Role of studying the pathogenesis of retinopathy of prematurity in optimizing disease screening

Lyudmila A. Katargina , Natal’ya B. Chesnokova , Natal’ya V. Balatskaya , Natal’ya Anatolievna Osipova , Anna Yurievna Panova

Russian Pediatric Ophthalmology ›› 2021, Vol. 16 ›› Issue (2) : 5 -13.

PDF
Russian Pediatric Ophthalmology ›› 2021, Vol. 16 ›› Issue (2) : 5 -13. DOI: 10.17816/rpoj70953
Original study article
research-article

Role of studying the pathogenesis of retinopathy of prematurity in optimizing disease screening

Author information +
History +
PDF

Abstract

Background: The efficiency of treatment and prevention of retinopathy of prematurity (ROP) has improved. In addition, the development of a disease screening system to reduce the incidence of disability resulting from this pathology is important.

Aim: This study aimed to determine new laboratory criteria for screening and predicting the ROP course through in-depth investigation of the molecules participating in the pathogenesis of ROP.

Material and methods: A comprehensive clinical and experimental study was performed to assess the local and systemic levels of 49 cytokines with various biological effects, four monoamines, and angiotensin-II (AT-II) at different stages of the pathological process. In the clinical analysis, 165 preterm infants at risk of ROP development were examined. For the experimental part, the disease course of 145 Wistar infant rats in the developed model of experimental ROP was analyzed.

Results: Among cytokines, the seven most promising potential laboratory markers of ROP development and adverse course were as follows: MCP1 >95 pg/mL, IGF-II >140 pg/mL, TGFbeta1 <18000 pg/mL, and IGF-I <24 pg/mL in the blood serum of preterm infants before the first signs of ROP and VEGF-A >108 pg/mL, TGF-beta2 >100 pg/mL, and PDGF-BB >1800 pg/mL at ROP manifestation. Among monoamines, serotonin (<17.0 pg/mL) and L-DOPA indicated their prognostic value in the clinical and experimental settings. Moreover, a possible prognostic role of AT-II was found.

Conclusion: In this study, methods to improve the ROP screening system are outlined, but further work is necessary to assess the possibility of implementing the results in clinical practice

Keywords

retinopathy of prematurity / pathogenesis / screening

Cite this article

Download citation ▾
Lyudmila A. Katargina, Natal’ya B. Chesnokova, Natal’ya V. Balatskaya, Natal’ya Anatolievna Osipova, Anna Yurievna Panova. Role of studying the pathogenesis of retinopathy of prematurity in optimizing disease screening. Russian Pediatric Ophthalmology, 2021, 16(2): 5-13 DOI:10.17816/rpoj70953

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim SJ, Sonmez K, Swan R, et al. Identification of candidate genes and pathways in retinopathy of prematurity by whole exome sequencing of preterm infants enriched in phenotypic extremes. Sci Rep. 2021;11(1):4966. doi: 10.1038/s41598-021-83552-y

[2]

Kim S.J., Sonmez K., Swan R., et al. Identification of candidate genes and pathways in retinopathy of prematurity by whole exome sequencing of preterm infants enriched in phenotypic extremes // Sci Rep. 2021. Vol. 11, N 1. P. 4966. doi: 10.1038/s41598-021-83552-y

[3]

Saydasheva EI, Gorelik YV, Buyanovskaya SV, Kovshov FV. Retinopathy of prematurity: the course and results of treatment in children with gestational age less than 27 weeks. Russian pediatric ophthalmology. 2015;10(2):28-32. (In Russ).

[4]

Сайдашева Э.И., Горелик Ю.В., Буяновская С.В., Ковшов Ф.В. Ретинопатия недоношенных: особенности течения и результаты лечения у детей со сроком гестации менее 27 недель // Российская педиатрическая офтальмология. 2015. Т. 10, № 2. С. 28-32.

[5]

Federal’’nye klinicheskie rekomendatsii “diagnostika, monitoring i lechenie aktivnoi fazy retinopatii nedonoshennykh” (natsional’’nyi protokol). Russian pediatric ophthalmology. 2015;10(1):54–60. (In Russ).

[6]

Федеральные клинические рекомендации (Национальный протокол) «Диагностика, мониторинг и лечение активной фазы ретинопатии недоношенных» // Российкая педиатрическая офтальмология. 2015. Т. 10, № 1. С. 54-60.

[7]

Katargina LA, Trusova SA, Shevernaya OA, et al. The frequency and clinical course of retinopathy of prematurity in modern developmental care conditions as evidenced by the Moscow region perinatal center. Russian Ophthalmological Journal. 2020;13(3):15-20. (In Russ). doi: 10.21516/2072-0076-2020-13-3-15-20

[8]

Катаргина Л. А., Трусова С.А., Щеверная О.А., и др. Частота и характер течения ретинопатии недоношенных при современных условиях выхаживания по данным Московского областного перинатального центра // Российский офтальмологический журнал. 2020. Т. 13, № 3. С. 15-20. doi: 10.21516/2072-0076-2020-13-3-15-20

[9]

Trese MT, Denisova EV, Katargina LA. Telemedicine with Smart Software for retinopathy of prematurity screening: experience from a program in the USA and prospects for use. Russian pediatric ophthalmology. 2014;9(2):5–8. (In Russ).

[10]

Трезе М.Т., Денисова Е.В., Катаргина Л.А. Телемедицина с применением современного программного обеспечения для диагностики ретинопатии недоношенных: перспективы применения // Российская педиатрическая офтальмология. 2014. Т. 9, № 2. С. 5-8.

[11]

Biten H, Redd TK, Moleta C, et al. Diagnostic Accuracy of Ophthalmoscopy vs Telemedicine in Examinations for Retinopathy of Prematurity. JAMA Ophthalmol. 2018;136(5):498-504. doi: 10.1001/jamaophthalmol.2018.0649

[12]

Biten H., Redd T.K., Moleta C., et al. Diagnostic Accuracy of Ophthalmoscopy vs Telemedicine in Examinations for Retinopathy of Prematurity // JAMA Ophthalmol. 2018. Vol. 136, N 5. P. 498-504. doi: 10.1001/jamaophthalmol.2018.0649

[13]

Begley BA, Martin J, Tufty GT, Suh DW. Evaluation of a Remote Telemedicine Screening System for Severe Retinopathy of Prematurity. J Pediatr Ophthalmol Strabismus. 2019;56(3):157-161. doi: 10.3928/01913913-20190215-01

[14]

Begley B.A., Martin J., Tufty G.T., Suh D.W. Evaluation of a Remote Telemedicine Screening System for Severe Retinopathy of Prematurity // J Pediatr Ophthalmol Strabismus. 2019. Vol. 56, N 3. P. 157-161. doi: 10.3928/01913913-20190215-01

[15]

Lofqvist C, Hansen-Pupp I, Andersson E, et al. Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I. Arch Ophthalmol. 2009;127(5):622-627. doi: 10.1001/archophthalmol.2009.69

[16]

Lofqvist C., Hansen-Pupp I., Andersson E., et al. Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I // Arch Ophthalmol. 2009. Vol. 127, N 5. P. 622-627. doi: 10.1001/archophthalmol.2009.69

[17]

Cao JH, Wagner BD, Cerda A, et al. Colorado retinopathy of prematurity model: a multi-institutional validation study. J AAPOS. 2016;20(3):220-225. doi: 10.1016/j.jaapos.2016.01.017

[18]

Cao J.H., Wagner B.D., Cerda A., et al. Colorado retinopathy of prematurity model: a multi-institutional validation study // J AAPOS. 2016. Vol. 20, N 3. P. 220-225. doi: 10.1016/j.jaapos.2016.01.017

[19]

Biniwale M, Weiner A, Sardesai S, et al. Early postnatal weight gain as a predictor for the development of retinopathy of prematurity. J Matern Fetal Neonatal Med. 2019;32(3):429-433. doi: 10.1080/14767058.2017.1381902

[20]

Biniwale M., Weiner A., Sardesai S., et al. Early postnatal weight gain as a predictor for the development of retinopathy of prematurity // J Matern Fetal Neonatal Med. 2019. Vol. 32, N 3. P. 429-433. doi: 10.1080/14767058.2017.1381902

[21]

Pivodic A, Hard AL, Lofqvist C, et al. Individual Risk Prediction for Sight-Threatening Retinopathy of Prematurity Using Birth Characteristics. JAMA Ophthalmol. 2020;138(1):21-29. doi: 10.1001/jamaophthalmol.2019.4502

[22]

Pivodic A., Hard A.L., Lofqvist C., et al. Individual Risk Prediction for Sight-Threatening Retinopathy of Prematurity Using Birth Characteristics // JAMA Ophthalmol. 2020. Vol. 138, N 1. P. 21-29. doi: 10.1001/jamaophthalmol.2019.4502

[23]

Katargina LA, Slepova OS, Demchenko EN, Osipova NA. The role of the systemic disbalance of serum cytokine levels in pathogenesis of retinopathy of prematurity. Russian pediatric ophthalmology. 2015;(4):16–20. (In Russ).

[24]

Катаргина Л.А., Слепова О.С., Демченко Е.Н., Осипова Н.А. Роль системного дисбаланса цитокинов в патогенезе ретинопатии недоношенных // Российская педиатрическая офтальмология. 2015. Т. 10, № 4. С. 16-19.

[25]

Panova AY. Faktory patologicheskogo angiogeneza v patogeneze retinopatii nedonoshennykh. Kliniko-eksperimental’noe issledovanie [dissertation]. Mosсow; 2021. (In Russ).

[26]

Панова А.Ю. Факторы патологического ангиогенеза в патогенезе ретинопатии недоношенных. Клинико-экспериментальное исследование: дис. … канд. мед. наук. М.: 2021.

[27]

Katargina LA, Osipova NA, Panova AY, et al. The role of catecholamines in the development of pathological retina neovascularization in an experimental model of retinopathy of prematurity in rats. Doklady Akademii nauk. 2019;489(3):313-317. (In Russ). doi: 10.31857/s0869-56524893313-317

[28]

Катаргина Л.А., Осипова Н.А., Панова А.Ю., и др. Роль катехоламинов в развитии патологической неоваскуляризации сетчатки на экспериментальной модели ретинопатии недоношенных у крыс // Доклады Академии наук. 2019. Т. 489, № 3. С. 313-317. doi: 10.31857/S0869-56524893313-317

[29]

Katargina LA, Osipova NA, Panova AJ, et al. Studying the pathogenic role of catecholamines in the development of retinopathy of prematurity on an experimental model of the disease. Russian Ophthalmological Journal. (In Russ). 2019;12(4):64-69. doi: 10.21516/2072-0076-2019-12-4-64-69

[30]

Катаргина Л.А., Осипова Н.А., Панова А.Ю., и др. Изучение патогенетического значения катехоламинов в развитии ретинопатии недоношенных на экспериментальной модели заболевания // Российский офтальмологический журнал. 2019. Т. 12, № 4. С. 64-69. doi: 10.21516/2072-0076-2019-12-4-64-69

[31]

Katargina LA, Khoroshilova-Maslova IP, Bondarenko NS, et al. Angiogenic properties of catecholamines from the viewpoint of the pathogenesis of retinopathy of prematurity. Russian Ophthalmological Journal. (In Russ). 2018;11(4):49-54. doi: 10.21516/2072-0076-2018-11-4-49-54

[32]

Катаргина Л.А., Хорошилова-Маслова И.П., Бондаренко Н.С., и др. Ангиогенные свойства катехоламинов в аспекте патогенеза ретинопатии недоношенных // Российский офтальмологический журнал. 2018. Т. 11, № 4. С. 49-54. doi: 10.21516/2072-0076-2018-11-4-49-54

[33]

Katargina LA, Denisova EV, Osipova NA, Panova AY. The Role of Monoamines in Regulation of Angiogenesis and Prospects of Their Application in Retinopathy of Prematurity. Russian Pediatric Ophthalmology. 2018;13(2):76-80. (In Russ). doi: 10.18821/1993-1859-2018-13-2-76-80

[34]

Катаргина Л.А., Денисова Е.В., Осипова Н.А., Панова А.Ю. Роль моноаминов в регуляции ангиогенеза и перспективы их применения при ретинопатии недоношенных // Российская педиатрическая офтальмология. 2018. Т. 13, № 2. С. 76-80. doi: 10.18821/1993-1859-2018-13-2-76-80

[35]

Katargina LA, Chesnokova NB, Beznos OV, et al. Angiotensin-II as a Trigger Factor in the Development of Retinopathy of Prematurity. Ophthalmology in Russia. 2020;17(4):746-751. (In Russ). doi: 10.18008/1816-5095-2020-4-746-751

[36]

Катаргина Л.А., Чеснокова Н.Б., Безнос О.В., и др. Ангиотензин-II как пусковой фактор развития ретинопатии недоношенных // Офтальмология. 2020. Т. 17, № 4. С. 746–751. doi: 10.18008/1816-5095-2020-4-746-751

[37]

Katargina LA, Khoroshilova-Maslova IP, Majbogin AM, et al. Pathomorphological features of the development of experimental retinopathy of prematurity. Mezhdunarodnyi zhurnal prikladnykh i fundamental’’nykh issledovanii. 2017;(3-2):190-194. (In Russ).

[38]

Катаргина Л.А., Хорошилова-Маслова И.П., Майбогин А.М., и др. Патоморфологические особенности развития экспериментальной ретинопатии недоношенных // Международный журнал прикладных и фундаментальных исследований. 2017. № 3-2. С. 190-194.

[39]

Zheng Y, Sun Q, Xu X, Wang W. Novel peptide derived from IGF-2 displays anti-angiogenic activity in vitro and inhibits retinal angiogenesis in a model of oxygen-induced retinopathy. Clin Exp Ophthalmol. 2020;48(9):1261-1275. doi: 10.1111/ceo.13864

[40]

Zheng Y., Sun Q., Xu X., Wang W. Novel peptide derived from IGF-2 displays anti-angiogenic activity in vitro and inhibits retinal angiogenesis in a model of oxygen-induced retinopathy // Clin Exp Ophthalmol. 2020. Vol. 48, N 9. P. 1261-1275. doi: 10.1111/ceo.13864

[41]

Eastlake K, Banerjee PJ, Angbohang A, et al. Muller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy. Glia. 2016;64(4):495-506. doi: 10.1002/glia.22942

[42]

Eastlake K., Banerjee P.J., Angbohang A., et al. Muller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy // Glia. 2016. Vol. 64, N 4. P. 495-506. doi: 10.1002/glia.22942

[43]

Yu H, Yuan L, Zou Y, et al. Serum concentrations of cytokines in infants with retinopathy of prematurity. APMIS. 2014;122(9):818-823. doi: 10.1111/apm.12223

[44]

Yu H., Yuan L., Zou Y., et al. Serum concentrations of cytokines in infants with retinopathy of prematurity // APMIS. 2014. Vol. 122, N 9. P. 818-823. doi: 10.1111/apm.12223

[45]

Natarajan G, Shankaran S, McDonald SA, et al. Circulating beta chemokine and MMP 9 as markers of oxidative injury in extremely low birth weight infants. Pediatr Res. 2010;67(1):77-82. doi: 10.1203/PDR.0b013e3181c0b16c

[46]

Natarajan G., Shankaran S., McDonald S.A., et al. Circulating beta chemokine and MMP 9 as markers of oxidative injury in extremely low birth weight infants // Pediatr Res. 2010. Vol. 67, N 1. P. 77-82. doi: 10.1203/PDR.0b013e3181c0b16c

[47]

Yoshida S, Yoshida A, Ishibashi T, et al. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol. 2003;73(1):137-144. doi: 10.1189/jlb.0302117

[48]

Yoshida S., Yoshida A., Ishibashi T., et al. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization // J Leukoc Biol. 2003. Vol. 73, N 1. P. 137-144. doi: 10.1189/jlb.0302117

[49]

Yoshida S, Yoshida A, Ishibashi T. Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol. 2004;242(5):409-413. doi: 10.1007/s00417-004-0874-2

[50]

Yoshida S., Yoshida A., Ishibashi T. Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation // Graefes Arch Clin Exp Ophthalmol. 2004. Vol. 242, N 5. P. 409-413. doi: 10.1007/s00417-004-0874-2

[51]

Hong KH, Ryu J, Han KH. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 2005;105(4):1405-1407. doi: 10.1182/blood-2004-08-3178

[52]

Hong K.H., Ryu J., Han K.H. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A // Blood. 2005. Vol. 105, N 4. P. 1405-1407. doi: 10.1182/blood-2004-08-3178

[53]

Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276-1312. doi: 10.1101/gad.1653708

[54]

Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine // Genes Dev. 2008. Vol. 22, N 10. P. 1276-1312. doi: 10.1101/gad.1653708

[55]

Seo MS, Okamoto N, Vinores MA, et al. Photoreceptor-Specific Expression of Platelet-Derived Growth Factor-B Results in Traction Retinal Detachment. The American Journal of Pathology. 2000;157(3):995-1005. doi: 10.1016/s0002-9440(10)64612-3

[56]

Seo M.S., Okamoto N., Vinores M.A., et al. Photoreceptor-Specific Expression of Platelet-Derived Growth Factor-B Results in Traction Retinal Detachment // The American Journal of Pathology. 2000. Vol. 157, N 3. P. 995-1005. doi: 10.1016/s0002-9440(10)64612-3

[57]

Zehetner C, Kirchmair R, Neururer SB, et al. Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 2014;55(1):337-344. doi: 10.1167/iovs.13-12978

[58]

Zehetner C., Kirchmair R., Neururer S.B., et al. Systemic upregulation of PDGF-B in patients with neovascular AMD // Invest Ophthalmol Vis Sci. 2014. Vol. 55, N 1. P. 337-344. doi: 10.1167/iovs.13-12978

[59]

Jo N, Mailhos C, Ju M, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006;168(6):2036-2053. doi: 10.2353/ajpath.2006.050588

[60]

Jo N., Mailhos C., Ju M., et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization // Am J Pathol. 2006. Vol. 168, N 6. P. 2036-2053. doi: 10.2353/ajpath.2006.050588

[61]

Lin B, Song X, Yang D, et al. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRbeta and FGFR1. Gene. 2018;654:77-86. doi: 10.1016/j.gene.2018.02.026

[62]

Lin B., Song X., Yang D., et al. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRbeta and FGFR1 // Gene. 2018. Vol. 654, N. P. 77-86. doi: 10.1016/j.gene.2018.02.026

[63]

Tsioumpekou M, Cunha SI, Ma H, et al. Specific targeting of PDGFRbeta in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression. Theranostics. 2020;10(3):1122-1135. doi: 10.7150/thno.37851

[64]

Tsioumpekou M., Cunha S.I., Ma H., et al. Specific targeting of PDGFRbeta in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression // Theranostics. 2020. Vol. 10, N 3. P. 1122-1135. doi: 10.7150/thno.37851

[65]

Li H, Zhu R, Zhao R, et al. Role of TGF-Beta1/SMAD2/3 Pathway in Retinal Outer Deep Vascular Plexus and Photoreceptor Damage in Rat 50/10 Oxygen-Induced Retinopathy. Biomed Res Int. 2019;2019:4072319. doi: 10.1155/2019/4072319

[66]

Li H., Zhu R., Zhao R., et al. Role of TGF-Beta1/SMAD2/3 Pathway in Retinal Outer Deep Vascular Plexus and Photoreceptor Damage in Rat 50/10 Oxygen-Induced Retinopathy // Biomed Res Int. 2019. Vol. 2019. P. 4072319. doi: 10.1155/2019/4072319

[67]

Nagineni CN, Samuel W, Nagineni S, et al. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogen-activated protein kinases. J Cell Physiol. 2003;197(3):453-462. doi: 10.1002/jcp.10378

[68]

Nagineni C.N., Samuel W., Nagineni S., et al. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogen-activated protein kinases // J Cell Physiol. 2003. Vol. 197, N 3. P. 453-462. doi: 10.1002/jcp.10378

[69]

Sood BG, Madan A, Saha S, et al. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res. 2010;67(4):394-400. doi: 10.1203/PDR.0b013e3181d01a36

[70]

Sood B.G., Madan A., Saha S., et al. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity // Pediatr Res. 2010. Vol. 67, N 4. P. 394-400. doi: 10.1203/PDR.0b013e3181d01a36

[71]

Saika S. TGFbeta pathobiology in the eye. Lab Invest. 2006;86(2):106-115. doi: 10.1038/labinvest.3700375

[72]

Saika S. TGFbeta pathobiology in the eye // Lab Invest. 2006. Vol. 86, N 2. P. 106-115. doi: 10.1038/labinvest.3700375

[73]

Cerezo AB, Labrador M, Gutierrez A, et al. Anti-VEGF Signalling Mechanism in HUVECs by Melatonin, Serotonin, Hydroxytyrosol and Other Bioactive Compounds. Nutrients. 2019;11(10). doi: 10.3390/nu11102421

[74]

Cerezo A.B., Labrador M., Gutierrez A., et al. Anti-VEGF Signalling Mechanism in HUVECs by Melatonin, Serotonin, Hydroxytyrosol and Other Bioactive Compounds // Nutrients. 2019. Vol. 11, N 10. P. doi: 10.3390/nu11102421

[75]

Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res. 2018;64(4):e12473. doi: 10.1111/jpi.12473

[76]

Xu Y., Lu X., Hu Y., et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice // J Pineal Res. 2018. Vol. 64, N 4. P. e12473. doi: 10.1111/jpi.12473

[77]

Sarlos S, Rizkalla B, Moravski CJ, et al. Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin. Am J Pathol. 2003;163(3):879-887. doi: 10.1016/s0002-9440(10)63448-7

[78]

Sarlos S., Rizkalla B., Moravski C.J., et al. Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin // The American Journal of Pathology. 2003. Vol. 163, N 3. P. 879-887. doi: 10.1016/s0002-9440(10)63448-7

[79]

Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest. 2002;82(6):747-756. doi: 10.1097/01.lab.0000017372.76297.eb

[80]

Tamarat R., Silvestre J.S., Durie M., Levy B.I. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways // Lab Invest. 2002. Vol. 82, N 6. P. 747-756. doi: 10.1097/01.lab.0000017372.76297.eb

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/