Regional anesthesia in coronary artery bypass grafting: a narrative review

Viktor A. Koriachkin , Maksim A. Dzhopua , Beka S. Ezugbaia , Vaagn A. Avetisian , Dmitriy V. Zabolotskiy , Vladimir A. Evgrafov

Regional Anesthesia and Acute Pain Management ›› 2023, Vol. 17 ›› Issue (3) : 161 -175.

PDF
Regional Anesthesia and Acute Pain Management ›› 2023, Vol. 17 ›› Issue (3) : 161 -175. DOI: 10.17816/RA568908
Reviews
review-article

Regional anesthesia in coronary artery bypass grafting: a narrative review

Author information +
History +
PDF

Abstract

Coronary artery bypass grafting (CABG) is one of the most frequently performed procedures in modern cardiac surgery because it is indicated in most patients with coronary artery disease. Currently, there are no standard methods for regional anesthesia in cardiac surgery. The purpose of this review was to describe the available techniques for regional anesthesia in post-CABG. Studies published in the databases PubMed, The Cochrane Library, Google Scholar, Russian science citation index were included. Techniques reported in the literature were local blockade of the postoperative wound with local anesthetics in the anteromedial chest wall (parasternal-intercostal plane blocks), anterolateral chest wall (interpectoral plane blocks, serratus anterior plane block), and posterolateral chest wall (erector spinae plane block, thoracic paravertebral block, retrolaminar block, rhomboid intercostal block). Numerous studies demonstrate that the use of regional anesthesia as a component of multimodal anesthesia after coronary artery bypass grafting significantly improves pain relief. Blockade of the peripheral nerves of the chest wall under ultrasound guidance can be considered not only as an alternative to epidural anesthesia when not indicated or not feasible. It also contributes to early tracheal extubation, reduced duration of mechanical ventilation, adequate pain control, and a decrease in the need for narcotic analgesics, reduced postoperative nausea and vomiting, and reduced length of stay in the intensive care unit. Further research is needed to determine the optimal technique for performing interfascial blockades of the chest wall post-CABG, which would require data on the effectiveness, safety, and dosing regimen for each specific blockade.

Keywords

fascial plane chest wall blocks / coronary artery bypass grafting / postoperative analgesia / regional anesthesia

Cite this article

Download citation ▾
Viktor A. Koriachkin, Maksim A. Dzhopua, Beka S. Ezugbaia, Vaagn A. Avetisian, Dmitriy V. Zabolotskiy, Vladimir A. Evgrafov. Regional anesthesia in coronary artery bypass grafting: a narrative review. Regional Anesthesia and Acute Pain Management, 2023, 17(3): 161-175 DOI:10.17816/RA568908

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Likosky DS, Baker RA, Newland RF, et al. International Consortium for Evidence-Based Perfusion, the PERForm Registry, the Australian and New Zealand Collaborative Perfusion Registry (ANZCPR), and the Michigan Society of Thoracic and Cardiovascular Surgeons Quality Collaborative. Is Conventional Bypass for Coronary Artery Bypass Graft Surgery a Misnomer? J Extra Corpor Technol. 2018;50(4):225–230.

[2]

Likosky D.S., Baker R.A., Newland R.F., et al. International Consortium for Evidence-Based Perfusion, the PERForm Registry, the Australian and New Zealand Collaborative Perfusion Registry (ANZCPR), and the Michigan Society of Thoracic and Cardiovascular Surgeons Quality Collaborative. Is Conventional Bypass for Coronary Artery Bypass Graft Surgery a Misnomer? // J Extra Corpor Technol. 2018. Vol. 50, N 4. P. 225–230.

[3]

Elbadawi A, Hamed M, Elgendy IY, et al. Outcomes of Reoperative Coronary Artery Bypass Graft Surgery in the United States. J Am Heart Assoc. 2020;9(15):e016282. doi: 10.1161/JAHA.120.016282

[4]

Elbadawi A., Hamed M., Elgendy I.Y., et al. Outcomes of Reoperative Coronary Artery Bypass Graft Surgery in the United States // J Am Heart Assoc. 2020. Vol. 9, N 15. P. e016282. doi: 10.1161/JAHA.120.016282

[5]

Melly L, Torregrossa G, Lee T, et al. Fifty years of coronary artery bypass grafting. J Thorac Dis. 2018;10(3):1960–1967. doi: 10.21037/jtd.2018.02.43

[6]

Melly L., Torregrossa G., Lee T., et al. Fifty years of coronary artery bypass grafting // J Thorac Dis. 2018. Vol. 10, N 3. P. 1960–1967. doi: 10.21037/jtd.2018.02.43

[7]

Bokeriya LA, Milievskaya EB, Pryanishnikov VV, et al. Serdechno-sosudistaya khirurgiya-2021. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya. Moscow: FGBU «NMITsSSKh im. A.N. Bakuleva» MZ RF; 2022. (In Russ).

[8]

Бокерия Л.А., Милиевская Е.Б., Прянишников В.В., и др. Сердечно-сосудистая хирургия-2021. Болезни и врожденные аномалии системы кровообращения. Москва: ФГБУ «НМИЦССХ им. А.Н. Бакулева» МЗ РФ, 2022.

[9]

Bjørnnes AK, Rustøen T, Lie I, et al. Pain characteristics and analgesic intake before and following cardiac surgery. Eur J Cardiovasc Nurs. 2016;15(1):47–54. doi: 10.1177/1474515114550441

[10]

Bjørnnes A.K., Rustøen T., Lie I., et al. Pain characteristics and analgesic intake before and following cardiac surgery // Eur J Cardiovasc Nurs. 2016. Vol. 15, N 1. P. 47–54. doi: 10.1177/1474515114550441

[11]

Lahtinen P, Kokki H, Hynynen M. Pain after cardiac surgery: a prospective cohort study of 1-year incidence and intensity. Anesthesiology. 2006;105(4):794–800. doi: 10.1097/00000542-200610000-00026

[12]

Lahtinen P., Kokki H., Hynynen M. Pain after cardiac surgery: a prospective cohort study of 1-year incidence and intensity // Anesthesiology. 2006. Vol. 105, N 4. P. 794–800. doi: 10.1097/00000542-200610000-00026

[13]

Echeverria-Villalobos M, Stoicea N, Todeschini AB, et al. Enhanced Recovery After Surgery (ERAS): A Perspective Review of Postoperative Pain Management Under ERAS Pathways and Its Role on Opioid Crisis in the United States. Clin J Pain. 2020;36(3):219–226. doi: 10.1097/AJP.0000000000000792

[14]

Echeverria-Villalobos M., Stoicea N., Todeschini A.B., et al. Enhanced Recovery After Surgery (ERAS): A Perspective Review of Postoperative Pain Management Under ERAS Pathways and Its Role on Opioid Crisis in the United States // Clin J Pain. 2020. Vol. 36, N 3. P. 219–226. doi: 10.1097/AJP.0000000000000792

[15]

Guimarães-Pereira L, Reis P, Abelha F, et al. Persistent postoperative pain after cardiac surgery: a systematic review with meta-analysis regarding incidence and pain intensity. Pain. 2017;158(10):1869–1885. doi: 10.1097/j.pain.0000000000000997

[16]

Guimarães-Pereira L., Reis P., Abelha F., et al. Persistent postoperative pain after cardiac surgery: a systematic review with meta-analysis regarding incidence and pain intensity // Pain. 2017. Vol. 158, N 10. P. 1869–1885. doi: 10.1097/j.pain.0000000000000997

[17]

Bae J, Shin S. Factors Related to Persistent Postoperative Pain after Cardiac Surgery: A Systematic Review and Meta-Analysis. J Korean Acad Nurs. 2020;50(2):159–177. (In Korean). doi: 10.4040/jkan.2020.50.2.159

[18]

Bae J., Shin S. Factors Related to Persistent Postoperative Pain after Cardiac Surgery: A Systematic Review and Meta-Analysis// J Korean Acad Nurs. 2020. Vol. 50, N 2. P. 159–177. doi: 10.4040/jkan.2020.50.2.159

[19]

Zubrzycki M, Liebold A, Skrabal C, et al. Assessment and pathophysiology of pain in cardiac surgery. J Pain Res. 2018;11:1599–1611. doi: 10.2147/JPR.S162067

[20]

Zubrzycki M., Liebold A., Skrabal C., et al. Assessment and pathophysiology of pain in cardiac surgery // J Pain Res. 2018. N 11. P. 1599–1611. doi: 10.2147/JPR.S162067

[21]

He Q, Wang W, Zhu S, et al. The epidemiology and clinical outcomes of ventilator-associated events among 20,769 mechanically ventilated patients at intensive care units: an observational study. Crit Care. 2021;25(1):44. doi: 10.1186/s13054-021-03484-x

[22]

He Q., Wang W., Zhu S., et al. The epidemiology and clinical outcomes of ventilator-associated events among 20,769 mechanically ventilated patients at intensive care units: an observational study // Crit Care. 2021. Vol. 25, N 1. P. 44. doi: 10.1186/s13054-021-03484-x

[23]

Liu J, Zhang S, Chen J, et al. Risk factors for ventilator-associated events: A prospective cohort study. Am J Infect Control. 2019;47(7):744–749. doi: 10.1016/j.ajic.2018.09.032

[24]

Liu J., Zhang S., Chen J., et al. Risk factors for ventilator-associated events: A prospective cohort study // Am J Infect Control. 2019. Vol. 47, N 7. P. 744–749. doi: 10.1016/j.ajic.2018.09.032

[25]

Hargrave J, Grant MC, Kolarczyk L, et al. An Expert Review of Chest Wall Fascial Plane Blocks for Cardiac Surgery. J Cardiothorac Vasc Anesth. 2023;37(2):279–290. doi: 10.1053/j.jvca.2022.10.026

[26]

Hargrave J., Grant M.C., Kolarczyk L., et al. An Expert Review of Chest Wall Fascial Plane Blocks for Cardiac Surgery // J Cardiothorac Vasc Anesth. 2023. Vol. 37, N 2. P. 279–290. doi: 10.1053/j.jvca.2022.10.026

[27]

Svirskiy DA, Antipin EE, Paromov KV, et al. Paraxial spinal nerve block. Russian Journal of Anesthesiology and Reanimatology. 2021;4:128–135. (In Russ). doi: 10.17116/anaesthesiology2021041128

[28]

Свирский Д.А., Антипин Э.Э., Паромов К.В., и др. Парааксиальная футлярная блокада спинномозговых нервов. Анестезиология и реаниматология // 2021. № 4. С. 128–135. doi: 10.17116/anaesthesiology2021041128

[29]

Kelava M, Alfirevic A, Bustamante S, et al. Regional Anesthesia in Cardiac Surgery: An Overview of Fascial Plane Chest Wall Blocks. Anesth Analg. 2020;131(1):127–135. doi: 10.1213/ANE.0000000000004682

[30]

Kelava M., Alfirevic A., Bustamante S., et al. Regional Anesthesia in Cardiac Surgery: An Overview of Fascial Plane Chest Wall Blocks // Anesth Analg. 2020. Vol. 131, N 1. P. 127–135. doi: 10.1213/ANE.0000000000004682

[31]

Raj N. Regional anesthesia for sternotomy and bypass-Beyond the epidural. Paediatr Anaesth. 2019;29(5):519–529. doi: 10.1111/pan.13626

[32]

Raj N. Regional anesthesia for sternotomy and bypass-Beyond the epidural // Paediatr Anaesth. 2019. Vol. 29, N 5. P. 519–529. doi: 10.1111/pan.13626

[33]

Chakravarthy M. Regional analgesia in cardiothoracic surgery: A changing paradigm toward opioid-free anesthesia? Ann Card Anaesth. 2018;21(3):225–227. doi: 10.4103/aca.ACA_56_18

[34]

Chakravarthy M. Regional analgesia in cardiothoracic surgery: A changing paradigm toward opioid-free anesthesia? // Ann Card Anaesth. 2018. Vol. 21, N 3. P. 225–227. doi: 10.4103/aca.ACA_56_18

[35]

Zhou K, Li D, Song G. Comparison of regional anesthetic techniques for postoperative analgesia after adult cardiac surgery: bayesian network meta-analysis. Front Cardiovasc Med. 2023;10:1078756. doi: 10.3389/fcvm.2023.1078756

[36]

Zhou K., Li D., Song G. Comparison of regional anesthetic techniques for postoperative analgesia after adult cardiac surgery: bayesian network meta-analysis // Front Cardiovasc Med. 2023. N 10. P. 1078756. doi: 10.3389/fcvm.2023.1078756

[37]

Paromov KV, Svirskiy DA, Kirov MYu. Regional anesthesia in cardiac surgery: is there a choice? Russian Journal of Anesthesiology and Reanimatology. 2021;6:7581. (In Russ). doi: 10.17116/anaesthesiology202106175

[38]

Паромов К.В., Свирский Д.А., Киров М.Ю. Регионарные методики в практике кардиоанестезиолога: есть ли выбор? // Анестезиология и реаниматология. 2021. № 6. С. 7581. doi: 10.17116/anaesthesiology202106175

[39]

Warfield DJ, Barre S, Adhikary SD. Current understanding of the fascial plane blocks for analgesia of the chest wall: techniques and indications update for 2020. Curr Opin Anaesthesiol. 2020;33(5):692–697. doi: 10.1097/ACO.0000000000000909

[40]

Warfield D.J., Barre S., Adhikary S.D. Current understanding of the fascial plane blocks for analgesia of the chest wall: techniques and indications update for 2020 // Curr Opin Anaesthesiol. 2020. Vol. 33, N 5. P. 692–697. doi: 10.1097/ACO.0000000000000909

[41]

El Shora HA, El Beleehy AA, Abdelwahab AA, et al. Bilateral paravertebral block versus thoracic epidural analgesia for pain control post-cardiac surgery: a randomized controlled trial. Thorac Cardiovasc Surg. 2020;68(5):410–416. doi:10.1055/s-0038-1668496

[42]

El Shora H.A., El Beleehy A.A., Abdelwahab A.A., et al. Bilateral paravertebral block versus thoracic epidural analgesia for pain control post-cardiac surgery: a randomized controlled trial // Thorac Cardiovasc Surg. 2020. Vol. 68, N 5. P. 410–416. doi:10.1055/s-0038-1668496

[43]

Smith LM, Barrington MJ; St. Vincent,s Hospital, Melbourne. Ultrasound-guided blocks for cardiovascular surgery: which block for which patient? Curr Opin Anaesthesiol. 2020;33(1):64–70. doi: 10.1097/ACO.0000000000000818

[44]

Smith L.M., Barrington M.J.; St. Vincent,s Hospital, Melbourne. Ultrasound-guided blocks for cardiovascular surgery: which block for which patient? // Curr Opin Anaesthesiol. 2020. Vol. 33, N 1. P. 64–70. doi: 10.1097/ACO.0000000000000818

[45]

Harbell MW, Langley NR, Seamans DP, et al. Deep parasternal intercostal plane nerve block: an anatomical study. Reg Anesth Pain Med. 2023:rapm-2023-104716. doi: 10.1136/rapm-2023-104716

[46]

Harbell M.W., Langley N.R., Seamans D.P., et al. Deep parasternal intercostal plane nerve block: an anatomical study // Reg Anesth Pain Med. 2023. rapm-2023-104716. doi: 10.1136/rapm-2023-104716

[47]

Kumari P, Kumar A, Sinha C, et al. Continuous bilateral transversus thoracis muscle plane block in median sternotomy. Saudi J Anaesth. 2022;16(2):255–256. doi: 10.4103/sja.sja_825_21

[48]

Kumari P., Kumar A., Sinha C., et al. Continuous bilateral transversus thoracis muscle plane block in median sternotomy // Saudi J Anaesth. 2022. Vol. 16, N 2. P. 255–256. doi: 10.4103/sja.sja_825_21

[49]

Xie C, Ran G, Chen D, Lu Y. A narrative review of ultrasound-guided serratus anterior plane block. Ann Palliat Med. 2021;10(1):700–706. doi: 10.21037/apm-20-1542

[50]

Xie C., Ran G., Chen D., Lu Y. A narrative review of ultrasound-guided serratus anterior plane block // Ann Palliat Med. 2021. Vol. 10, N 1. P. 700–706. doi: 10.21037/apm-20-1542

[51]

Chin KJ, El-Boghdadly K. Mechanisms of action of the erector spinae plane (ESP) block: a narrative review. Can J Anaesth. 2021;68(3):387–408. doi: 10.1007/s12630-020-01875-2

[52]

Chin K.J., El-Boghdadly K. Mechanisms of action of the erector spinae plane (ESP) block: a narrative review // Can J Anaesth. 2021. Vol. 68, N 3. P. 387–408. doi: 10.1007/s12630-020-01875-2

[53]

Chin KJ, Pawa A, Forero M, Adhikary S. Ultrasound-guided fascial plane blocks of the thorax: pectoral I and II, serratus anterior plane, and erector spinae plane blocks. Adv Anesth. 2019;37:187–205. doi: 10.1016/j.aan.2019.08.007

[54]

Chin K.J., Pawa A., Forero M., Adhikary S. Ultrasound-guided fascial plane blocks of the thorax: pectoral I and II, serratus anterior plane, and erector spinae plane blocks // Adv Anesth. 2019. N 37. P. 187–205. doi: 10.1016/j.aan.2019.08.007

[55]

Vinokurovа AA, Rudnov VA, Dubrovin SG. Analgesia of post-operative wound with local anesthetics. Messenger of Anesthesiology and Resuscitation. 2019;16(4):47–55. (In Russ). doi: 10.21292/2078-5658-2019-16-4-47-55

[56]

Винокурова А.А., Руднов В.А., Дубровин С.Г. Анальгезия послеоперационной раны растворами местных анестетиков // Вестник анестезиологии и реаниматологии. 2019. Т. 16, № 4. С. 47–55. doi: 10.21292/2078-5658-2019-16-4-47-55

[57]

Dowling R, Thielmeier K, Ghaly A, et al. Improved pain control after cardiac surgery: results of a randomized, double-blind, clinical trial. J Thorac Cardiovasc Surg. 2003;126(5):1271–1278. doi: 10.1016/s0022-5223(03)00585-3

[58]

Dowling R., Thielmeier K., Ghaly A., et al. Improved pain control after cardiac surgery: results of a randomized, double-blind, clinical trial // J Thorac Cardiovasc Surg. 2003. Vol. 126, N 5. P. 1271–1278. doi: 10.1016/s0022-5223(03)00585-3

[59]

White PF, Rawal S, Latham P, et al. Use of a continuous local anesthetic infusion for pain management after median sternotomy. Anesthesiology. 2003;99(4):918–923. doi: 10.1097/00000542-200310000-00026

[60]

White P.F., Rawal S., Latham P., et al. Use of a continuous local anesthetic infusion for pain management after median sternotomy // Anesthesiology. 2003. Vol. 99, N 4. P. 918–923. doi: 10.1097/00000542-200310000-00026

[61]

Mijovski G, Podbregar M, Kšela J, et al. Effectiveness of wound infusion of 0.2% ropivacaine by patient control analgesia pump after minithoracotomy aortic valve replacement: a randomized, double-blind, placebo-controlled trial. BMC Anesthesiol. 2020;20(1):172. doi: 10.1186/s12871-020-01093-9

[62]

Mijovski G., Podbregar M., Kšela J., et al. Effectiveness of wound infusion of 0.2% ropivacaine by patient control analgesia pump after minithoracotomy aortic valve replacement: a randomized, double-blind, placebo-controlled trial // BMC Anesthesiol. 2020. Vol. 20, N 1. P. 172. doi: 10.1186/s12871-020-01093-9

[63]

Agarwal S, Nuttall GA, Johnson ME, et al. A prospective, randomized, blinded study of continuous ropivacaine infusion in the median sternotomy incision following cardiac surgery. Reg Anesth Pain Med. 2013;38(2):145–150. doi: 10.1097/AAP.0b013e318281a348

[64]

Agarwal S., Nuttall G.A., Johnson M.E., et al. A prospective, randomized, blinded study of continuous ropivacaine infusion in the median sternotomy incision following cardiac surgery // Reg Anesth Pain Med. 2013. Vol. 38, N 2. P. 145–150. doi: 10.1097/AAP.0b013e318281a348

[65]

Sepolvere G, Coppolino F, Tedesco M, Cristiano L. Ultrasound-guided parasternal blocks: techniques, clinical indications and future prospects. Minerva Anestesiol. 2021;87(12):1338–1346. doi: 10.23736/S0375-9393.21.15599-3

[66]

Sepolvere G., Coppolino F., Tedesco M., Cristiano L. Ultrasound-guided parasternal blocks: techniques, clinical indications and future prospects // Minerva Anestesiol. 2021. Vol. 87, N 12. P. 1338–1346. doi: 10.23736/S0375-9393.21.15599-3

[67]

de la Torre PA, García PD, Alvarez SL, et al. A novel ultrasound-guided block: a promising alternative for breast analgesia. Aesthet Surg J. 2014;34(1):198–200. doi: 10.1177/1090820X13515902

[68]

de la Torre P.A., García P.D., Alvarez S.L., et al. A novel ultrasound-guided block: a promising alternative for breast analgesia // Aesthet Surg J. 2014. Vol. 34, N 1. P. 198–200. doi: 10.1177/1090820X13515902

[69]

Caruso TJ, Lawrence K, Tsui BCH. Regional anesthesia for cardiac surgery. Curr Opin Anaesthesiol. 2019;32(5):674–682. doi: 10.1097/ACO.0000000000000769

[70]

Caruso T.J., Lawrence K., Tsui B.C.H. Regional anesthesia for cardiac surgery // Curr Opin Anaesthesiol. 2019. Vol. 32, N 5. P. 674–682. doi: 10.1097/ACO.0000000000000769

[71]

Liu V, Mariano ER, Prabhakar C. Pecto-intercostal Fascial Block for Acute Poststernotomy Pain: A Case Report. A A Pract. 2018;10(12):319–322. doi: 10.1213/XAA.0000000000000697

[72]

Liu V., Mariano E.R., Prabhakar C. Pecto-intercostal Fascial Block for Acute Poststernotomy Pain: A Case Report // A A Pract. 2018. Vol. 10, N 12. P. 319–322. doi: 10.1213/XAA.0000000000000697

[73]

Zhang Y, Min J, Chen S. Continuous Pecto-Intercostal Fascial Block Provides Effective Analgesia in Patients Undergoing Open Cardiac Surgery: A Randomized Controlled Trial. Pain Med. 2022;23(3):440–447. doi: 10.1093/pm/pnab291

[74]

Zhang Y., Min J., Chen S. Continuous Pecto-Intercostal Fascial Block Provides Effective Analgesia in Patients Undergoing Open Cardiac Surgery: A Randomized Controlled Trial // Pain Med. 2022. Vol. 23, N 3. P. 440–447. doi: 10.1093/pm/pnab291

[75]

Bloc S, Perot BP, Gibert H, et al. Efficacy of parasternal block to decrease intraoperative opioid use in coronary artery bypass surgery via sternotomy: a randomized controlled trial. Reg Anesth Pain Med. 2021;46(8):671–678. doi: 10.1136/rapm-2020-102207

[76]

Bloc S., Perot B.P., Gibert H., et al. Efficacy of parasternal block to decrease intraoperative opioid use in coronary artery bypass surgery via sternotomy: a randomized controlled trial // Reg Anesth Pain Med. 2021. Vol. 46, N 8. P. 671–678. doi: 10.1136/rapm-2020-102207

[77]

Hamed MA, Abdelhady MA, Hassan AASM, Boules ML. The Analgesic Effect of Ultrasound-guided Bilateral Pectointercostal Fascial Plane Block on Sternal Wound Pain After Open Heart Surgeries: A Randomized Controlled Study. Clin J Pain. 2022;38(4):279–284. doi: 10.1097/AJP.0000000000001022

[78]

Hamed M.A., Abdelhady M.A., Hassan A.A.S.M., Boules M.L. The Analgesic Effect of Ultrasound-guided Bilateral Pectointercostal Fascial Plane Block on Sternal Wound Pain After Open Heart Surgeries: A Randomized Controlled Study // Clin J Pain. 2022. Vol. 38, N 4. P. 279–284. doi: 10.1097/AJP.0000000000001022

[79]

Khera T, Murugappan KR, Leibowitz A, et al. Ultrasound-Guided Pecto-Intercostal Fascial Block for Postoperative Pain Management in Cardiac Surgery: A Prospective, Randomized, Placebo-Controlled Trial. J Cardiothorac Vasc Anesth. 2021;35(3):896–903. doi: 10.1053/j.jvca.2020.07.058

[80]

Khera T., Murugappan K.R., Leibowitz A., et al. Ultrasound-Guided Pecto-Intercostal Fascial Block for Postoperative Pain Management in Cardiac Surgery: A Prospective, Randomized, Placebo-Controlled Trial // J Cardiothorac Vasc Anesth. 2021. Vol. 35, N 3. P. 896–903. doi: 10.1053/j.jvca.2020.07.058

[81]

Ueshima H, Kitamura A. Blocking of Multiple Anterior Branches of Intercostal Nerves (Th2-6) Using a Transversus Thoracic Muscle Plane Block. Reg Anesth Pain Med. 2015;40(4):388. doi: 10.1097/AAP.0000000000000245

[82]

Ueshima H., Kitamura A. Blocking of Multiple Anterior Branches of Intercostal Nerves (Th2-6) Using a Transversus Thoracic Muscle Plane Block // Reg Anesth Pain Med. 2015. Vol. 40, N 4. P. 388. doi: 10.1097/AAP.0000000000000245

[83]

Zhang Y, Chen S, Gong H, Zhan B. Efficacy of Bilateral Transversus Thoracis Muscle Plane Block in Pediatric Patients Undergoing Open Cardiac Surgery. J Cardiothorac Vasc Anesth. 2020;34(9):2430–2434. doi: 10.1053/j.jvca.2020.02.005

[84]

Zhang Y., Chen S., Gong H., Zhan B. Efficacy of Bilateral Transversus Thoracis Muscle Plane Block in Pediatric Patients Undergoing Open Cardiac Surgery // J Cardiothorac Vasc Anesth. 2020. Vol. 34, N 9. P. 2430–2434. doi: 10.1053/j.jvca.2020.02.005

[85]

Abdelbaser I, Mageed NA. Safety of Ultrasound-Guided Transversus Thoracis Plane Block in Pediatric Cardiac Surgery: A Retrospective Cohort Study. J Cardiothorac Vasc Anesth. 2022;36(8 Pt B):2870–2875. doi: 10.1053/j.jvca.2021.12.006

[86]

Abdelbaser I., Mageed N.A. Safety of Ultrasound-Guided Transversus Thoracis Plane Block in Pediatric Cardiac Surgery: A Retrospective Cohort Study // J Cardiothorac Vasc Anesth. 2022. Vol. 36, N 8, Pt. B. P. 2870–2875. doi: 10.1053/j.jvca.2021.12.006

[87]

Sepolvere G, Tognù A, Tedesco M, et al. Avoiding the Internal Mammary Artery During Parasternal Blocks: Ultrasound Identification and Technique Considerations. J Cardiothorac Vasc Anesth. 2021;35(6):1594–1160. doi: 10.1053/j.jvca.2020.11.007

[88]

Sepolvere G., Tognù A., Tedesco M., et al. Avoiding the Internal Mammary Artery During Parasternal Blocks: Ultrasound Identification and Technique Considerations // J Cardiothorac Vasc Anesth. 2021. Vol. 35, N 6. P. 1594–1160. doi: 10.1053/j.jvca.2020.11.007

[89]

Aydin ME, Ahiskalioglu A, Ates I, et al. Efficacy of Ultrasound-Guided Transversus Thoracic Muscle Plane Block on Postoperative Opioid Consumption After Cardiac Surgery: A Prospective, Randomized, Double-Blind Study. J Cardiothorac Vasc Anesth. 2020;34(11):2996–3003. doi: 10.1053/j.jvca.2020.06.044

[90]

Aydin M.E., Ahiskalioglu A., Ates I., et al. Efficacy of Ultrasound-Guided Transversus Thoracic Muscle Plane Block on Postoperative Opioid Consumption After Cardiac Surgery: A Prospective, Randomized, Double-Blind Study // J Cardiothorac Vasc Anesth. 2020. Vol. 34, N 11. P. 2996–3003. doi: 10.1053/j.jvca.2020.06.044

[91]

Zhang Y, Li X, Chen S. Bilateral transversus thoracis muscle plane block provides effective analgesia and enhances recovery after open cardiac surgery. J Card Surg. 2021;36(8):2818–2823. doi: 10.1111/jocs.15666

[92]

Zhang Y., Li X., Chen S. Bilateral transversus thoracis muscle plane block provides effective analgesia and enhances recovery after open cardiac surgery // J Card Surg. 2021. Vol. 36, N 8. P. 2818–2823. doi: 10.1111/jocs.15666

[93]

Abdelbaser II, Mageed NA. Analgesic efficacy of ultrasound guided bilateral transversus thoracis muscle plane block in pediatric cardiac surgery: a randomized, double-blind, controlled study. J Clin Anesth. 2020;67:110002. doi: 10.1016/j.jclinane.2020.110002

[94]

Abdelbaser I.I., Mageed N.A. Analgesic efficacy of ultrasound guided bilateral transversus thoracis muscle plane block in pediatric cardiac surgery: a randomized, double-blind, controlled study // J Clin Anesth. 2020. N 67. P. 110002. doi: 10.1016/j.jclinane.2020.110002

[95]

Zhang Y, Chen S, Gong H, Zhan B. Efficacy of Bilateral Transversus Thoracis Muscle Plane Block in Pediatric Patients Undergoing Open Cardiac Surgery. J Cardiothorac Vasc Anesth. 2020;34(9):2430–2434. doi: 10.1053/j.jvca.2020.02.005

[96]

Zhang Y., Chen S., Gong H., Zhan B. Efficacy of Bilateral Transversus Thoracis Muscle Plane Block in Pediatric Patients Undergoing Open Cardiac Surgery // J Cardiothorac Vasc Anesth. 2020. Vol. 34, N 9. P. 2430–2434. doi: 10.1053/j.jvca.2020.02.005

[97]

Kaya C, Dost B, Dokmeci O, et al. Comparison of Ultrasound-Guided Pecto-intercostal Fascial Block and Transversus Thoracic Muscle Plane Block for Acute Poststernotomy Pain Management After Cardiac Surgery: A Prospective, Randomized, Double-Blind Pilot Study. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2313–2321. doi: 10.1053/j.jvca.2021.09.041

[98]

Kaya C., Dost B., Dokmeci O., et al. Comparison of Ultrasound-Guided Pecto-intercostal Fascial Block and Transversus Thoracic Muscle Plane Block for Acute Poststernotomy Pain Management After Cardiac Surgery: A Prospective, Randomized, Double-Blind Pilot Study // J Cardiothorac Vasc Anesth. 2022. Vol. 36, N 8, Pt. A. P. 2313–2321. doi: 10.1053/j.jvca.2021.09.041

[99]

Ueshima H, Kitamura A. Clinical experiences of ultrasound-guided transversus thoracic muscle plane block: a clinical experience. J Clin Anesth. 2015;27(5):428–489. doi: 10.1016/j.jclinane.2015.03.040

[100]

Ueshima H., Kitamura A. Clinical experiences of ultrasound-guided transversus thoracic muscle plane block: a clinical experience // J Clin Anesth. 2015. Vol. 27, N 5. P. 428–489. doi: 10.1016/j.jclinane.2015.03.040

[101]

El-Boghdadly K, Wolmarans M, Stengel AD, Albrecht E, Chin KJ, Elsharkawy H, et al. Standardizing nomenclature in regional anesthesia: an ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks. Reg Anesth Pain Med. 2021;46(7):571–580. doi: 10.1136/rapm-2020-102451

[102]

El-Boghdadly K., Wolmarans M., Stengel A.D, Albrecht E, Chin KJ, Elsharkawy H, et al. Standardizing nomenclature in regional anesthesia: an ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks // Reg Anesth Pain Med. 2021. Vol. 46, N 7. P. 571–580. doi: 10.1136/rapm-2020-102451

[103]

Shokri H, Ali I, Kasem AA. Evaluation of the Analgesic Efficacy of Bilateral Ultrasound-Guided Transversus Thoracic Muscle Plane Block on Post-Sternotomy Pain: A Randomized Controlled Trial. Local Reg Anesth. 2021;14:145–152. doi: 10.2147/LRA.S338685

[104]

Shokri H., Ali I., Kasem A.A. Evaluation of the Analgesic Efficacy of Bilateral Ultrasound-Guided Transversus Thoracic Muscle Plane Block on Post-Sternotomy Pain: A Randomized Controlled Trial // Local Reg Anesth. 2021. N 14. P. 145–152. doi: 10.2147/LRA.S338685

[105]

Zhang J, Luo F, Zhang X, Xue Y. Ultrasound-Guided Continuous Parasternal Intercostal Block Relieves Postoperative Pain After Open Cardiac Surgery: A Case Series. J Cardiothorac Vasc Anesth. 2022;36(7):2051–2054. doi: 10.1053/j.jvca.2021.05.028

[106]

Zhang J., Luo F., Zhang X., Xue Y. Ultrasound-Guided Continuous Parasternal Intercostal Block Relieves Postoperative Pain After Open Cardiac Surgery: A Case Series // J Cardiothorac Vasc Anesth. 2022. Vol. 36, N 7. P. 2051–2054. doi: 10.1053/j.jvca.2021.05.028

[107]

Blanco R, Fajardo M, Parras Maldonado T. Ultrasound description of Pecs II (modified Pecs I): a novel approach to breast surgery. Rev Esp Anestesiol Reanim. 2012;59(9):470–475. doi: 10.1016/j.redar.2012.07.003

[108]

Blanco R., Fajardo M., Parras Maldonado T. Ultrasound description of Pecs II (modified Pecs I): a novel approach to breast surgery // Rev Esp Anestesiol Reanim. 2012. Vol. 59, N 9. P. 470–475. doi: 10.1016/j.redar.2012.07.003

[109]

Blanco R. The ‘pecs block’: a novel technique for providing analgesia after breast surgery. Anaesthesia. 2011;66(9):847–848. doi: 10.1111/j.1365-2044.2011.06838.x

[110]

Blanco R. The ‘pecs block’: a novel technique for providing analgesia after breast surgery // Anaesthesia. 2011. Vol. 66, N 9. P. 847–848. doi: 10.1111/j.1365-2044.2011.06838.x

[111]

Kamal F, Abd El-Rahman A, Hassan RM, Helmy AF. Efficacy of bilateral PECS II block in postoperative analgesia for ultrafast track pediatric cardiac anesthesia. Egypt J Anaesth. 2022;38:150–157. doi: 10.1080/11101849.2022.2043523

[112]

Kamal F., Abd El-Rahman A., Hassan R.M., Helmy A.F. Efficacy of bilateral PECS II block in postoperative analgesia for ultrafast track pediatric cardiac anesthesia // Egypt J Anaesth. 2022. N 38. P. 150–157. doi: 10.1080/11101849.2022.2043523

[113]

Kumar KN, Kalyane RN, Singh NG, et al. Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery. Ann Card Anaesth. 2018;21(3):333–338. doi: 10.4103/aca.ACA_15_18

[114]

Kumar K.N., Kalyane R.N., Singh N.G., et al. Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery // Ann Card Anaesth. 2018. Vol. 21, N 3. P. 333–338. doi: 10.4103/aca.ACA_15_18

[115]

Ahiskalioglu A, Yayik AM, Demir U, et al.Preemptive Analgesic Efficacy of the Ultrasound-Guided Bilateral Superficial Serratus Plane Block on Postoperative Pain in Breast Reduction Surgery: A Prospective Randomized Controlled Study. Aesthetic Plast Surg. 2020;44(1):37–44. doi: 10.1007/s00266-019-01542-y

[116]

Ahiskalioglu A., Yayik A.M., Demir U., et al.Preemptive Analgesic Efficacy of the Ultrasound-Guided Bilateral Superficial Serratus Plane Block on Postoperative Pain in Breast Reduction Surgery: A Prospective Randomized Controlled Study // Aesthetic Plast Surg. 2020. Vol. 44, N 1. P. 37–44. doi: 10.1007/s00266-019-01542-y

[117]

Blanco R, Parras T, McDonnell JG, Prats-Galino A. Serratus plane block: a novel ultrasound-guided thoracic wall nerve block. Anaesthesia. 2013;68(11):1107–1113. doi: 10.1111/anae.12344

[118]

Blanco R., Parras T., McDonnell J.G., Prats-Galino A. Serratus plane block: a novel ultrasound-guided thoracic wall nerve block // Anaesthesia. 2013. Vol. 68, N 11. P. 1107–1113. doi: 10.1111/anae.12344

[119]

Qiu L, Bu X, Shen J, et al. Observation of the analgesic effect of superficial or deep anterior serratus plane block on patients undergoing thoracoscopic lobectomy. Medicine (Baltimore). 2021;100(3):e24352. doi: 10.1097/MD.0000000000024352

[120]

Qiu L., Bu X., Shen J., et al. Observation of the analgesic effect of superficial or deep anterior serratus plane block on patients undergoing thoracoscopic lobectomy // Medicine (Baltimore). 2021. Vol. 100, N 3. P. e24352. doi: 10.1097/MD.0000000000024352

[121]

Liu X, Song T, Xu HY, et al. The serratus anterior plane block for analgesia after thoracic surgery: A meta-analysis of randomized controlled trails. Medicine (Baltimore). 2020;99(21):e20286. doi: 10.1097/MD.0000000000020286

[122]

Liu X., Song T., Xu H.Y., et al. The serratus anterior plane block for analgesia after thoracic surgery: A meta-analysis of randomized controlled trails // Medicine (Baltimore). 2020. Vol. 99, N 21. P. e20286. doi: 10.1097/MD.0000000000020286

[123]

Kaushal B, Chauhan S, Saini K, et al. Comparison of the Efficacy of Ultrasound-Guided Serratus Anterior Plane Block, Pectoral Nerves II Block, and Intercostal Nerve Block for the Management of Postoperative Thoracotomy Pain After Pediatric Cardiac Surgery. J Cardiothorac Vasc Anesth. 2019;33(2):418–425. doi: 10.1053/j.jvca.2018.08.209

[124]

Kaushal B., Chauhan S., Saini K., et al. Comparison of the Efficacy of Ultrasound-Guided Serratus Anterior Plane Block, Pectoral Nerves II Block, and Intercostal Nerve Block for the Management of Postoperative Thoracotomy Pain After Pediatric Cardiac Surgery // J Cardiothorac Vasc Anesth. 2019. Vol. 33, N 2. P. 418–425. doi: 10.1053/j.jvca.2018.08.209

[125]

Guerra-Londono CE, Privorotskiy A, Cozowicz C, et al. Assessment of Intercostal Nerve Block Analgesia for Thoracic Surgery: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4(11):e2133394. doi: 10.1001/jamanetworkopen.2021.33394

[126]

Guerra-Londono C.E., Privorotskiy A., Cozowicz C., et al. Assessment of Intercostal Nerve Block Analgesia for Thoracic Surgery: A Systematic Review and Meta-analysis // JAMA Netw Open. 2021. Vol. 4, N 11. P. e2133394. doi: 10.1001/jamanetworkopen.2021.33394

[127]

Kaushal B, Magoon R, Kaushal B, et al. A randomised controlled comparison of serratus anterior plane, pectoral nerves and intercostal nerve block for post-thoracotomy analgesia in adult cardiac surgery. Indian J Anaesth. 2020;64(12):1018–1024. doi: 10.4103/ija.IJA_566_20

[128]

Kaushal B., Magoon R., Kaushal B., et al. A randomised controlled comparison of serratus anterior plane, pectoral nerves and intercostal nerve block for post-thoracotomy analgesia in adult cardiac surgery // Indian J Anaesth. 2020. Vol. 64, N 12. P. 1018–1024. doi: 10.4103/ija.IJA_566_20

[129]

Safin RR, Koriachkin VA, Zabolotskii DV. Forgotten pioneers of erector spinae plane block: historical digression. Regional Anesthesia and Acute Pain Management. 2023;17(2):89–99. (In Russ). doi: 10.17816/RA375334

[130]

Сафин Р.Р., Корячкин В.А., Заболотский Д.В. Забытые пионеры метода блокады мышц-выпрямителей спины: краткий исторический экскурс // Регионарная анестезия и лечение острой боли. 2023. Т. 17, № 2. С. 89–99. doi: 10.17816/RA375334

[131]

Forero M, Adhikary SD, Lopez H, et al. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain. Reg Anesth Pain Med. 2016;41(5):621–627. doi: 10.1097/AAP.0000000000000451

[132]

Forero M., Adhikary S.D., Lopez H., et al. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain // Reg Anesth Pain Med. 2016. Vol. 41, N 5. P. 621–627. doi: 10.1097/AAP.0000000000000451

[133]

Kot P, Rodriguez P, Granell M, et al. The erector spinae plane block: a narrative review. Korean J Anesthesiol. 2019;72(3):209–220. doi: 10.4097/kja.d.19.00012

[134]

Kot P., Rodriguez P., Granell M., et al. The erector spinae plane block: a narrative review // Korean J Anesthesiol. 2019. Vol. 72, N 3. P. 209–220. doi: 10.4097/kja.d.19.00012

[135]

Adhikary SD, Bernard S, Lopez H, Chin KJ. Erector Spinae Plane Block Versus Retrolaminar Block: A Magnetic Resonance Imaging and Anatomical Study. Reg Anesth Pain Med. 2018;43(7):756–762. doi: 10.1097/AAP.0000000000000798

[136]

Adhikary S.D., Bernard S., Lopez H., Chin K.J. Erector Spinae Plane Block Versus Retrolaminar Block: A Magnetic Resonance Imaging and Anatomical Study // Reg Anesth Pain Med. 2018. Vol. 43, N 7. P. 756–762. doi: 10.1097/AAP.0000000000000798

[137]

Athar M, Parveen S, Yadav M, et al. A Randomized Double-Blind Controlled Trial to Assess the Efficacy of Ultrasound-Guided Erector Spinae Plane Block in Cardiac Surgery. J Cardiothorac Vasc Anesth. 2021;35(12):3574–3580. doi: 10.1053/j.jvca.2021.03.009

[138]

Athar M., Parveen S., Yadav M., et al. A Randomized Double-Blind Controlled Trial to Assess the Efficacy of Ultrasound-Guided Erector Spinae Plane Block in Cardiac Surgery // J Cardiothorac Vasc Anesth. 2021. Vol. 35, N 12. P. 3574–3580. doi: 10.1053/j.jvca.2021.03.009

[139]

Krishna SN, Chauhan S, Bhoi D, et al. Bilateral Erector Spinae Plane Block for Acute Post-Surgical Pain in Adult Cardiac Surgical Patients: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth. 2019;33(2):368–375. doi: 10.1053/j.jvca.2018.05.050

[140]

Krishna S.N., Chauhan S., Bhoi D., et al. Bilateral Erector Spinae Plane Block for Acute Post-Surgical Pain in Adult Cardiac Surgical Patients: A Randomized Controlled Trial // J Cardiothorac Vasc Anesth. 2019. Vol. 33, N 2. P. 368–375. doi: 10.1053/j.jvca.2018.05.050

[141]

Wasfy SF, Kamhawy GA, Omar AH, Abd El Aziz HF. Bilateral continuous erector spinae block versus multimodal intravenous analgesia in coronary bypass surgery. A randomized trial. Egypt J Anaesth. 2021;37:152–158. doi:10.1080/11101849.2021.1904548

[142]

Wasfy S.F., Kamhawy G.A., Omar A.H., Abd El Aziz H.F. Bilateral continuous erector spinae block versus multimodal intravenous analgesia in coronary bypass surgery. A randomized trial // Egypt J Anaesth. 2021. N 37. P. 152–158. doi:10.1080/11101849.2021.1904548

[143]

Ali Gado A, Alsadek WM, Ali H, Ismail AA. Erector Spinae Plane Block for Children Undergoing Cardiac Surgeries via Sternotomy: A Randomized Controlled Trial. Anesth Pain Med. 2022;12(2):e123723. doi: 10.5812/aapm-123723

[144]

Ali Gado A., Alsadek W.M., Ali H., Ismail A.A. Erector Spinae Plane Block for Children Undergoing Cardiac Surgeries via Sternotomy: A Randomized Controlled Trial // Anesth Pain Med. 2022. Vol. 12, N 2. P. e123723. doi: 10.5812/aapm-123723

[145]

Macaire P, Ho N, Nguyen V, et al. Bilateral ultrasound-guided thoracic erector spinae plane blocks using a programmed intermittent bolus improve opioid-sparing postoperative analgesia in pediatric patients after open cardiac surgery: a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2020;45(10):805–812. doi: 10.1136/rapm-2020-101496

[146]

Macaire P., Ho N., Nguyen V., et al. Bilateral ultrasound-guided thoracic erector spinae plane blocks using a programmed intermittent bolus improve opioid-sparing postoperative analgesia in pediatric patients after open cardiac surgery: a randomized, double-blind, placebo-controlled trial // Reg Anesth Pain Med. 2020. Vol. 45, N 10. P. 805–812. doi: 10.1136/rapm-2020-101496

[147]

Yeung JH, Gates S, Naidu BV, et al. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016;2(2):CD009121. doi: 10.1002/14651858.CD009121

[148]

Yeung J.H., Gates S., Naidu B.V., et al. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy // Cochrane Database Syst Rev. 2016. Vol. 2, N 2. CD009121. doi: 10.1002/14651858.CD009121

[149]

Baidya DK, Khanna P, Maitra S. Analgesic efficacy and safety of thoracic paravertebral and epidural analgesia for thoracic surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2014;18(5):626–635. doi: 10.1093/icvts/ivt551

[150]

Baidya D.K., Khanna P., Maitra S. Analgesic efficacy and safety of thoracic paravertebral and epidural analgesia for thoracic surgery: a systematic review and meta-analysis // Interact Cardiovasc Thorac Surg. 2014. Vol. 18, N 5. P. 626–635. doi: 10.1093/icvts/ivt551

[151]

Scarfe AJ, Schuhmann-Hingel S, Duncan JK, et al. Continuous paravertebral block for post-cardiothoracic surgery analgesia: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2016;50(6):1010–1018. doi: 10.1093/ejcts/ezw168

[152]

Scarfe A.J., Schuhmann-Hingel S., Duncan J.K., et al. Continuous paravertebral block for post-cardiothoracic surgery analgesia: a systematic review and meta-analysis // Eur J Cardiothorac Surg. 2016. Vol. 50, N 6. P. 1010–1018. doi: 10.1093/ejcts/ezw168

[153]

Sun L, Li Q, Wang Q, et al. Bilateral thoracic paravertebral block combined with general anesthesia vs. general anesthesia for patients undergoing off-pump coronary artery bypass grafting: a feasibility study. BMC Anesthesiol. 2019;19(1):101. doi: 10.1186/s12871-019-0768-9

[154]

Sun L., Li Q., Wang Q., et al. Bilateral thoracic paravertebral block combined with general anesthesia vs. general anesthesia for patients undergoing off-pump coronary artery bypass grafting: a feasibility study // BMC Anesthesiol. 2019. Vol. 19, N 1. P. 101. doi: 10.1186/s12871-019-0768-9

[155]

Karmakar MK, Greengrass RA, Latmore M, Levin M. Thoracic and lumbar paravertebral block — landmarks and nerve stimulator technique [Internet]. NYSORA; 2020 [cited 2023 Sep 30]. Available from: https://www.nysora.com/regional-anesthesia-for-specific-surgical-procedures/abdomen/thoracic-lumbar-paravertebral-block/

[156]

Karmakar M.K., Greengrass R.A., Latmore M., Levin M. Thoracic and lumbar paravertebral block — landmarks and nerve stimulator technique [интернет]. NYSORA, 2020 [дата обращения: 30.09.2023]. Доступ по ссылке: https://www.nysora.com/regional-anesthesia-for-specific-surgical-procedures/abdomen/thoracic-lumbar-paravertebral-block/

[157]

Voscopoulos C, Palaniappan D, Zeballos J, et al. The ultrasound-guided retrolaminar block. Can J Anaesth. 2013;60(9):888–895. doi: 10.1007/s12630-013-9983-x

[158]

Voscopoulos C., Palaniappan D., Zeballos J., et al. The ultrasound-guided retrolaminar block // Can J Anaesth. 2013. Vol. 60, N 9. P. 888–895. doi: 10.1007/s12630-013-9983-x

[159]

Abdelbaser I, Mageed NA, Elfayoumy SI, et al. The effect of ultrasound-guided bilateral thoracic retrolaminar block on analgesia after pediatric open cardiac surgery: a randomized controlled double-blind study. Korean J Anesthesiol. 2022;75(3):276–282. doi: 10.4097/kja.21466

[160]

Abdelbaser I., Mageed N.A., Elfayoumy S.I., et al. The effect of ultrasound-guided bilateral thoracic retrolaminar block on analgesia after pediatric open cardiac surgery: a randomized controlled double-blind study // Korean J Anesthesiol. 2022. Vol. 75, N 3. P. 276–282. doi: 10.4097/kja.21466

[161]

Elsharkawy H, Saifullah T, Kolli S, Drake R. Rhomboid intercostal block. Anaesthesia. 2016;71(7):856–857. doi: 10.1111/anae.13498

[162]

Elsharkawy H., Saifullah T., Kolli S., Drake R. Rhomboid intercostal block // Anaesthesia. 2016. Vol. 71, N 7. P. 856–857. doi: 10.1111/anae.13498

[163]

Elsharkawy H, Maniker R, Bolash R, et al. Rhomboid Intercostal and Subserratus Plane Block: A Cadaveric and Clinical Evaluation. Reg Anesth Pain Med. 2018;43(7):745–751. doi: 10.1097/AAP.0000000000000824

[164]

Elsharkawy H., Maniker R., Bolash R., et al. Rhomboid Intercostal and Subserratus Plane Block: A Cadaveric and Clinical Evaluation // Reg Anesth Pain Med. 2018. Vol. 43, N 7. P. 745–751. doi: 10.1097/AAP.0000000000000824

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/