI: 10.1001/archopht.1984.01040031036019

[79]

Parravano M, De Geronimo D, Scarinci F, et al. Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol. 2017;179:90–96. DOI: 10.1016/j.ajo.2017.04.021

[80]

Parravano M., De Geronimo D., Scarinci F., et al. Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection // Am J Ophthalmol. 2017. Vol. 179. P. 90–96. DOI: 10.1016/j.ajo.2017.04.021

[81]

Salz DA, de Carlo TE, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol. 2016;134(6):644–650. DOI: 10.1001/jamaophthalmol.2016.0600

[82]

Salz D.A., de Carlo T.E., Adhi M., et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes // JAMA Ophthalmol. 2016. Vol. 134, No. 6. P. 644–650. DOI: 10.1001/jamaophthalmol.2016.0600

[83]

Giuffre C, Carnevali A, Cicinelli MV, et al. Optical coherence tomography angiography of venous loops in diabetic retinopathy. Ophthalmic Surg Lasers Imaging Retina. 2017;48(6):518–520. DOI: 10.3928/23258160-20170601-13

[84]

Giuffre C., Carnevali A., Cicinelli M.V., et al. Optical coherence tomography angiography of venous loops in diabetic retinopathy // Ophthalmic Surg Lasers Imaging Retina. 2017. Vol. 48, No. 6. P. 518–520. DOI: 10.3928/23258160-20170601-13

[85]

Arya M, Sorour O, Chaudhri J, et al. Distinguishing intraretinal microvascular abnormalities from retinal neovascularization using optical coherence tomography angiography. Retina. 2019;40(9):1686–1695. DOI: 10.1097/IAE.0000000000002671

[86]

Arya M., Sorour O., Chaudhri J., et al. Distinguishing intraretinal microvascular abnormalities from retinal neovascularization using optical coherence tomography angiography // Retina. 2019. Vol. 40, No. 9. P. 1686–1695. DOI: 10.1097/IAE.0000000000002671

[87]

Miwa Y, Murakami T, Suzuma K, et al. Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography. Sci. Rep. 2016;6:29064. DOI: 10.1038/srep29064

[88]

Miwa Y., Murakami T., Suzuma K., et al. Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography // Sci. Rep. 2016.Vol. 6. P. 29064. DOI: 10.1038/srep29064

[89]

Couturier A, Mane V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35(11):2384–2391. DOI: 10.1097/IAE.0000000000000859

[90]

Couturier A., Mane V., Bonnin S., et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography // Retina. 2015. Vol. 35, No. 11. P. 2384–2391. DOI: 10.1097/IAE.0000000000000859

[91]

Stanga PE, Papayannis A, Tsamis E, et al. New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography. Dev. Ophthalmol. 2016;56:113–121. DOI: 10.1159/000442802

[92]

Stanga P.E., Papayannis A., Tsamis E., et al. New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography // Dev. Ophthalmol. 2016. Vol. 56. P. 113–121. DOI: 10.1159/000442802

[93]

Shchuko AG, Akulenko MV, Bukina VV, Samsonov DYu. OCTA angiography in the complex diagnosis of preclinical forms of retinal neovascularization. Sovremennyye tekhnologii v oftal’mologii. 2019;(6): 151–156. (In Russ.) DOI: 10.25276/2312-4911-2019-6-151-156

[94]

Щуко А.Г., Акуленко М.В., Букина В.В., Самсонов Д.Ю. ОКТА-ангиография в комплексной диагностике доклинических форм ретинальной неоваскуляризации // Современные технологии в офтальмологии. 2019. № 6. С. 151–156. DOI: 10.25276/2312-4911-2019-6-151-156

[95]

Pan J, Chen D, Yang X, et al. Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography. American Journal of Ophthalmology. 2018;192:146–156. DOI: 10.1016/j.ajo.2018.05.018

[96]

Pan J., Chen D., Yang X., et al. Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography // Am J Ophthalmol. 2018. Vol. 192. P. 146–156. DOI: 10.1016/j.ajo.2018.05.018

[97]

Lin AD, Lee AY, Zhang Q, et al. Association between OCT-based microangiography perfusion indices and diabetic retinopathy severity. Br J Ophthalmol. 2017;101(7):960–964. DOI: 10.1136/bjophthalmol-2016-309514

[98]

Lin A.D., Lee A.Y., Zhang Q., et al. Association between OCT-based microangiography perfusion indices and diabetic retinopathy severity // Br J Ophthalmol. 2017. Vol. 101, No. 7. P. 960–964. DOI: 10.1136/bjophthalmol-2016-309514

[99]

Soares M, Neves C, Marques IP, et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol. 2017;101(1):62–68. DOI: 10.1136/bjophthalmol-2016-309424

[100]

Soares M., Neves C., Marques I.P., et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography // Br J Ophthalmol. 2017. Vol. 101, No. 1. P. 62–68. DOI: 10.1136/bjophthalmol-2016-309424

[101]

Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2016;254(5):873–879. DOI: 10.1007/s00417-015-3143-7

[102]

Di G., Weihong Y., Xiao Z., et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography // Graefes Arch Clin Exp Ophthalmol. 2016. Vol. 254, No. 5. P. 873–879. DOI: 10.1007/s00417-015-3143-7

[103]

Sim DA, Keane P, Fung S, et al. Quantitative analysis of diabetic macular ischemia using optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(1):417–423. DOI: 10.1167/iovs.13-12677

[104]

Sim D.A., Keane P., Fung S., et al. Quantitative analysis of diabetic macular ischemia using optical coherence tomography // Invest Ophthalmol Vis Sci. 2014. Vol. 55, No. 1. P. 417–423. DOI: 10.1167/iovs.13-12677

[105]

Cennamo G, Romano MR, Nicoletti G, et al. Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopathy. Acta Ophthalmol. 2017;95(1): e36-e42. DOI: 10.1111/aos.13159

[106]

Cennamo G, Romano MR, Nicoletti G, et al. Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopathy. Acta Ophthalmol. 2017. Vol. 95. No. 1. P. e36-e42. DOI: 10.1111/aos.13159

[107]

Arend O, Wolf S, Jung F, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75(9):514–518. DOI: 10.1136/bjo.75.9.514

[108]

Arend O., Wolf S., Jung F., et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network // Br J Ophthalmol. 1991. Vol. 75, No. 9. P. 514–518. DOI: 10.1136/bjo.75.9.514

[109]

Agemy SA, Scripsema NK, Shah CM, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015;35(11):2353–2363. DOI: 10.1097/IAE.0000000000000862

[110]

Agemy S.A., Scripsema N.K., Shah C.M., et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients // Retina. 2015. Vol. 35, No. 11. P. 2353–2363. DOI: 10.1097/IAE.0000000000000862

[111]

Conti FF, Qin VL, Rodrigues EB, et al. Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. Br J Ophthalmol. 2019;103(4):452–456. DOI: 10.1136/bjophthalmol-2018-311903

[112]

Conti F.F., Qin V.L., Rodrigues E.B., et al. Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography // Br J Ophthalmol. 2019. Vol. 103, No. 4. P. 452–456. DOI: 10.1136/bjophthalmol-2018-311903

[113]

Fabrikantov OL, Pronichkina MM, Yablokova NV, Ovsyannikova NV. Innovative capabilities of non-invasive vital assessment of vascular status of microcirculatory bed in diabetic retinopathy. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2018;(4):41–45. (In Russ.) DOI: 10.19163/1994-9480-2018-4(68)-41-45

[114]

Фабрикантов О.Л., Проничкина М.М., Яблокова Н.В., Овсянникова Н.В. Инновационные возможности неинвазивной прижизненной оценки состояния сосудов микроциркуляторного ложа при диабетической ретинопатии // Вестник Волгоградского государственного медицинского университета. 2018. № 4. С. 41–45. DOI: 10.19163/1994-9480-2018-4(68)-41-45

[115]

Aznabaev BM, Aleksandrov AA, Davletova RA, et al. Quantitative assessment of macular hemoperfusion in patients with nonproliferative diabetic retinopathy. Meditsinskiy vestnik Bashkortostana. 2019;14(3):5–9. (In Russ.)

[116]

Азнабаев Б.М., Александров А.А., Давлетова Р.А., и др. Количественная оценка гемоперфузии макулы у пациентов с непролиферативной диабетической ретинопатией // Медицинский вестник Башкортостана. 2019. Т. 14. № 3. С. 5–9.

[117]

Kuehlewein L, Tepelus TC, An L, et al. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest Ophthalmol Vis Sci. 2015;56(6):3984–3988. DOI: 10.1167/iovs.15-16510

[118]

Kuehlewein L., Tepelus T.C., An L., et al. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography // Invest Ophthalmol Vis Sci. 2015. Vol. 56, No. 6. P. 3984–3988. DOI: 10.1167/iovs.15-16510

[119]

Krawitz BD, Mo S, Geyman LS, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Res. 2017;139:177–186. DOI: 10.1016/j.visres.2016.09.019

[120]

Krawitz B.D., Mo S., Geyman L.S., et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography // Vision Res. 2017. Vol. 139. P. 177–186. DOI: 10.1016/j.visres.2016.09.019

[121]

Provis JM, Hendrickson AE. The foveal avascular region of developing human retina. Arch Ophthalmol. 2008;126(4):507–511. DOI: 10.1001/archopht.126.4.507

[122]

Provis J.M., Hendrickson A.E. The foveal avascular region of developing human retina // Arch Ophthalmol. 2008. Vol. 126, No. 4. P. 507–511. DOI: 10.1001/archopht.126.4.507

[123]

Samara WA, Say EAT, Khoo CTL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35(11):2188–2195. DOI: 10.1097/IAE.0000000000000847

[124]

Samara W.A., Say E.A.T., Khoo C.T.L., et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography // Retina. 2015. Vol. 35, No. 11. P. 2188–2195. DOI: 10.1097/IAE.0000000000000847

[125]

Ahmad Fadzil M, Ngah NF, George TM, et al. Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5632–5635. DOI: 10.1109/IEMBS.2010.5628041

[126]

Ahmad Fadzil M, Ngah NF, George TM, et al. Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity // Annu Int Conf IEEE Eng Med Biol Soc. 2010. Vol. 2010. P. 5632–5635. DOI: 10.1109/IEMBS.2010.5628041

[127]

Laatikainen L, Larinkari J. Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci. 1977;16(12):1154–1157.

[128]

Laatikainen L., Larinkari J. Capillary-free area of the fovea with advancing age // Invest Ophthalmol Vis Sci. 1977. Vol. 16, No. 12. P. 1154–1157.

[129]

Vujosevic S, Muraca A, Alkabes M, et al Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina. 2019;39(3): 435–445. DOI: 10.1097/IAE.0000000000001990

[130]

Vujosevic S., Muraca A., Alkabes M., et al. Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy // Retina. 2019. Vol. 39, No. 3. P. 435–445. DOI: 10.1097/IAE.0000000000001990

[131]

Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary non-perfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol. 2016;168:129–138. DOI: 10.1016/j.ajo.2016.05.002

[132]

Scarinci F., Nesper P.L., Fawzi A.A. Deep retinal capillary non-perfusion is associated with photoreceptor disruption in diabetic macular ischemia // Am J Ophthalmol. 2016. Vol. 168. P. 129–138. DOI: 10.1016/j.ajo.2016.05.002

[133]

Durbin MK, An L, Shemonski ND, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–376. DOI: 10.1001/jamaophthalmol.2017.0080

[134]

Durbin M.K., An L., Shemonski N.D., et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy // JAMA Ophthalmol. 2017. Vol. 135, No. 4. P. 370–376. DOI: 10.1001/jamaophthalmol.2017.0080

[135]

Sandhu HS, Eladawi N, Elmogy M, et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. Retinal Physician. 2018;102(11):1564–1569. DOI: 10.1136/bjophthalmol-2017-311489

[136]

Sandhu H.S., Eladawi N., Elmogy M., et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. // Retinal Physician. 2018. Vol. 102, No. 11. P. 1564–1569. DOI: 10.1136/bjophthalmol-2017-311489

[137]

Fabrikantov OL, Yablokova NV, Yablokov MM, Ovsyannikova NV. Examination of vessels in the macular area using oct-angiography before and after panretinal laser coagulation in diabetic retinopathy. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2018;(4):69–72. (In Russ.) DOI: 10.19163/1994-9480-2018-4(68)-69-72

[138]

Фабрикантов О.Л., Яблокова Н.В., Яблоков М.М., Овсянникова Н.В. Исследование сосудов макулярной области методом ОКТ-ангиографии до и после панретинальной лазеркоагуляции по поводу диабетической ретинопатии // Вестник Волгоградского государственного медицинского университета. 2018. № 4. С. 69–72. DOI: 10.19163/1994-9480-2018-4(68)-69-72

[139]

Yablokova NV, Fabrikantov OL. Investigation of the influence of panretinal laser coagulation concerning diabetic retinopathy on the vascular system of the eye. Sovremennyye tekhnologii v oftal’mologii. 2019;(6):157–162. (In Russ.) DOI: 10.25276/2312-4911-2019-6-157-162

[140]

Яблокова Н.В., Фабрикантов О.Л. Исследование влияния панретинальной лазеркоагуляции по поводу диабетической ретинопатии на сосудистую систему глаза // Современные технологии в офтальмологии. 2019. № 6. С. 157–162. DOI: 10.25276/2312-4911-2019-6-157-162

[141]

Neroev VV, Kiseleva TN, Okhotsimskaya TD, et al. Impact of antiangiogenic therapy on ocular blood flow and microcirculation in diabetic macular edema. Vestnik oftalmologii. 2018;134(4):3–10. (In Russ.) DOI: 10.17116/oftalma20181340413

[142]

Нероев В.В., Киселева Т.Н., Охоцимская Т.Д., и др Влияние антиангиогенной терапии на глазной кровоток и микроциркуляцию при диабетическом макулярном отёке // Вестник офтальмологии. 2018. Т. 134. № 4. С. 3–10. DOI: 10.17116/oftalma20181340413

[143]

Hirano T, Kakihara S, Toriyama Y, et al. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol. 2018;102(9):1199–1203. DOI: 10.1136/bjophthalmol-2017-311358

[144]

Hirano T., Kakihara S., Toriyama Y., et al. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy // Br J Ophthalmol. 2018;102(9):1199–1203. DOI: 10.1136/bjophthalmol-2017-311358

RIGHTS & PERMISSIONS

Pomytkina N.V., Sorokin E.L.

AI Summary AI Mindmap
PDF (426KB)

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/