The role of genetic factors in the pathogenesis of primary open-angle glaucoma. Part 1. Connective tissue

Anastasiia N. Zhuravleva , Maria O. Kirillova , Marina V. Zueva , Vitaliy V. Kadyshev

Ophthalmology Reports ›› 2021, Vol. 14 ›› Issue (1) : 89 -100.

PDF (277KB)
Ophthalmology Reports ›› 2021, Vol. 14 ›› Issue (1) : 89 -100. DOI: 10.17816/OV52972
Reviews
review-article

The role of genetic factors in the pathogenesis of primary open-angle glaucoma. Part 1. Connective tissue

Author information +
History +
PDF (277KB)

Abstract

The article presents an analytical review of works devoted to molecular and genetic studies in primary open-angle glaucoma from the perspective of the concept of hereditary inferiority of the connective tissue of the eye (“scleral component”), and the entire body as a whole, as triggers in the development of the disease. The relationship between the main theories of the pathogenesis of glaucoma optical neuropathy and the determining role of molecular and genetic mechanisms of specific changes in the eye tissue is shown. The clinical features of primary open-angle glaucoma in patients with a family history are analyzed. Potentially new directions for preclinical diagnosis of glaucoma and pathogenetically oriented therapy are proposed.

Keywords

primary open-angle glaucoma / connective tissue / preclinical diagnostics / genetics / pathogenesis of glaucoma

Cite this article

Download citation ▾
Anastasiia N. Zhuravleva, Maria O. Kirillova, Marina V. Zueva, Vitaliy V. Kadyshev. The role of genetic factors in the pathogenesis of primary open-angle glaucoma. Part 1. Connective tissue. Ophthalmology Reports, 2021, 14(1): 89-100 DOI:10.17816/OV52972

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhuravleva AN, Neroyev VV, Andreyeva LD. Investigation of scleral fibronectin in primary open-angle glaucoma: immunohistochemical study. Vestnik Oftalmologii. 2009;125(3):12–14. (In Russ.)

[2]

Журавлева А.Н., Нероев В.В., Андреева Л.Д. Изучение фибронектина склеры при первичной открытоугольной глаукоме (Иммуногистохимическое исследование) // Вестник офтальмологии. 2009. T. 125, № 3. С. 12–14.

[3]

Sennova LG. A retrospective analysis of the role of connective tissue in the pathogenesis of glaucoma. National Journal Glaucoma. 2018;17(1):113–116. (In Russ.)

[4]

Сеннова Л.Г. Ретроспективный взгляд на роль соединительной ткани в патогенезе глаукомы // Национальный журнал глаукома. 2018. T. 17, № 1. С. 113–116.

[5]

Zhuravleva AN. Skleral'nyj komponent v glaukomnoj processe [dissertation]. Мoscow, 2010. (In Russ.)

[6]

Журавлева А.Н. Склеральный компонент в глаукомной процессе: дис. … канд. мед. наук. М.: 2010.

[7]

Fuse N. Genetic bases for glaucoma. Tohoku J Exp Med. 2010;221:1–10. DOI: 10.1620/tjem.221.1

[8]

Fuse N. Genetic bases for glaucoma // Tohoku J Exp Med. 2010. Vol. 221. P. 1–10. DOI: 10.1620/tjem.221.1

[9]

Astakhov YS, Rakhmanov VV. Heredity and glaucoma. Ophthalmology Journal. 2012;5(4):51–57. (In Russ.)

[10]

Астахов Ю.С., Рахманов В.В. Наследственность и глаукома // Офтальмологические ведомости. 2012. Т. 5, № 4. C. 51–57.

[11]

Nesterov AP. Glaukoma. Мoscow: Medicinskoe informacionnoe agentstvo, 2008. 360 p. (In Russ.)

[12]

Нестеров А.П. Глаукома. М.: Медицинское информационное агентство, 2008. 360 с.

[13]

Ofri R. Intraocular pressure and glaucoma. Vet Clin North Am Exot Anim Pract. 2002;2:391–406. DOI: 10.1016/S1094-9194(01)00004-4

[14]

Ofri R. Intraocular pressure and glaucoma // Vet Clin North Am Exot Anim Pract. 2002. Vol. 2. P. 391–406. DOI: 10.1016/S1094-9194(01)00004-4

[15]

Rasmussen CA, Kaufman PL. The trabecular meshwork in normal eyes and in exfoliation glaucoma. J Glaucoma. 2014;23(8): 15–19. DOI: 10.1097/ijg.0000000000000106

[16]

Rasmussen C.A., Kaufman P.L. The trabecular meshwork in normal eyes and in exfoliation glaucoma // J Glaucoma. 2014. Vol. 23. No. 8. P. 15–19. DOI: 10.1097/ijg.0000000000000106

[17]

Zhuravleva AN, Andreeva LD, Neroev VV. Kollagenovaja teorija starenija i geneticheskij kod v patogeneze glaukomy. Clinical gerontology. 2009;25(8–9):78. (In Russ.)

[18]

Журавлева А.Н., Андреева Л.Д. Нероев В.В. Коллагеновая теория старения и генетический код в патогенезе глаукомы // Клиническая геронтология. 2009. Т. 25, № 8–9. С. 78.

[19]

Kwon HS, Lee HS, Ji Y, et al. Myocilin is a modulator of Wnt signaling. Mol Cell Biol. 2009;29(8):2139–2154. DOI: 10.1128/mcb.01274-08

[20]

Kwon H.S., Lee H.S., Ji Y., et al. Myocilin is a modulator of Wnt signaling // Mol Cell Biol. 2009. Vol. 29, No. 8. P. 2139–2154. DOI: 10.1128/mcb.01274-08

[21]

Yuan He, Wah, Zhuo J. Ge Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells. Mol Vis. 2009;15:815–825.

[22]

Yuan He, Wah, Zhuo J. Ge Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells // Mol Vis. 2009. Vol. 15. P. 815–825.

[23]

Fautsch MP, Vrabel AM, Johnson DH. The identification of myocilin-associated proteins in the human trabecular meshwork. Exp Eye Res. 2006;82:1046–1052. DOI: 10.1016/j.exer.2005.09.016

[24]

Fautsch M.P., Vrabel A.M., Johnson D.H. The identification of myocilin-associated proteins in the human trabecular meshwork // Exp Eye Res. 2006. Vol. 82. P. 1046–1052. DOI: 10.1016/j.exer.2005.09.016

[25]

Fingert, JH. Primary open-angle glaucoma genes. Eye. 2011;25(5):587–595. DOI: 10.1038/eye.2011.97

[26]

Fingert J.H. Primary open-angle glaucoma genes // Eye. 2011. Vol. 25. No. 5. P. 587–595. DOI: 10.1038/eye.2011.97

[27]

Nag A, Lu H, Arno M, et al. Evaluation of the Myocilin Mutation Gln368Stop Demonstrates Reduced Penetrance for Glaucoma in European Populations. Ophthalmol. 2017;124(4):547–553. DOI: 10.1016/j.ophtha.2016.11.018

[28]

Nag A., Lu H., Arno M., et al. Evaluation of the Myocilin Mutation Gln368Stop Demonstrates Reduced Penetrance for Glaucoma in European Populations // Ophthalmol. 2017. Vol. 124, No. 4. P. 547–553. DOI: 10.1016/j.ophtha.2016.11.018

[29]

Hewitt AW, Mackey DA, Craig JE. Myocilin allele-specific glaucoma phenotype database. Hum Mutat. 2008;29:207–211. DOI: 10.1002/humu.20634

[30]

Hewitt A.W., Mackey D.A., Craig J.E. Myocilin allele-specific glaucoma phenotype database // Hum Mutat. 2008. Vol. 29. P. 207–211. DOI: 10.1002/humu.20634

[31]

Ritch R, Schlotzer-Schrehardt U. Exfoliation syndrome. Surv. Ophthalmol. 2001;45(4):265–315. DOI: 10.1016/s0039-6257(00)00196-x

[32]

Ritch R., Schlotzer-Schrehardt U. Exfoliation syndrome // Surv Ophthalmol. 2001. Vol. 45, No. 4. P. 265–315. DOI: 10.1016/s0039-6257(00)00196-x

[33]

Jeng SM, Karger RA, Hodge DO, et al. The risk of glaucoma in pseudoexfoliation syndrome. J Glaucoma. 2007;16(1):117–121. DOI: 10.1097/01.ijg.0000243470.13343.8b

[34]

Jeng S.M., Karger R.A., Hodge D.O., et al. The risk of glaucoma in pseudoexfoliation syndrome // J Glaucoma. 2007. Vol. 16, No. 1. P. 117–121. DOI: 10.1097/01.ijg.0000243470.13343.8b

[35]

Konstas AG, Hollo G, Astakhov YS, et al. Factors associated with long-term progression or stability in exfoliation glaucoma. Arch ophthalmol. 2004;122(1):29–33. DOI: 10.1001/archopht.122.1.29

[36]

Konstas A.G., Hollo G., Astakhov Y.S., et al. Factors associated with long-term progression or stability in exfoliation glaucoma // Arch ophthalmol. 2004. Vol. 122, No. 1. P. 29–33. DOI: 10.1001/archopht.122.1.29

[37]

Aung T, Ozaki M, Lee MC. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017;49(7):993–1004. DOI: 10.1038/ng.3875

[38]

Aung T., Ozaki M., Lee M.C. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci // Nat Genet. 2017. Vol. 49, No. 7. P. 993–1004. DOI: 10.1038/ng.3875

[39]

Aung T, Chan AS, Khor CC. Genetics of Exfoliation Syndrome. J Glaucoma. 2018;27(1):12–14. DOI: 10.1097/IJG.0000000000000928.

[40]

Aung T., Chan A.S., Khor C.C. Genetics of Exfoliation Syndrome // J Glaucoma. 2018. Vol. 27, No. 1. P. 12–14. DOI: 10.1097/IJG.0000000000000928

[41]

Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in LOXL1 gene confer suspectibility to exfoliation glaucoma. Science. 2007;317(5843):1397–1400. DOI: 10.1126/science.1146554

[42]

Thorleifsson G., Magnusson K.P., Sulem P., et al. Common sequence variants in LOXL1 gene confer suspectibility to exfoliation glaucoma // Science. 2007. Vol. 317, No. 5843. P. 1397–1400. DOI: 10.1126/science.1146554

[43]

Hewitt AW, Sharma S, Burdon KP, et al. Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people. Hum Mol Genet. 2007;17:710–716. DOI: 10.1093/hmg/ddm342

[44]

Hewitt A.W., Sharma S., Burdon K.P., et al. Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people // Hum Mol Genet. 2007. Vol. 17. P. 710–716. DOI: 10.1093/hmg/ddm342

[45]

Ramprasad VL, George R, Soumittra N, et al. Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India. Mol Vis. 2008;14:318–322.

[46]

Ramprasad V.L., George R., Soumittra N., et al. Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India // Mol Vis. 2008. Vol. 14. P. 318–322.

[47]

Challa P, Schmidt S, Liu Y, et al. Analysis of LOXL1 polymorphisms in a United States population with pseudoexfoliation glaucoma. Mol Vis. 2008;14:146–149.

[48]

Challa P., Schmidt S., Liu Y., et al. Analysis of LOXL1 polymorphisms in a United States population with pseudoexfoliation glaucoma // Mol Vis. 2008. Vol. 14. P. 146–149.

[49]

Streeten BW, Li ZY, Wallace RN, et al. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome. Arch Ophthalmol. 1992;110:1757–1762. DOI: 10.1001/archopht.1992.01080240097039

[50]

Streeten B.W., Li Z.Y., Wallace R.N., et al. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome // Arch Ophthalmol. 1992. Vol. 110. P. 1757–1762. DOI: 10.1001/archopht.1992.01080240097039

[51]

Wirostko BM, Curtin K, Ritch R, et al. Risk for exfoliation syndrome in women with pelvic organ prolapse: a utah project on exfoliation syndrome (upexs) study. JAMA Ophthalmol. 2016;134(11):1255–1262. DOI: 10.1001/jamaophthalmol.2016.3411

[52]

Wirostko B.M., Curtin K., Ritch R., et al. Risk for exfoliation syndrome in women with pelvic organ prolapse: a utah project on exfoliation syndrome (upexs) study // JAMA Ophthalmol. 2016. Vol. 134. No. 11. P. 1255–1262. DOI: 10.1001/jamaophthalmol.2016.3411

[53]

Schlotzer-Schrehardt U. Molecular pathology of pseudoexfoliation syndrome/glaucoma – new insights from LOXL1 gene associations. Exp Eye Res. 2009;88:776–785. DOI: 10.1016/j.exer.2008.08.012

[54]

Schlotzer-Schrehardt U. Molecular pathology of pseudoexfoliation syndrome/glaucoma – new insights from LOXL1 gene associations // Exp Eye Res. 2009. Vol. 88. P. 776–785. DOI: 10.1016/j.exer.2008.08.012

[55]

Taurone S, Ripandelli G, Pacella E, et al. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines. Mol Med Rep. 2015;11(2):1384–1390. DOI: 10.3892/mmr.2014.2772

[56]

Taurone S., Ripandelli G., Pacella E., et al. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines // Mol Med Rep. 2015. Vol. 11, No. 2. P. 1384–1390. DOI: 10.3892/mmr.2014.2772

[57]

Derakhshan A, Tavakkol AJ, Sadeghi AJ, et al. The Association Between the Transforming Growth Factor Beta-1–509C>T Gene Polymorphism and Primary Open Angle Glaucoma in North Eastern Iran. Rep Biochem Mol Biol. 2019;7(2):167–173.

[58]

Derakhshan A., Tavakkol A.J., Sadeghi A.J., et al. The Association Between the Transforming Growth Factor Beta-1–509C>T Gene Polymorphism and Primary Open Angle Glaucoma in North Eastern Iran // Rep Biochem Mol Biol. 2019. Vol. 7, No. 2. P. 167–173.

[59]

O'Kane S, Ferguson MW. Transforming growth factor beta s and wound healing. Int J Biochem Cell Biol. 1997;29(1):63–78. DOI: 10.1016/s1357-2725(96)00120-3

[60]

O’Kane S., Ferguson M.W. Transforming growth factor beta s and wound healing // Int J Biochem Cell Biol. 1997. Vol. 29, No. 1. P. 63–78. DOI: 10.1016/s1357-2725(96)00120-3

[61]

Jampel HD, Roche N, Stark WJ, Roberts AB. Transforming growth factor-beta in human aqueous humor. Curr Eye Res. 1990;9(10):963–969. DOI: 10.3109/02713689009069932

[62]

Jampel H.D., Roche N., Stark W.J., Roberts A.B. Transforming growth factor-beta in human aqueous humor // Curr Eye Res. 1990. Vol. 9, No. 10. P. 963–969. DOI: 10.3109/02713689009069932

[63]

Wiggs JL. Glaucoma Genes and Mechanisms. Prog Mol Biol Transl Sci. 2015;134:315–342. DOI: 10.1016/bs.pmbts.2015.04.008

[64]

Wiggs J.L. Glaucoma Genes and Mechanisms // Prog Mol Biol Transl Sci. 2015. Vol. 134. P. 315–342. DOI: 10.1016/bs.pmbts.2015.04.008

[65]

Takano Y, Shi D, Shimizu A, et al. Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma. Am J Ophthalmol. 2012;154(5):825–832. DOI: 10.1016/j.ajo.2012.03.050

[66]

Takano Y., Shi D., Shimizu A., et al. Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma // Am J Ophthalmol. 2012. Vol. 154, No. 5. P. 825–832. DOI: 10.1016/j.ajo.2012.03.050

[67]

Hernandez H, Medina-Ortiz WE, Luan T, et al. Crosstalk Between Transforming Growth Factor Beta-2 and Toll-Like Receptor 4 in the Trabecular Meshwork. Invest Ophthalmol Vis Sci. 2017;58(3): 1811–1823. DOI: 10.1167/iovs.16-21331

[68]

Hernandez H., Medina-Ortiz W.E., Luan T., et al. Crosstalk Between Transforming Growth Factor Beta-2 and Toll-Like Receptor 4 in the Trabecular Meshwork // Invest Ophthalmol Vis Sci. 2017. Vol. 58, No. 3. P. 1811–1823. DOI: 10.1167/iovs.16-21331

[69]

Fukuchi T, Ueda J, Hanyu T, et al. Distribution and expression of transforming growth factor-beta and platelet-derived growth factor in the normal and glaucomatous monkey optic nerve heads. Jpn J Ophthalmol. 2001;45(6):592–599. DOI: 10.1016/s0021-5155(01)00414-2

[70]

Fukuchi T., Ueda J., Hanyu T., et al. Distribution and expression of transforming growth factor-beta and platelet-derived growth factor in the normal and glaucomatous monkey optic nerve heads // Jpn J Ophthalmol. 2001. Vol. 45, No. 6. P. 592–599. DOI: 10.1016/s0021-5155(01)00414-2

[71]

Izhevskaja VL, Kiseleva, OA, Zhuravleva AN, Halilov SA. Polimorfizmy genov kollagena I i III tipov i ih svjaz' s razvitiem POUG. Russian Journal of Genetics. 2013;12(6):33–37. (In Russ.)

[72]

Ижевская В.Л., Киселева О.А., Журавлева А.Н., Халилов Ш.А. Полиморфизмы генов коллагена I и III типов и их связь с развитием ПОУГ // Генетика. 2013. Т. 12, № 6. С. 33–37.

[73]

Welge-Lussen U, May CA. Induction of tissue transglutaminase in the trabecular meshwork by TGF-beta l and TGF-beta 2. Invest. Ophthal. Vis. Sci. 2000;41(8): 2229–2238.

[74]

Welge-Lussen U., May C.A. Induction of tissue transglutaminase in the trabecular meshwork by TGF-beta l and TGF-beta 2 // Invest Ophthal Vis Sci. 2000. Vol. 41. No. 8. P. 2229–2238.

[75]

Albon J. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br J Ophthalmol. 2000;84:311–317. DOI: 10.1136/bjo.84.3.311

[76]

Albon J. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa // Br J Ophthalmol. 2000. Vol. 84. P. 311–317. DOI: 10.1136/bjo.84.3.311

[77]

Agapova, OA, Ricard CS, Salvador-Silva M, Hernandez MR. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes. Glia. 2001;33(3):205–216. DOI: 10.1002/1098-1136(200103)33:3<205:: aid-glia1019>3.0.co;2-d

[78]

Agapova O.A., Ricard C.S., Salvador-Silva M., Hernandez M.R. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes // Glia. 2001. Vol. 33, No. 3. P. 205–216. DOI: 10.1002/1098-1136(200103)33:3<205:: aid-glia1019>3.0.co;2-d

[79]

Kirwan RP, Fenerty CH, Crean J, et al. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro. Mol Vis. 2005;11:798–810. DOI: 10.1016/s0021-9290(06)84552-5

[80]

Kirwan R.P., Fenerty C.H., Crean J., et al. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro // Mol Vis. 2005. Vol. 11. P. 798–810. DOI: 10.1016/s0021-9290(06)84552-5

[81]

Beletskaya IS, Astakhov SY. The role of matrix metalloproteinases in glaucoma pathogenesis. Ophthalmology Journal. 2015;8(3): 28–43. (In Russ.) DOI: 10.17816/OV2015328-43

[82]

Белецкая И.С., Астахов С.Ю. Роль матриксных металлопротеиназ в патогенезе глаукомы // Офтальмологические ведомости. 2015. T. 8, № 3. С. 28–43. DOI: 10.17816/OV2015328-43

[83]

Hernandez MR, Pena J, Selvidge JA, et al. Hydrostatic pressure stimulates synthesis of elastin in cultured optic nerve head astrocytes. Glia. 2000;32:122–136. DOI: 10.1002/1098-1136(200011)32:2<122::aid-glia20>3.0.co;2-j

[84]

Hernandez M.R., Pena J., Selvidge J.A., et al. Hydrostatic pressure stimulates synthesis of elastin in cultured optic nerve head astrocytes // Glia. 2000. Vol. 32. P. 122–136. DOI: 10.1002/1098-1136(200011)32:2<122:: aid-glia20>3.0.co;2-j

[85]

Реnа I, Agapova О. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest Ophtalmol. 2001;42:2303–2314.

[86]

Реnа I., Agapova О. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure // Invest Ophtalmol. 2001. Vol. 42. P. 2303–2314.

[87]

Xu SL, Gao ZZ, Wang Y, Chen J. Expression of matrix metalloproteinases and inhibitors on the scleral tissue of lamina cribrosa in rat with experimental chronic ocular hypertension. Zhonghua Yan Ke Za Zhi. 2009;45(3):260–265.

[88]

Xu S.L., Gao Z.Z., Wang Y., Chen J. Expression of matrix metalloproteinases and inhibitors on the scleral tissue of lamina cribrosa in rat with experimental chronic ocular hypertension // Zhonghua Yan Ke Za Zhi. 2009. Vol. 45, No. 3. P. 260–265.

[89]

Fountoulakis N, Labiris G, Aristeidu A, et al. Tissue inhibitor of metalloproteinase 4 in aqueous humor of patients with primary open angle glaucoma, pseudoexfoliation syndrome and pseudoexfoliative glaucoma and its role in proteolysis imbalance. BMC Ophthalmology. 2013;13:69. DOI: 10.1186/1471-2415-13-69

[90]

Fountoulakis N., Labiris G., Aristeidu A., et al. Tissue inhibitor of metalloproteinase 4 in aqueous humor of patients with primary open angle glaucoma, pseudoexfoliation syndrome and pseudoexfoliative glaucoma and its role in proteolysis imbalance // BMC Ophthalmol. 2013. Vol. 13. P. 69. DOI: 10.1186/1471-2415-13-69

[91]

Bradley JM, Kelley MJ, Zhu XH, et al. Effect of mechanical stretching on trabecular matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2001;42(7):1505–1513.

[92]

Bradley J.M., Kelley M.J., Zhu X.H., et al. Effect of mechanical stretching on trabecular matrix metalloproteinases // Invest Ophthalmol Vis Sci. 2001. Vol. 42, No. 7. P. 1505–1513.

[93]

Golubnitschaja O, Flammer J. What are the biomarkers for glaucoma? Surv Ophthalmol. 2007;52(2):155–161. DOI: 10.1016/j.survophthal.2007.08.011

[94]

Golubnitschaja O., Flammer J. What are the biomarkers for glaucoma? // Surv Ophthalmol. 2007. Vol. 52, No. 2. P. 155–161. DOI: 10.1016/j.survophthal.2007.08.011

[95]

Fiotti N, Calvagna C, Sgorlon G, et al. Multiple sites of vascular dilation or aneurysmal disease and matrix metalloproteinase genetic variants in patients with abdominal aortic aneurysm. J Vasc Surg. 2017;67(6):1727–1735. DOI: 10.1016/j.jvs.2017.09.047

[96]

Fiotti N., Calvagna C., Sgorlon G., et al. Multiple sites of vascular dilation or aneurysmal disease and matrix metalloproteinase genetic variants in patients with abdominal aortic aneurysm // J Vasc Surg. 2017. Vol. 67, No. 6. P. 1727–1735. DOI: 10.1016/j.jvs.2017.09.047

[97]

Ji M-L, Jia J. Correlations of TIMP2 and TIMP3 gene polymorphisms with primary open-angle glaucoma. Eur Rev Med Pharmacol Sci. 2019;23(13):5542–5547. DOI: 10.26355/eurrev_201907_18287

[98]

Ji M.-L., Jia J. Correlations of TIMP2 and TIMP3 gene polymorphisms with primary open-angle glaucoma // Eur Rev Med Pharmacol Sci. 2019. Vol. 23, No. 13. P. 5542–5547. DOI: 10.26355/eurrev_201907_18287

[99]

He M, Wang W, Han X, Huang W. Matrix metalloproteinase-1 rs1799750 polymorphism and glaucoma: A meta-analysis. Ophthalmic Genet. 2017;38(3):211–216. DOI: 10.1080/13816810.2016.1193877

[100]

He M., Wang W., Han X., Huang W. Matrix metalloproteinase-1 rs1799750 polymorphism and glaucoma: A meta-analysis // Ophthalmic Genet. 2017. Vol. 38, No. 3. P. 211–216. DOI: 10.1080/13816810.2016.1193877

[101]

Tsironi EE, Pefkianaki M, Tsezou A, et al. Evaluation of MMP1 and MMP3 gene polymorphisms in exfoliation syndrome and exfoliation glaucoma. Mol Vis. 2009;15:2890–2895.

[102]

Tsironi E.E., Pefkianaki M., Tsezou A., et al. Evaluation of MMP1 and MMP3 gene polymorphisms in exfoliation syndrome and exfoliation glaucoma // Mol Vis. 2009. Vol. 15. P. 2890–2895.

[103]

Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and conseguences. Prog Retin Eye Res. 2006;25: 490–513. DOI: 10.1016/j.preteyeres.2006.07.003

[104]

Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and conseguences // Prog Retin Eye Res. 2006. Vol. 25. P. 490–513. DOI: 10.1016/j.preteyeres.2006.07.003

[105]

Mabuchi F, Tang SA, Kashiwagi K, et al. The OPA1 gene polymorphism is associated with normal tension and high tension glaucoma. Am J Ophthal. 2007;143:125–130. DOI: 10.1016/j.ajo.2006. 09.028

[106]

Mabuchi F., Tang S.A., Kashiwagi K. et al. The OPA1 gene polymorphism is associated with normal tension and high tension glaucoma // Am J Ophthal. 2007. Vol. 143. P. 125–130. DOI: 10.1016/j.ajo.2006.09.028

[107]

Kunal R, Suddhasil M. Molecular complexity of primary open angle glaucoma: current concepts. J Genet. 2009;88(4):451–467. DOI: 10.1007/s12041-009-0065-3

[108]

Kunal R., Suddhasil M. Molecular complexity of primary open angle glaucoma: current concepts // J Genet. 2009. Vol. 88, No. 4. P. 451–467. DOI: 10.1007/s12041-009-0065-3

[109]

Bunin AJ. Patologicheskie faktory destruktivnogo processa v trabekuljarnyh tkanjah pri pervichnoj otkrytougol’noj glaukome. Vestnik Oftalmologii. 2000;116(5):24–27. (In Russ.)

[110]

Бунин А.Я. Патологические факторы деструктивного процесса в трабекулярных тканях при первичной открытоугольной глаукоме // Вестник офтальмологии. 2000. T. 116, № 5. С. 24–27.

[111]

Ferreira SM, Lerner SF, Brunzini R, et al. Antioxidant status in the aqueous humour of patients with glaucoma associated with exfoliation syndrome. Eye. 2009;23(8):1691–1697. DOI: 10.1038/eye.2008.352

[112]

Ferreira S.M., Lerner S.F., Brunzini R., et al. Antioxidant status in the aqueous humour of patients with glaucoma associated with exfoliation syndrome // Eye. 2009. Vol. 23, No. 8. P. 1691–1697. DOI: 10.1038/eye.2008.352

[113]

Metlapally R, Li YJ, Tran-Viet KN, et al. COL1A1 and COL2A1 genes and myopia susceptibility: evidence of association and suggestive linkage to the COL2A1 locus. Invest Ophthalmol Vis Sci. 2009;50(9):4080–4086. DOI: 10.1167/iovs.08-3346

[114]

Metlapally R., Li Y.J., Tran-Viet K.N., et al. COL1A1 and COL2A1 genes and myopia susceptibility: evidence of association and suggestive linkage to the COL2A1 locus // Invest Ophthalmol Vis Sci. 2009. Vol. 50, No. 9. P. 4080–4086. DOI: 10.1167/iovs.08-3346

[115]

Kluivers KB, Dijkstra JR, Hendriks JC, et al. COL3A1 2209G>A is a predictor of pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(9):1113–1118. DOI: 10.1007/s00192-009-0913-y

[116]

Kluivers K.B., Dijkstra J.R., Hendriks J.C., et al. COL3A1 2209G>A is a predictor of pelvic organ prolapse // Int Urogynecol J Pelvic Floor Dysfunct. 2009. Vol. 20, No. 9. P. 1113–1118. DOI: 10.1007/s00192-009-0913-y

[117]

Chen HY, Chung YW, Lin WY, et al. Collagen type 3 alpha 1 polymorphism and risk of pelvic organ prolapse. Int J Gynecol Obst. 2008;103(1):55–58. DOI: 10.1016/j.ijgo.2008.05.031

[118]

Chen H.Y., Chung Y.W., Lin W.Y., et al. Collagen type 3 alpha 1 polymorphism and risk of pelvic organ prolapse // Int J Gynecol Obst. 2008. Vol. 103, No. 1. P. 55–58. DOI: 10.1016/j.ijgo.2008.05.031

[119]

Mann V, Ralston SH. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone. 2003;32(6):711–717. DOI: 10.1016/s8756-3282(03)00087-5

[120]

Mann V., Ralston S.H. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture // Bone. 2003. Vol. 32, No. 6. P. 711–717. DOI: 10.1016/s8756-3282(03)00087-5

[121]

Kuleshova ON, Dikovskaja MA, Zajdman AM, Luksha EB. Nasledstvennye narushenija soedinitel'noĭ tkani kak prediktory razvitija pervichnoĭ juvenil'noĭ glaukomy. Fyodorov Journal of Ophthalmic Surgery. 2012;(4):52–55. (In Russ.)

[122]

Кулешова О.Н., Диковская М.А., Зайдман А.М., Лукша Е.Б. Наследственные нарушения соединительной ткани как предикторы развития первичной ювенильной глаукомы // Офтальмохирургия. 2012. № 4. С. 52–55.

[123]

Satybalduev A, Zhuravleva A. Joint hypermobility syndrome and primary open-angle glaucoma. Annals of the rheumatic diseases. BMJ. 2020;79:1819. DOI: 10.1136/annrheumdis-2020-eular.1004

[124]

Satybalduev A., Zhuravleva A. Joint hypermobility syndrome and primary open-angle glaucoma. Annals of the rheumatic diseases // BMJ. 2020. Vol. 79. P. 1819. DOI: 10.1136/annrheumdis-2020-eular.1004

[125]

Hoffmann EM, Zangwill LM, Crowston JG, Weinreb RN. Optic disk size and glaucoma. Surv Ophthalmol. 2007;52:32–49. DOI: 10.1016/j.survophthal.2006.10.002

[126]

Hoffmann E.M., Zangwill L.M., Crowston J.G., Weinreb R.N. Optic disk size and glaucoma // Surv Ophthalmol. 2007. Vol. 52. P. 32–49. DOI: 10.1016/j.survophthal.2006.10.002

[127]

Chang TC, Congdon NG, Wojciechowski R. Determinants and heritability of intraocular pressure and cup-to-disc ratio in a defined older population. Ophthalmol. 2005;112:1186–1191. DOI: 10.1016/j.ophtha.2005.03.006

[128]

Chang T.C., Congdon N.G., Wojciechowski R. Determinants and heritability of intraocular pressure and cup-to-disc ratio in a defined older population // Ophthalmol. 2005. Vol. 112. P. 1186–1191. DOI: 10.1016/j.ophtha.2005.03.006

[129]

van Koolwijk LM, Despriet DD, van Duijn CM. Genetic contributions to glaucoma: heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology. Invest Ophthalmol Vis Sci. 2007;48:3669–3676. DOI: 10.1167/iovs.06-1519

[130]

van Koolwijk L.M., Despriet D.D., van Duijn C.M. Genetic contributions to glaucoma: heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology // Invest Ophthalmol Vis Sci. 2007. Vol. 48. P. 3669–3676. DOI: 10.1167/iovs.06-1519

[131]

Fan BJ, Wang DY, Pasquale LR, et al. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population. Invest Ophthalmol Vis Sci. 2011;52(3):1788–1792. DOI: 10.1167/iovs.10-6339

[132]

Fan B.J., Wang D.Y., Pasquale L.R., et al. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US caucasian population // Invest Ophthalmol Vis Sci. 2011. Vol. 52, No. 3. P. 1788–1792. DOI: 10.1167/iovs.10-6339

[133]

Macgregor S, Hewitt AW, Hysi PG. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet. 2010;19:2716–2724. DOI: 10.1093/hmg/ddq144

[134]

Macgregor S., Hewitt A.W., Hysi P.G. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size // Hum Mol Genet. 2010. Vol. 19. P. 2716–2724. DOI: 10.1093/hmg/ddq144

[135]

Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004;122:17–21. DOI: 10.1001/archopht.122.1.17

[136]

Herndon L.W., Weizer J.S., Stinnett S.S. Central corneal thickness as a risk factor for advanced glaucoma damage // Arch Ophthalmol. 2004. Vol. 122. P. 17–21. DOI: 10.1001/archopht.122.1.17

[137]

Gaspar R, Pinto LA, Sousa DC. Corneal properties and glauсoma: a review of the literature and meta-analysis. Arq Bras Oftalmol. 2017;80(3):202–206. DOI: 10.5935/0004-2749.20170050

[138]

Gaspar R., Pinto L.A., Sousa D.C. Corneal properties and glauсoma: a review of the literature and meta-analysis // Arq Bras Oftalmol. 2017. Vol. 80, No. 3. P. 202–206. DOI: 10.5935/0004-2749.20170050

[139]

Medeiros FA, Sample PA, Weinreb RN. Corneal thickness measurements and visual function abnormalities in ocular hypertensive patients. Am J Ophthalmol. 2003;135:131–137. DOI: 10.1016/s0002-9394(02)01886-x

[140]

Medeiros F.A., Sample P.A., Weinreb R.N. Corneal thickness measurements and visual function abnormalities in ocular hypertensive patients // Am J Ophthalmol. 2003. Vol. 135. P. 131–137. DOI: 10.1016/s0002-9394(02)01886-x

[141]

Vithana EN. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 2011;20(4): 649–658. DOI: 10.1093/hmg/ddq511

[142]

Vithana E.N. Collagen-related genes influence the glaucoma risk factor, central corneal thickness // Hum Mol Genet. 2011. Vol. 20, No. 4. P. 649–658. DOI: 10.1093/hmg/ddq511

[143]

Desronvil T, Logan-Wyatt D, Abdrabou W, et al. Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness. Mol Vis. 2010;16:2185–2191.

[144]

Desronvil T., Logan-Wyatt D., Abdrabou W., et al. Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness // Mol Vis. 2010. Vol. 16. P. 2185–2191.

[145]

Volkov VV. Glaukoma pri psevdonormal'nom davlenii. Moscow: Medicina, 2001. (In Russ.)

[146]

Волков В.В. Глаукома при псевдонормальном давлении. М.: Медицина, 2001.

[147]

Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow-relevance for glaucoma. Exp Eye Res. 2011;93(2):141–155. DOI: 10.1016/j.exer.2010.09.002

[148]

Schmidl D., Garhofer G., Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow – relevance for glaucoma // Exp Eye Res. 2011. Vol. 93, No. 2. P. 141–155. DOI: 10.1016/j.exer.2010.09.002

[149]

Chung HS, Harris A, Halter PJ. Regional differences in retinal vascular reactivity. Invest Ophthalmol Vis Sci. 1999;40(10):2448–2453.

[150]

Chung H.S., Harris A., Halter P.J. Regional differences in retinal vascular reactivity // Invest Ophthalmol Vis Sci. 1999. Vol. 40, No. 10. P. 2448–2453.

[151]

Golubnitschaja, O, Yeghiazaryan K, Liu R. Increased expression of matrix metalloproteinases in mononuclear blood cells of normal-tension glaucoma patients. J Glaucoma. 2004;13(1):66–72. DOI: 10.1097/00061198-200402000-00013

[152]

Golubnitschaja O., Yeghiazaryan K., Liu R. Increased expression of matrix metalloproteinases in mononuclear blood cells of normal-tension glaucoma patients // J Glaucoma. 2004. Vol. 13, No. 1. P. 66–72. DOI: 10.1097/00061198-200402000-00013

[153]

Zhang X, Chintala SK. Influence of interleukin-1 beta induction and mitogen-activated protein kinase phosphorylation on optic nerve ligation-induced matrix metalloproteinase- 9 activation in the retina. Experimental Eye Research. 2004;78(4):849–860. DOI: 10.1016/j.exer.2003.10.018

[154]

Zhang X., Chintala S.K. Influence of interleukin-1 beta induction and mitogen-activated protein kinase phosphorylation on optic nerve ligation-induced matrix metalloproteinase-9 activation in the retina // Exp Eye Res. 2004. Vol. 78, No. 4. P. 849–860. DOI: 10.1016/j.exer.2003.10.018

[155]

Agarwal R, Gupta SK. Current concepts in the pathophysiology of glaucoma. J Ophthalmol. 2009;(57)4:257–266. DOI: 10.4103/0301-4738.53049

[156]

Agarwal R., Gupta S.K. Current concepts in the pathophysiology of glaucoma // J Ophthalmol. 2009. Vol. 57, No. 4. P. 257–266. DOI: 10.4103/0301-4738.53049

[157]

Stewart WF. Familial risk of migraine: Variation by proband age at onset and headache severity. Neurology. 2006;66:344–348. DOI: 10.1212/01.wnl.0000196640.71600.00

[158]

Stewart W.F. Familial risk of migraine: Variation by proband age at onset and headache severity // Neurology 2006. Vol. 66. P. 344–348. DOI: 10.1212/01.wnl.0000196640.71600.00

[159]

Neroev VV, Zueva MV, Zhuravleva AN, Tsapenko IV. Structural and Functional Disorders in Glaucoma: the Prospects for Preclinical Diagnosis. Part 1. Is the Search for what Comes First Relevant? Ophthalmology in Russia. 2020;17(3):336–343. (In Russ.) DOI: 10.18008/1816-5095-2020-3-336-343

[160]

Нероев В.В., Зуева М.В., Журавлева А.Н., Цапенко И.В. Структурно-функциональные нарушения при глаукоме: перспективы доклинической диагностики. Часть 1. Насколько релевантен поиск того, что первично // Офтальмология. 2020. T. 17, № 3. С. 336–343. DOI: 10.18008/1816-5095-2020-3- 336-343

[161]

Campuzano V, Segura-Puimedon M, Terrado V, et al. Reduction of NADPH-oxidase activity ameliorates the cardiovascular phenotype in a mouse model of Williams-Beuren Syndrome. PLoS Genet. 2012;8(2): e1002458. DOI: 10.1371/journal.pgen.1002458

[162]

Campuzano V., Segura-Puimedon M., Terrado V., et al. Reduction of NADPH-oxidase activity ameliorates the cardiovascular phenotype in a mouse model of Williams–Beuren Syndrome // PLoS Genet. 2012. Vol. 8, No. 2. e1002458. DOI: 10.1371/journal.pgen.1002458

[163]

Zhuravleva AN, Kiseleva OA, Kirillova MO. Personalized medicine in glaucoma management. Russian Ophthalmological Journal. 2019;12(3):95–100. (In Russ.) DOI: 10.21516/2072-0076-2019-12-3-95-100

[164]

Журавлева А.Н., Киселева О.А., Кириллова М.О. Персонализированная медицина в решении проблемы глаукомы // Российский офтальмологический журнал. 2019. Т. 12, № 3. С. 95–100. DOI: 10.21516/2072-0076-2019-12-3-95-100

RIGHTS & PERMISSIONS

Zhuravleva A.N., Kirillova M.O., Zueva M.V., Kadyshev V.V.

AI Summary AI Mindmap
PDF (277KB)

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/