Chemical analysis of meibum composition of type 2 diabetes mellitus
Tatyana N. Safonova , Galina V. Zaitseva , Ekaterina I. Timoshenkova
Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (1) : 89 -102.
Chemical analysis of meibum composition of type 2 diabetes mellitus
The meibomian glands, by producing a lipid-rich secretion (meibum), are involved in the formation of the lipid layer of the tear film, preventing its evaporation and ensuring the maintenance of ocular surface homeostasis. Meibomian gland dysfunction is a common disease. Numerous clinical studies have pointed to involvement of the meibomian glands in a number of systemic diseases, including diabetes mellitus. Hyperglycemia provokes the development of oxidative stress and metabolic disorders, leading to changes in the anatomical and functional state of the breast, which affects the qualitative and quantitative composition of the secretion. Instrumental methods of meibomian glands assessment reflect their morphofunctional state, and chemo-analytical study of the meibum can serve as a reflection of anatomical and physiological changes of the glands. Proteomic technologies are promising methods for studying the composition of the meibomian glands secretion, allowing us to determine the patterns of changes in the chemical composition of the meibum in patients with diabetes mellitus to detect early signs of the disease and prevent the development of complications.
meibomian glands / meibum / meibomian gland dysfunction / diabetes mellitus / mass spectrometry / biomarker
| [1] |
Chen J, Nichols KK. Comprehensive shotgun lipidomics of human meibomian gland secretions using MS/MSall with successive switching between acquisition polarity modes. J Lipid Res. 2018;59(11):2223–2236. doi: 10.1194/jlr.D088138 |
| [2] |
Chen J., Nichols K.K. Comprehensive shotgun lipidomics of human meibomian gland secretions using MS/MSall with successive switching between acquisition polarity modes // J Lipid Res. 2018. Vol. 59, N. 11. P. 2223–2236. doi: 10.1194/jlr.D088138 |
| [3] |
Knop E, Knop N, Millar T, et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investig Ophthalmol Vis Sci. 2011;52(4):1938–1978. doi: 10.1167/iovs.10-6997c |
| [4] |
Knop E., Knop N., Millar T., et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland // Investig Ophthalmol Vis Sci. 2011. Vol. 52, N. 4. P. 1938–1978. doi: 10.1167/iovs.10-6997c |
| [5] |
Butovich IA, Lu H, McMahon A, et al. Biophysical and morphological evaluation of human normal and dry eye meibum using hot stage polarized light microscopy. Invest Ophthalmol Vis Sci. 2014;55(1):87–101. doi: 10.1167/iovs.13-13355 |
| [6] |
Butovich I.A., Lu H., McMahon A., et al. Biophysical and morphological evaluation of human normal and dry eye meibum using hot stage polarized light microscopy // Invest Ophthalmol Vis Sci. 2014. Vol. 55, N. 1. P. 87–101. doi: 10.1167/iovs.13-13355 |
| [7] |
Wickham LA, Gao J, Toda I, et al. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78(2):146–153. doi: 10.1034/j.1600-0420.2000.078002146.x |
| [8] |
Wickham L.A., Gao J., Toda I., et al. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye // Acta Ophthalmol Scand. 2000. Vol. 78, N. 2. P. 146–153. doi: 10.1034/j.1600-0420.2000.078002146.x |
| [9] |
Bron AJ, Tiffany JM. The contribution of meibomian disease to dry eye. Ocul Surf. 2004;2(2):149–165. doi: 10.1016/s1542-0124(12)70150-7 |
| [10] |
Bron A.J., Tiffany J.M. The contribution of meibomian disease to dry eye // Ocul Surf. 2004. Vol. 2, N. 2. P. 149–165. doi: 10.1016/s1542-0124(12)70150-7 |
| [11] |
Chung CW, Tigges M, Stone RA. Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci. 1996;37(1): 238–245. |
| [12] |
Chung C.W., Tigges M., Stone R.A. Peptidergic innervation of the primate meibomian gland // Invest Ophthalmol Vis Sci. 1996. Vol. 37, N. 1. P. 238–245. |
| [13] |
Misra SL, Patel DV, McGhee CNJ, et al. Peripheral neuropathy and tear film dysfunction in type 1 diabetes mellitus. J Diabetes Res. 2014;2014:848659. doi: 10.1155/2014/848659 |
| [14] |
Misra S.L., Patel D.V., McGhee C.N.J., et al. Peripheral neuropathy and tear film dysfunction in type 1 diabetes mellitus // J Diabetes Res. 2014. Vol. 2014. ID 848659. doi: 10.1155/2014/848659 |
| [15] |
Kam WR, Sullivan DA. Neurotransmitter influence on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2011;52(12):8543–8548. doi: 10.1167/iovs.11-8113 |
| [16] |
Kam W.R., Sullivan D.A. Neurotransmitter influence on human meibomian gland epithelial cells // Invest Ophthalmol Vis Sci. 2011. Vol. 52, N. 12. P. 8543–8548. doi: 10.1167/iovs.11-8113 |
| [17] |
Butovich IA. Meibomian glands, meibum, and meibogenesis. Exp Eye Res. 2017;163:2–16. doi: 10.1016/j.exer.2017.06.020 |
| [18] |
Butovich I.A. Meibomian glands, meibum, and meibogenesis // Exp Eye Res. 2017. Vol. 163. P. 2–16. doi: 10.1016/j.exer.2017.06.020 |
| [19] |
Willcox MDP, Argüeso P, Georgiev GA, et al. TFOS DEWS II tear film. Report Ocul Surf. 2017;15(3):366–403. doi: 10.1016/j.jtos.2017.03.006 |
| [20] |
Willcox M.D.P., Argüeso P., Georgiev G.A., et al. TFOS DEWS II tear film // Report Ocul Surf. 2017. Vol. 15, N. 3. P. 366–403. doi: 10.1016/j.jtos.2017.03.006 |
| [21] |
Yoo Y-S, Park S-K, Hwang H-S, et al. Association of serum lipid level with meibum biosynthesis and meibomian gland dysfunction: A review. J Clin Med. 2022;11(14):4010. doi: 10.3390/jcm11144010 |
| [22] |
Yoo Y.-S., Park S.-K., Hwang H.-S., et al. Association of serum lipid level with meibum biosynthesis and meibomian gland dysfunction: A review // J Clin Med. 2022. Vol. 11, N. 14. ID 4010. doi: 10.3390/jcm11144010 |
| [23] |
Lam SM, Tong L, Duan X, et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014;55(2):289–298. doi: 10.1194/jlr.M044826 |
| [24] |
Lam S.M., Tong L., Duan X., et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles // J Lipid Res. 2014. Vol. 55, N. 2. P. 289–298. doi: 10.1194/jlr.M044826 |
| [25] |
McMahon A, Lu H, Butovich IA. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids. 2013;48(5):513–525. doi: 10.1007/s11745-013-3755-9 |
| [26] |
McMahon A., Lu H., Butovich I.A. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions // Lipids. 2013. Vol. 48, N. 5. P. 513–525. doi: 10.1007/s11745-013-3755-9 |
| [27] |
Palaniappan CK, Schutt BS, Brauer L, et al. Effects of keratin and lung surfactant proteins on the surface activity of meibomian lipids. Invest Ophthalmol Vis Sci. 2013;54(4):2571–2581. doi: 10.1167/iovs.12-11084 |
| [28] |
Palaniappan C.K., Schutt B.S., Brauer L., et al. Effects of keratin and lung surfactant proteins on the surface activity of meibomian lipids // Invest Ophthalmol Vis Sci. 2013. Vol. 54, N. 4. P. 2571–2581. doi: 10.1167/iovs.12-11084 |
| [29] |
Parfitt GJ, Xie Y, Reid KM, et al. A novel immunofluorescent computed tomography (ICT) method to localise and quantify multiple antigens in large tissue volumes at high resolution. PLoS One. 2012;7(12):e53245. doi: 10.1371/journal.pone.0053245 |
| [30] |
Parfitt G.J., Xie Y., Reid K.M., et al. A novel immunofluorescent computed tomography (ICT) method to localise and quantify multiple antigens in large tissue volumes at high resolution // PLoS One. 2012. Vol. 7, N. 12. ID e53245. doi: 10.1371/journal.pone.0053245 |
| [31] |
Borchman D, Yappert MC, Foulks GN. Changes in human meibum lipid with meibomian gland dysfunction using principal component analysis. Exp Eye Res. 2010;91(2):246–256. doi: 10.1016/j.exer.2010.05.014 |
| [32] |
Borchman D., Yappert M.C., Foulks G.N. Changes in human meibum lipid with meibomian gland dysfunction using principal component analysis // Exp Eye Res. 2010. Vol. 91, N. 2. P. 246–256. doi: 10.1016/j.exer.2010.05.014 |
| [33] |
Guillon M, Maissa C, Wong S. Eyelid margin modification associated with eyelid hygiene in anterior blepharitis and meibomian gland dysfunction. Eye Contact Lens. 2012;38(5):319–325. doi: 10.1097/ICL.0b013e318268305a |
| [34] |
Guillon M., Maissa C., Wong S. Eyelid margin modification associated with eyelid hygiene in anterior blepharitis and meibomian gland dysfunction // Eye Contact Lens. 2012. Vol. 38, N. 5. P. 319–325. doi: 10.1097/ICL.0b013e318268305a |
| [35] |
Arita R, Mori N, Shirakawa R, et al. Meibum color and free fatty acid composition in patients with meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2015;56(8):4403–4412. doi: 10.1167/iovs.14-16254 |
| [36] |
Arita R., Mori N., Shirakawa R., et al. Meibum color and free fatty acid composition in patients with meibomian gland dysfunction // Invest Ophthalmol Vis Sci. 2015. Vol. 56, N. 8. P. 4403–4412. doi: 10.1167/iovs.14-16254 |
| [37] |
Avetisova SA, Egorova EA, Moshetovoi LK. Ophthalmology: A National Guideline. Moscow, 2008. Part 5.4. P. 342–347. (In Russ.) |
| [38] |
Аветисова С.А., Егорова Е.А., Мошетовой Л.К. Офтальмология: Национальное руководство. Москва, 2008. Раздел 5.4. С. 342–347. |
| [39] |
Maychuk YuF, Mironkova EA. Classification of meibomian glands dysfunction associated with dry eye syndrome; pathogenic approaches to complex treatment. Russian Medical Journal. 2007;8(4): 169–172. (In Russ.) |
| [40] |
Майчук Ю.Ф., Миронкова Е.А. Классификация дисфункции мейбомиевых желез, сочетающейся с синдромом «сухого глаза», патогенетические подходы в комплексной терапии // РМЖ. 2007. Т. 8, № 4. С. 169–172. |
| [41] |
Suzuki T, Kitazawa K, Cho Y, et al. Alteration in meibum lipid composition and subjective symptoms due to aging and meibomian gland dysfunction. Ocul Surf. 2022;26:310–317. doi: 10.1016/j.jtos.2021.10.003 |
| [42] |
Suzuki T., Kitazawa K., Cho Y., et al. Alteration in meibum lipid composition and subjective symptoms due to aging and meibomian gland dysfunction // Ocul Surf. 2022. Vol. 26. P. 310–317. doi: 10.1016/j.jtos.2021.10.003 |
| [43] |
Riks IA, Trufanov SV, Boutaba R. Modern approaches to the treatment of meibomian gland dysfunction. The Russian Annals of Ophthalmology. 2021;137(1):130–136. (In Russ.) doi: 10.17116/oftalma2021137011130 |
| [44] |
Рикс И.А., Труфанов С.В., Бутаба Р. Современные подходы к лечению дисфункции мейбомиевых желез // Вестник офтальмологии. 2021. Т. 137, № 1. С. 130–136. doi: 10.17116/oftalma2021137011130 |
| [45] |
Suhalim JL, Parfitt GJ, Cintia YX, et al. Effect of desiccating stress on mouse meibomian gland function. Ocul Surf. 2014;12(1):59–68. doi: 10.1016/j.jtos.2013.08.002 |
| [46] |
Suhalim J.L., Parfitt G.J., Cintia Y.X., et al. Effect of desiccating stress on mouse meibomian gland function // Ocul Surf. 2014. Vol. 12, N. 1. P. 59–68. doi: 10.1016/j.jtos.2013.08.002 |
| [47] |
Hwang HS, Parfitt GJ, Brown DJ, Jester JV. Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD). Exp Eye Res. 2017;163:37–45. doi: 10.1016/j.exer.2017.02.008 |
| [48] |
Hwang H.S., Parfitt G.J., Brown D.J., Jester J.V. Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD) // Exp Eye Res. 2017. Vol. 163. P. 37–45. doi: 10.1016/j.exer.2017.02.008 |
| [49] |
Schachter SE, Schachter A, Hom MM, Hauswirth SG. Prevalence of MGD, blepharitis, and demodex in an optometric practice. Investig Ophthalmol Vis Sci. 2014;55(13):49–49. |
| [50] |
Schachter S.E., Schachter A., Hom M.M., Hauswirth S.G. Prevalence of MGD, blepharitis, and demodex in an optometric practice // Investig Ophthalmol Vis Sci. 2014. Vol. 55, N. 13. P. 49–49. |
| [51] |
Alghamdi WM, Markoulli M, Holden BA, Papas EB. Impact of duration of contact lens wear on the structure and function of the meibomian glands. Ophthalmic Physiol Opt. 2016;36(2):120–131. doi: 10.1111/opo.12278 |
| [52] |
Аlghamdi W.M., Markoulli M., Holden B.A., Papas E.B. Impact of duration of contact lens wear on the structure and function of the meibomian glands // Ophthalmic Physiol Opt. 2016. Vol. 36, N. 2. P. 120–131. doi: 10.1111/opo.12278 |
| [53] |
Baum JL, Bull MJ. Ocular manifestations of the ectrodactyly, ectodermal dysplasia, cleft lip-palate syndrome. Am J Ophthalmol. 1974;78(2):211–216. doi: 10.1016/0002-9394(74)90078-6 |
| [54] |
Baum J.L., Bull M.J. Ocular manifestations of the ectrodactyly, ectodermal dysplasia, cleft lip-palate syndrome // Am J Ophthalmol. 1974. Vol. 78, N. 2. P. 211–216. doi: 10.1016/0002-9394(74)90078-6 |
| [55] |
Erickson RP, Dagenais SL, Caulder MS, et al. Clinical heterogeneity in lymphoedema-distichiasis with FOXC2 truncating mutations. J Med Genet. 2001;38(11):761–766. doi: 10.1136/jmg.38.11.761 |
| [56] |
Еrickson R.P., Dagenais S.L., Caulder M.S., et al. Clinical heterogeneity in lymphoedema-distichiasis with FOXC2 truncating mutations // J Med Genet. 2001. Vol. 38, N. 11. P. 761–766. doi: 10.1136/jmg.38.11.761 |
| [57] |
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol. 2015;60(3):183–195. doi: 10.1016/j.survophthal.2014.10.001 |
| [58] |
Samarawickrama C., Chew S., Watson S. Retinoic acid and the ocular surface // Surv Ophthalmol. 2015. Vol. 60, N. 3. P. 183–195. doi: 10.1016/j.survophthal.2014.10.001 |
| [59] |
Jester JV, Nicolaides N, Kiss-Palvolgyi I, Smith RE. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Invest Ophthalmol Vis Sci. 1989;30(5):936–945. |
| [60] |
Jester J.V., Nicolaides N., Kiss-Palvolgyi I., Smith R.E. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD // Invest Ophthalmol Vis Sci. 1989. Vol. 30, N. 5. P. 936–945. |
| [61] |
Agnifili L, Fasanella V, Costagliola C, et al. In vivo confocal microscopy of meibomian glands in glaucoma. Br J Ophthalmol. 2013;97(3):343–349. doi: 10.1136/bjophthalmol-2012-302597 |
| [62] |
Agnifili L., Fasanella V., Costagliola C., et al. In vivo confocal microscopy of meibomian glands in glaucoma // Br J Ophthalmol. 2013. Vol. 97, N. 3. P. 343–349. doi: 10.1136/bjophthalmol-2012-302597 |
| [63] |
Cermak JM, Krenzer KL, Sullivan RM, et al. Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface? Cornea. 2003;22(6):516–521. doi: 10.1097/00003226-200308000-00006 |
| [64] |
Cermak J.M., Krenzer K.L., Sullivan R.M., et al. Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface? // Cornea. 2003. Vol. 22, N. 6. P. 516–521. doi: 10.1097/00003226-200308000-00006 |
| [65] |
Sullivan DA, Dana R, Sullivan RM, et al. Meibomian gland dysfunction in patients with Sjögren syndrome. Ophthalmic Res. 2018;59(4):193–205. doi: 10.1159/000487487 |
| [66] |
Sullivan D.A., Dana R., Sullivan R.M., et al. Meibomian gland dysfunction in patients with Sjögren syndrome // Ophthalmic Res. 2018. Vol. 59, N. 4. P. 193–205. doi: 10.1159/000487487 |
| [67] |
Robin M, Liang H, Baudouin C, Labbé A. In vivo Meibomian gland imaging techniques: A review of the literature (French translation of the article). J Fr Ophtalmol. 2020;43(6):484–493. doi: 10.1016/j.jfo.2019.10.009 |
| [68] |
Robin M., Liang H., Baudouin C., Labbé A. In vivo Meibomian gland imaging techniques: A review of the literature (French translation of the article) // J Fr Ophtalmol. 2020. Vol. 43, N. 6. P. 484–493. doi: 10.1016/j.jfo.2019.10.009 |
| [69] |
Ban Y, Ogawa Y, Goto E, et al. Tear function and lipid layer alterations in dry eye patients with chronic graft-vs-host disease. Eye (Lond). 2009;23(1):202–208. doi: 10.1038/eye.2008.340 |
| [70] |
Ban Y., Ogawa Y., Goto E., et al. Tear function and lipid layer alterations in dry eye patients with chronic graft-vs-host disease // Eye (Lond). 2009. Vol. 23, N. 1. P. 202–208. doi: 10.1038/eye.2008.340 |
| [71] |
Trubilin VN, Kurenkov VV, Polunina EG, et al. Diagnostic algorithm of meibomian gland dysfunction and water-impregnated form of dry eye syndrome: textbook. Moscow: FMBA, 2018. 17 p. (In Russ.) |
| [72] |
Трубилин В.Н., Куренков В.В., Полунина Е.Г., и др. Алгоритм диагностики дисфункции мейбомиевых желёз и водоиспаряемой формы синдрома сухого глаза: учебное пособие. Москва: ФМБА, 2018. 17 с. |
| [73] |
Su T-Y, Ho W-T, Chiang S-C, et al. Infrared thermography in the evaluation of meibomian gland dysfunction. J Formos Med Assoc. 2017;116(7):554–559. doi: 10.1016/j.jfma.2016.09.012 |
| [74] |
Su T.-Y., Ho W.-T., Chiang S.-C., et al. Infrared thermography in the evaluation of meibomian gland dysfunction // J Formos Med Assoc. 2017. Vol. 116, N. 7. P. 554–559. doi: 10.1016/j.jfma.2016.09.012 |
| [75] |
Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. The Russian Annals of Ophthalmology. 2017;133(6):99–105. doi: 10.17116/oftalma2017133699-104 |
| [76] |
Аветисов С.Э., Новиков И.А., Луцевич Е.Э., Рейн Е.С. Применение термографии в офтальмологии // Вестник офтальмологии. 2017. Т. 133, № 6. С. 99–105. doi: 10.17116/oftalma2017133699-104 |
| [77] |
Peyman GA, Ingram CP, Montilla LG, Witte RS. A high-resolution 3D ultrasonic system for rapid evaluation of the anterior and posterior segment. Ophthalmic Surg Lasers Imaging. 2012;43(2):143–151. doi: 10.3928/15428877-20120105-01 |
| [78] |
Peyman G.A., Ingram C.P., Montilla L.G., Witte R.S. A high-resolution 3D ultrasonic system for rapid evaluation of the anterior and posterior segment // Ophthalmic Surg Lasers Imaging. 2012. Vol. 43, N. 2. P. 143–151. doi: 10.3928/15428877-20120105-01 |
| [79] |
Trubilin VN, Polunina EG, Markova EYu, et al. Methods of screening for meibomian gland dysfunction. Ophthalmology in Russia. 2016;13(4): 235–240. (In Russ.) doi: 10.18008/1816-5095-2016-4-235-240 |
| [80] |
Трубилин В.Н., Полунина Е.Г., Маркова Е.Ю., и др. Методы скрининговой диагностики дисфункции мейбомиевых желёз // Офтальмология. 2016. Т. 13, № 4. С. 235–240. doi: 10.18008/1816-5095-2016-4-235-240 |
| [81] |
Avetisov SÉ, Egorova GB, Kobzova MV, et al. Clinical significance of modern methods of corneal assessment. The Russian Annals of Ophthalmology. 2013;129(5):22–31. (In Russ.) |
| [82] |
Аветисов С.Э., Егорова Г.Б., Кобзова М.В., и др. Клиническое значение современных методов исследования роговицы // Вестник офтальмологии. 2013. Т. 129, № 5. С. 22–31. |
| [83] |
Yeotikar NS, Zhu H, Markoulli M, et al. Functional and morphologic changes of meibomian glands in an asymptomatic adult population. Invest Ophthalmol Vis Sci. 2016;57(10):3996–4007. doi: 10.1167/iovs.15-18467 |
| [84] |
Yeotikar N.S., Zhu H., Markoulli M., et al. Functional and morphologic changes of meibomian glands in an asymptomatic adult population // Invest Ophthalmol Vis Sci. 2016. Vol. 57, N. 10. P. 3996–4007. doi: 10.1167/iovs.15-18467 |
| [85] |
Swiderska K, Read ML, Blackie CA, et al. Latest developments in meibography: A review. Ocul Surf. 2022;25:119–128. doi: 10.1016/j.jtos.2022.06.002 |
| [86] |
Swiderska K., Read M.L., Blackie C.A., et al. Latest developments in meibography: A review // Ocul Surf. 2022. Vol. 25. P. 119–128. doi: 10.1016/j.jtos.2022.06.002 |
| [87] |
Safonova TN, Kintukhina NP. Involutional blepharitis: modern approaches to diagnostic and treatment. The Russian Annals of Ophthalmology. 2018;134(1):43–47. doi: 10.17116/oftalma2018134143-47 |
| [88] |
Сафонова Т.Н., Кинтюхина Н.П. Инволюционный блефарит: современные подходы к диагностике и лечению // Вестник офтальмологии. 2018. Т. 134, № 1. С. 43–47. doi: 10.17116/oftalma2018134143-47 |
| [89] |
Safonova TN, Kintyukhina NP, Sidorov VV, Gladkova OV. Laser doppler flowmetry in assessing the effectiveness of treatment of chronic demodex blefaritis. Russian Ophthalmological Journal. 2017;10(2): 62–66. doi: 10.21516/2072-0076-2017-10-2-62-66 |
| [90] |
Сафонова Т.Н., Кинтюхина Н.П., Сидоров В.В., Гладкова О.В. Метод лазерной допплеровской флоуметрии в оценке эффективности лечения хронического блефарита демодекозной этиологии // Российский офтальмологический журнал. 2017. Т. 10, № 2. С. 62–66. doi: 10.21516/2072-0076-2017-10-2-62-66 |
| [91] |
Yoo Y-S, Na K-S, Byun Y-S, et al. Examination of gland dropout detected on infrared meibography by using optical coherence tomography meibography. Ocul Surf. 2017;15(1):130–138.e1. doi: 10.1016/j.jtos.2016.10.001 |
| [92] |
Yoo Y.-S., Na K.-S., Byun Y.-S., et al. Examination of gland dropout detected on infrared meibography by using optical coherence tomography meibography // Ocul Surf. 2017. Vol. 15, N. 1. P. 130–138.e1. doi: 10.1016/j.jtos.2016.10.001 |
| [93] |
Beroeva MR, Mkrtumyan AM. The prevalence of diabetes mellitus type 2 in the adult population of Tskhinval. Ehffektivnaya farmakoterapiya. 2020;16(25):20–23. doi: 10.33978/2307-3586-2020-16-25-20-23 |
| [94] |
Бероева М.Р., Мкртумян А.М. Распространённость сахарного диабета 2 типа среди взрослого населения Цхинвала // Эффективная фармакотерапия. 2020. Т. 16, № 25. С. 20–23. doi: 10.33978/2307-3586-2020-16-25-20-23 |
| [95] |
Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213. doi: 10.1155/2020/8609213 |
| [96] |
Yaribeygi H., Sathyapalan T., Atkin S.L., Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus // Oxid Med Cell Longev. 2020. Vol. 2020. ID 8609213. doi: 10.1155/2020/8609213 |
| [97] |
Zhang P, Li T, Wu X, et al. Oxidative stress and diabetes: Antioxidative strategies. Front Med. 2020;14(5):583–600. doi: 10.1007/s11684-019-0729-1 |
| [98] |
Zhang P., Li T., Wu X., et al. Oxidative stress and diabetes: Antioxidative strategies // Front Med. 2020. Vol. 14, N. 5. P. 583–600. doi: 10.1007/s11684-019-0729-1 |
| [99] |
Fève B, Bastard J-P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(6):305–311. doi: 10.1038/nrendo.2009.62 |
| [100] |
Fève B., Bastard J.-P. The role of interleukins in insulin resistance and type 2 diabetes mellitus // Nat Rev Endocrinol. 2009. Vol. 5, N. 6. P. 305–311. doi: 10.1038/nrendo.2009.62 |
| [101] |
Xiao J, Li J, Cai L, et al. Cytokines and diabetes research. J Diabetes Res. 2014;2014:920613. doi: 10.1155/2014/920613 |
| [102] |
Xiao J., Li J., Cai L., et al. Cytokines and diabetes research // J Diabetes Res. 2014. Vol. 2014. ID 920613. doi: 10.1155/2014/920613 |
| [103] |
Sena CM, Carrilho F, Seiç RM. Endothelial dysfunction in type 2 diabetes: targeting inflammation. In: Lenasi H, editor. Endothelial dysfunction — old concepts and new challenges. London: Intechopen, 2018. Р. 231–249. doi: 10.5772/intechopen.76994 |
| [104] |
Sena C.M., Carrilho F., Seiç R.M. Endothelial dysfunction in type 2 diabetes: targeting inflammation. Endothelial dysfunction — old concepts and new challenges. H. Lenasi, editor. London: Intechopen, 2018. Р. 231–249. doi: 10.5772/intechopen.76994 |
| [105] |
Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12): 1443–1455. doi: 10.1101/gad.1550907 |
| [106] |
Qatanani M., Lazar M.A. Mechanisms of obesity-associated insulin resistance: many choices on the menu // Genes Dev. 2007. Vol. 21, N. 12. P. 1443–1455. doi: 10.1101/gad.1550907 |
| [107] |
Sarniak A, Lipińska J, Tytman K, Lipińska S. Endogenous mechanisms of reactive oxygen species (ROS) generation. Adv Hyg Exp Med. 2016;70:1150–1165. doi: 10.5604/17322693.1224259 |
| [108] |
Sarniak A., Lipińska J., Tytman K., Lipińska S. Endogenous mechanisms of reactive oxygen species (ROS) generation // Adv Hyg Exp Med. 2016. Vol. 70. P. 1150–1165. doi: 10.5604/17322693.1224259 |
| [109] |
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545 |
| [110] |
Giacco F., Brownlee M. Oxidative stress and diabetic complications // Circ Res. 2010. Vol. 107, N. 9. P. 1058–1070. doi: 10.1161/CIRCRESAHA.110.223545 |
| [111] |
Madan R, Gupt B, Saluja S, et al. Coagulation profile in diabetes and its association with diabetic microvascular complications. J Assoc Physicians India. 2010;58:481–484. |
| [112] |
Madan R., Gupt B., Saluja S., et al. Coagulation profile in diabetes and its association with diabetic microvascular complications // J Assoc Physicians India. 2010. Vol. 58. P. 481–484. |
| [113] |
Gasparotto J, Girardi CS, Somensi N, et al. Receptor for advanced glycation end products mediates sepsistriggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293(1):226–244. doi: 10.1074/jbc.M117.786756 |
| [114] |
Gasparotto J., Girardi C.S., Somensi N., et al. Receptor for advanced glycation end products mediates sepsistriggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment // J Biol Chem. 2018. Vol. 293, N. 1. P. 226–244. doi: 10.1074/jbc.M117.786756 |
| [115] |
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42. doi: 10.1038/s41572-019-0097-9 |
| [116] |
Feldman E.L., Callaghan B.C., Pop-Busui R., et al. Diabetic neuropathy // Nat Rev Dis Primers. 2019. Vol. 5, N. 1. P. 42. doi: 10.1038/s41572-019-0097-9 |
| [117] |
Sabanayagam C, Chee ML, Banu R, et al. Association of diabetic retinopathy and diabetic kidney disease with all-cause and cardiovascular mortality in a multiethnic Asian population. JAMA Netw Open. 2019;2(3): e191540. doi: 10.1001/jamanetworkopen.2019.1540 |
| [118] |
Sabanayagam C., Chee M.L., Banu R., et al. Association of diabetic retinopathy and diabetic kidney disease with all-cause and cardiovascular mortality in a multiethnic Asian population // JAMA Netw Open. 2019. Vol. 2, N. 3. ID e191540. doi: 10.1001/jamanetworkopen.2019.1540 |
| [119] |
Rehman K, Hamid Akash MS. Mechanisms of inflammatory reactions and the development of insulin resistance: how are they interrelated? J Biomed Sci. 2016;23:87. doi: 10.1186/s12929-016-0303-y |
| [120] |
Rehman K., Hamid Akash M.S. Mechanisms of inflammatory reactions and the development of insulin resistance: how are they interrelated? // J Biomed Sci. 2016. Vol. 23. ID 87. doi: 10.1186/s12929-016-0303-y |
| [121] |
Ding J, Liu Y, Sullivan DA. Effects of Insulin and high glucose on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2015;56(13):7814–7820. doi: 10.1167/iovs.15-18049 |
| [122] |
Ding J., Liu Y., Sullivan D.A. Effects of Insulin and high glucose on human meibomian gland epithelial cells // Invest Ophthalmol Vis Sci. 2015. Vol. 56, N. 13. P. 7814–7820. doi: 10.1167/iovs.15-18049 |
| [123] |
Yu T, Han X-G, Gao Y, et al. Morphological and cytological changes of meibomian glands in patients with type 2 diabetes mellitus. Int J Ophthalmol. 2019;12(9):1415–1419. doi: 10.18240/ijo.2019.09.07 |
| [124] |
Yu T., Han X.-G., Gao Y., et al. Morphological and cytological changes of meibomian glands in patients with type 2 diabetes mellitus // Int J Ophthalmol. 2019. Vol. 12, N. 9. P. 1415–1419. doi: 10.18240/ijo.2019.09.07 |
| [125] |
Wang H, Zhang B, Zhang Z, et al. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. Biomed Pharmacother. 2022;151:113109. doi: 10.1016/j.biopha.2022.113109 |
| [126] |
Wang H., Zhang B., Zhang Z., et al. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression // Biomed Pharmacother. 2022. Vol. 151. ID 113109. doi: 10.1016/j.biopha.2022.113109 |
| [127] |
Qu J-Y, Xiao Y-T, Zhang Y-Y, et al. Zhang. Hedgehog signaling pathway regulates the proliferation and differentiation of rat meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2021;62(2):33. doi: 10.1167/iovs.62.2.33 |
| [128] |
Qu J.-Y., Xiao Y.-T., Zhang Y.-Y., et al. Zhang. Hedgehog signaling pathway regulates the proliferation and differentiation of rat meibomian gland epithelial cells // Invest Ophthalmol Vis Sci. 2021. Vol. 62, N. 2. P. 33. doi: 10.1167/iovs.62.2.33 |
| [129] |
Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276(41):37731–37734. doi: 10.1074/jbc.R100034200 |
| [130] |
Rosen E.D., Spiegelman B.M. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth // J Biol Chem. 2001. Vol. 276, N. 41. P. 37731–37734. doi: 10.1074/jbc.R100034200 |
| [131] |
Jeon S, Baek J, Lee WK. Gli1 expression in human epiretinal membranes. Invest Ophthalmol Vis Sci. 2017;58(1):651–659. doi: 10.1167/iovs.16-20409 |
| [132] |
Jeon S., Baek J., Lee W.K. Gli1 expression in human epiretinal membranes // Invest Ophthalmol Vis Sci. 2017. Vol. 58, N. 1. P. 651–659. doi: 10.1167/iovs.16-20409 |
| [133] |
Safonova TN, Lutsevich EÉ, Kintukhina NP. Icrocirculatory changes in bulbar conjunctiva in various diseases. The Russian Annals of Ophthalmology. 2016;132(2):90–95. (In Russ.) doi: 10.17116/oftalma2016132290-95 |
| [134] |
Сафонова Т.Н., Луцевич Е.Э., Кинтюхина Н.П. Изменение микроциркуляции бульбарной конъюнктивы при различных заболеваниях // Вестник офтальмологии. 2016. Т. 132, № 2. С. 90–95. doi: 10.17116/oftalma2016132290-95 |
| [135] |
Wild S, Roglic G, Greene A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. doi: 10.2337/diacare.27.5.1047 |
| [136] |
Wild S., Roglic G., Greene A., et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 // Diabetes Care. 2004. Vol. 27, N. 5. P. 1047–1053. doi: 10.2337/diacare.27.5.1047 |
| [137] |
Butler AE, English E, Kilpatrick ES, et al. Diagnosing type 2 diabetes using Hemoglobin A1c: a systematic review and meta-analysis of the diagnostic cutpoint based on microvascular complications. Acta Diabetol. 2021;58(3):279–300. doi: 10.1007/s00592-020-01606-5 |
| [138] |
Butler A.E., English E., Kilpatrick E.S., et al. Diagnosing type 2 diabetes using Hemoglobin A1c: a systematic review and meta-analysis of the diagnostic cutpoint based on microvascular complications // Acta Diabetol. 2021. Vol. 58, N. 3. P. 279–300. doi: 10.1007/s00592-020-01606-5 |
| [139] |
Elalamy I, Chakroun T, Gerotziafas GT, et al. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb Res. 2008;121(6):843–848. doi: 10.1016/j.thromres.2007.07.016 |
| [140] |
Elalamy I., Chakroun T., Gerotziafas G.T., et al. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients // Thromb Res. 2008. Vol. 121, N. 6. P. 843–848. doi: 10.1016/j.thromres.2007.07.016 |
| [141] |
Mullugeta Y, Chawla R, Kebede T, Worku Y. Dyslipidemia associated with poor glycemic control in type 2 diabetes mellitus and the protective effect of metformin supplementation. Ind J Clin Biochem. 2012;27(4):363–369. doi: 10.1007/s12291-012-0225-8 |
| [142] |
Mullugeta Y., Chawla R., Kebede T., Worku Y. Dyslipidemia associated with poor glycemic control in type 2 diabetes mellitus and the protective effect of metformin supplementation // Ind J Clin Biochem. 2012. Vol. 27, N. 4. P. 363–369. doi: 10.1007/s12291-012-0225-8 |
| [143] |
Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis. 2017;16(1):207. doi: 10.1186/s12944-017-0594-3 |
| [144] |
Femlak M., Gluba-Brzózka A., Ciałkowska-Rysz A., Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk // Lipids Health Dis. 2017. Vol. 16, N. 1. ID 207. doi: 10.1186/s12944-017-0594-3 |
| [145] |
Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord. 2009;7(5):427–434. doi: 10.1089/met.2008.0068 |
| [146] |
Gundogan K., Bayram F., Capak M., et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia // Metab Syndr Relat Disord. 2009. Vol. 7, N. 5. P. 427–434. doi: 10.1089/met.2008.0068 |
| [147] |
Antwi-Baffour S, Kyeremeh R, Boateng SO, et al. Haematological parameters and lipid profile abnormalities among patients with type-2 diabetes mellitus in Ghana. Lipids Health Dis. 2018;17(1):283. doi: 0.1186/s12944-018-0926-y |
| [148] |
Antwi-Baffour S., Kyeremeh R., Boateng S.O., et al. Haematological parameters and lipid profile abnormalities among patients with type-2 diabetes mellitus in Ghana // Lipids Health Dis. 2018. Vol. 17, N. 1. ID 283. doi: 0.1186/s12944-018-0926-y |
| [149] |
Chen L-K, Lin M-H, Chen Z - J, et al. Association of insulin resistance and hematologic parameters: study of a middle-aged and elderly Chinese population in Taiwan. Chin Med Assoc. 2006;69(6): 248–253. doi: 10.1016/S1726-4901(09)70251-5 |
| [150] |
Chen L.-K., Lin M.-H., Chen Z.-J., et al. Association of insulin resistance and hematologic parameters: study of a middle-aged and elderly Chinese population in Taiwan // Chin Med Assoc. 2006. Vol. 69, N. 6. P. 248–253. doi: 10.1016/S1726-4901(09)70251-5 |
| [151] |
Lin K-Y, Hsih W-H, Lin Y-B, et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021;12(8):1322–1325. doi: 10.1111/jdi.13480 |
| [152] |
Lin K.-Y., Hsih W.-H., Lin Y.-B., et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy // J Diabetes Investig. 2021. Vol. 12, N. 8. P. 1322–1325. doi: 10.1111/jdi.13480 |
| [153] |
Zhu W, Smith JW, Huang C-M. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol. 2010;2010:840518. doi: 10.1155/2010/840518 |
| [154] |
Zhu W., Smith J.W., Huang C.-M. Mass spectrometry-based label-free quantitative proteomics // J Biomed Biotechnol. 2010. Vol. 2010. ID 840518. doi: 10.1155/2010/840518 |
| [155] |
Butovich IA. Lipidomic analysis of human meibum using HPLC-MSn. Methods Mol Biol. 2009;579:221–246. doi: 10.1007/978-1-60761-322-0_11 |
| [156] |
Butovich I.A. Lipidomic analysis of human meibum using HPLC-MSn // Methods Mol Biol. 2009. Vol. 579. P. 221–246. doi: 10.1007/978-1-60761-322-0_11 |
| [157] |
Butovich IA. Tear film lipids. Exp Eye Res. 2013;117:4–27. doi: 10.1016/j.exer.2013.05.010 |
| [158] |
Butovich I.A. Tear film lipids // Exp Eye Res. 2013. Vol. 117. P. 4–27. doi: 10.1016/j.exer.2013.05.010 |
| [159] |
Aldana J, Romero-Otero A, Cala MP. Exploring the lipidome: Current lipid extraction techniques for mass spectrometry analysis. Metabolites. 2020;10(6):231. doi: 10.3390/metabo10060231 |
| [160] |
Aldana J., Romero-Otero A., Cala M.P. Exploring the lipidome: Current lipid extraction techniques for mass spectrometry analysis // Metabolites. 2020. Vol. 10, N. 6. ID 231. doi: 10.3390/metabo10060231 |
| [161] |
Parfitt JJ, Woo S, Reid KM, et al. A new method of immunofluorescence computed tomography (ICT) for the localization and quantification of many antigens in large volumes of tissue with high resolution. PloS one. 2012;7:e53245. |
| [162] |
Parfitt J.J., Woo S., Reid K.M., et al. A new method of immunofluorescence computed tomography (ICT) for the localization and quantification of many antigens in large volumes of tissue with high resolution // PloS one. 2012. Vol. 7. ID e53245. |
| [163] |
Chang AY, Purt B. Biochemistry, tear film. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. |
| [164] |
Chang A.Y., Purt B. Biochemistry, tear film. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. |
| [165] |
Butovich IA, Wojtowicz JC, Molai M. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J Lipid Res. 2009;50(12):2471–2485. doi: 10.1194/jlr.M900252-JLR200 |
| [166] |
Butovich I.A., Wojtowicz J.C., Molai M. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum // J Lipid Res. 2009. Vol. 50, N. 12. P. 2471–2485. doi: 10.1194/jlr.M900252-JLR200 |
| [167] |
Borchman D, Ramakrishnan V, Henry C, Ramasubramanian A. Differences in Meibum and tear lipid composition and conformation. Cornea. 2020;39(1):122–128. doi: 10.1097/ICO.0000000000002095 |
| [168] |
Borchman D., Ramakrishnan V., Henry C., Ramasubramanian A. Differences in Meibum and tear lipid composition and conformation // Cornea. 2020. Vol. 39, N. 1. P. 122–128. doi: 10.1097/ICO.0000000000002095 |
Eco-Vector
/
| 〈 |
|
〉 |