Glioma of the anterior visual pathway in children. Part II. Current treatment trends
Oksana O. Alyaeva , Nataliya K. Serova
Russian Pediatric Ophthalmology ›› 2024, Vol. 19 ›› Issue (2) : 107 -116.
Glioma of the anterior visual pathway in children. Part II. Current treatment trends
The literature review presents modern treatment aspects for anterior optic pathway gliomas (OPGs), which are low-grade brain tumors accounting for 20%–30% of childhood gliomas, can occur anywhere along the visual pathways and in the development of the surrounding structure, and are predominantly benign. The predominant histological type of tumor in this localization is piloid astrocytoma (PA), less commonly pilomyxoid astrocytoma (PMA). However, the course of anterior OPGs is unpredictable and varies from spontaneous regression to progression with severe visual, neurological, and endocrine disorders, affecting treatment and disease prognosis. Although there have been advances in clinical studies based on histological and molecular genetic analyses, no fundamental changes in survival rates and recurrence-free periods and improvements in functional outcomes have been achieved. Furthermore, no studies have comprehensively analyzed the functional results depending on the management tactics of pediatric patients with anterior visual pathway gliomas. Anterior optic pathway glioma treatment is challenging and complex problem, which depends on the patient’s age, clinical picture, localization, surgical resectability, and histological and molecular genetic study results. It includes surgical treatment, chemotherapy, radiation therapy, the use of targeted therapy drugs, and additional advanced techniques that are still under development and research. Optimal treatment of anterior optic pathway gliomas in children remains a topic of discussion in the current literature.
anterior optic pathway glioma / treatment / low-grade glioma / piloid astrocytoma / neurofibromatosis type 1
| [1] |
Udaka YT, Packer RJ. Pediatric Brain Tumors. Neurol Clin. 2018;36(3):533–556. doi: 10.1016/j.ncl.2018.04.009 |
| [2] |
Udaka Y.T., Packer R.J. Pediatric Brain Tumors // Neurol Clin. 2018. Vol. 36, N. 3. P. 533–556. doi: 10.1016/j.ncl.2018.04.009 |
| [3] |
Binning MJ, Liu JK, Kestle JR, et al. Optic pathway gliomas: a review. Neurosurg Focus. 2007;23(5):E2. doi: 10.3171/FOC-07/11/E2 |
| [4] |
Binning M.J., Liu J.K., Kestle J.R., et al. Optic pathway gliomas: a review // Neurosurg Focus. 2007. Vol. 23, N. 5. P. E2. doi: 10.3171/FOC-07/11/E2 |
| [5] |
Prada CE, Hufnagel RB, Hummel TR, et al. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr. 2015;167(4):851–856.e1. doi: 10.1016/j.jpeds.2015.07.001 |
| [6] |
Prada C.E., Hufnagel R.B., Hummel T.R., et al. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1 // J Pediatr. 2015. Vol. 167, N. 4. P. 851–856.e1. doi: 10.1016/j.jpeds.2015.07.001 |
| [7] |
Valiahmetova JeF, Mazerkina NA, Medvedeva OA, et al. Optic pathway gliomas associated with neurofibromatosis type 1 in children. Pediatric Hematology/Oncology and Immunopathology. 2019;18(4):29–38. EDN: GWKMWA doi: 10.24287/1726-1708-2019-18-4-29-38 |
| [8] |
Валиахметова Э.Ф., Мазеркина Н.А., Медведева О.А., и др. Глиомы зрительного пути на фоне нейрофиброматоза 1 типа у детей // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019. Т. 18, № 4. С. 29–38. EDN: GWKMWA doi: 10.24287/1726-1708-2019-18-4-29-38 |
| [9] |
Trevisson E, Cassina M, Opocher E, et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1. J Neurooncol. 2017;134(2):279–287. doi: 10.1007/s11060-017-2517-6 |
| [10] |
Trevisson E., Cassina M., Opocher E., et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1 // J Neurooncol. 2017. Vol. 134, N. 2. P. 279–287. doi: 10.1007/s11060-017-2517-6 |
| [11] |
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1 |
| [12] |
Louis D.N., Perry A., Reifenberger G., et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary // Acta Neuropathol. 2016. Vol. 131, N. 6. P. 803–820. doi: 10.1007/s00401-016-1545-1 |
| [13] |
Komotar RJ, Burger PC, Carson BS, et al. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery. 2004;54:72–80. doi: 10.1227/01.neu.0000097266.89676.25 |
| [14] |
Komotar R.J., Burger P.C., Carson B.S., et al. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas // Neurosurgery. 2004. Vol. 54. P. 72–80. doi: 10.1227/01.neu.0000097266.89676.25 |
| [15] |
Trunin YuYu, Golanov AV, Konovalov AN, et al. Stereotactic irradiation in the complex treatment of patients with intracranial pilocytic astrocytoma. Burdenko’s Journal of Neurosurgery. 2021; 85(2):34–46. EDN: JXJCKL doi: 10.17116/neiro20218502134 |
| [16] |
Трунин Ю.Ю., Голанов А.В., Коновалов А.Н., и др. Стереотаксическое облучение в комплексном лечении пациентов с интракраниальными пилоидными астроцитомами // Вопросы нейрохирургии имени Н.Н. Бурденко. 2021. Т. 85, № 2. С. 34–46. EDN: JXJCKL doi: 10.17116/neiro20218502134 |
| [17] |
Hutt-Cabezas M, Karajannis MA, Zagzag D, et al. Activation of mtorc1/mtorc2 signaling in pediatric low-Grade glioma and pilocytic astrocytoma reveals mtor as a therapeutic target. Neuro Oncol. 2013;15(12):1604–1614. doi: 10.1093/neuonc/not132 |
| [18] |
Hutt-Cabezas M., Karajannis M.A., Zagzag D., et al. Activation of mtorc1/mtorc2 signaling in pediatric low-Grade glioma and pilocytic astrocytoma reveals mtor as a therapeutic target // Neuro Oncol. 2013. Vol. 15, N. 12. P. 1604–1614. doi: 10.1093/neuonc/not132 |
| [19] |
Parsa CF, Hoyt CS, Lesser RL, et al. Spontaneous Regression of Optic Gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmology. 2001;4(119):516–29. doi: 10.1001/archopht.119.4.516 |
| [20] |
Parsa C.F., Hoyt C.S., Lesser R.L., et al. Spontaneous Regression of Optic Gliomas: thirteen cases documented by serial neuroimaging // Arch Ophthalmology. 2001. Vol. 4, N. 19. P. 516–529. doi: 10.1001/archopht.119.4.516 |
| [21] |
Piccirilli M, Lenzi J, Delfinis C, et al. Spontaneous regression of optic pathways gliomas in three patients with neurofibromatosis type I and critical review of the literature. Child’s Nerv. Syst. 2006;22:1332–1337. doi: 10.1007/s00381-006-0061-3 |
| [22] |
Piccirilli M., Lenzi J., Delfinis C., et al. Spontaneous regression of optic pathways gliomas in three patients with neurofibromatosis type I and critical review of the literature // Child’s Nerv. Syst. 2006. Vol. 22. P. 1332–1337. doi: 10.1007/s00381-006-0061-3 |
| [23] |
Farazdaghi MK, Katowitz WR, Avery RA. Current treatment of optic nerve gliomas. Curr Opin Ophthalmol. 2019;30:356–63. doi: 10.1097/ICU.0000000000000587 |
| [24] |
Farazdaghi M.K., Katowitz W.R., Avery R.A. Current treatment of optic nerve gliomas // Curr Opin Ophthalmol. 2019. Vol. 30. P. 356–363. doi: 10.1097/ICU.0000000000000587 |
| [25] |
Ulitin AYu, Zheludkova OG, Ivanov PI, et al. Practical recommendations for drug treatment of primary tumors of the central nervous system. Malignant tumors. 2022;12(3s2-1):113–140. EDN: NYGIAV doi:10.18027/2224-5057-2022-12-3s2-113-140. |
| [26] |
Улитин А.Ю., Желудкова О.Г., Иванов П.И., и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы // Злокачественные опухоли. 2022. Т. 12, № 3s2-1. С. 113–140. EDN: NYGIAV doi: 10.18027/2224-5057-2022-12-3s2-113-140 |
| [27] |
Kobyakov GL, Absalyamova OV, Bekyashev AH, et al. Practical recommendations for drug treatment of primary tumors of the central nervous system. Malignant tumors. 2020;10(3s2-1):109–133. doi: 10.18027/2224-5057-2020-10-3s2-07 |
| [28] |
Кобяков Г.Л., Абсалямова О.В., Бекяшев А.Х., и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы // Злокачественные опухоли. 2020. Т. 10, № 3s2-1. C. 109–133. doi: 10.18027/2224-5057-2020-10-3s2-07 |
| [29] |
Gnekow AK, Falkenstein F, von Hornstein S, Zwiener I, Berkefeld S, Bison B, Warmuth-Metz M, Driever PH, Soerensen N, Kortmann RD, Pietsch T, Faldum A. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol. 2012;14(10):1265–1284. doi: 10.1093/neuonc/nos202 |
| [30] |
Gnekow A.K., Falkenstein F., von Hornstein S., et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology // Neuro-Oncology. 2012. Vol. 14, N. 10. P. 1265–1284. doi: 10.1093/neuonc/nos202 |
| [31] |
Gnekow AK, Walker DA, Kandels D, et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma – A final report. European J Cancer. 2017;81:206–225. doi: 10.1016/j.ejca.2017.11.017 |
| [32] |
Gnekow A.K., Walker D.A., Kandels D., et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma – A final report // Eur J Cancer. 2017. Vol. 81. P. 206–225. doi: 10.1016/j.ejca.2017.11.017 |
| [33] |
Valiakhmetova EF, Budanov OI, Gorelyshev SK, et al. Optic pathway gliomas in children: prognostic factors, response assessment, role of carboplatin and vincristine chemotherapy regime. Pediatric Hematology/Oncology and Immunopathology. 2019;18(1):62–72. EDN: YGBTSY doi: 10.24287/1726-1708-2019-18-1-62-72 |
| [34] |
Валиахметова Э.Ф., Быданов О.И., Горелышев С.К., и др. Глиомы зрительного пути у детей: прогностические факторы, оценка ответа и роль двухкомпонентной химиотерапии // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019. Т. 18, № 1. С. 62–72. EDN: YGBTSY doi: 10.24287/1726-1708-2019-18-1-62-72 |
| [35] |
Ater JL, Zhou T, Holmes E, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(21):2641–2647. doi: 10.1200/JCO.2011.36.6054 |
| [36] |
Ater J.L., Zhou T., Holmes E., et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group // J Clin Oncol. 2012. Vol. 30, N. 21. P. 2641–2647. doi: 10.1200/JCO.2011.36.6054 |
| [37] |
Kandels D, Pietsch T, Bison B, et al. Loss of efficacy of subsequent nonsurgical therapy after primary treatment failure in pediatric low-grade glioma patients-Report from the German SIOP-LGG 2004 cohort. Int J Cancer. 2020;147(12):3471–3489. doi: 10.1002/ijc.33170 |
| [38] |
Kandels D., Pietsch T., Bison B., et al. Loss of efficacy of subsequent nonsurgical therapy after primary treatment failure in pediatric low-grade glioma patients-Report from the German SIOP-LGG 2004 cohort // Int J Cancer. 2020. Vol. 147, N. 12. P. 3471–3489. doi: 10.1002/ijc.33170 |
| [39] |
Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. NEJM. 2016;374:1344–55.doi: 10.1056/NEJMoa1500925 |
| [40] |
Buckner J.C., Shaw E.G., Pugh S.L., et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma // NEJM. 2016. Vol. 374. P. 1344–1355. doi: 10.1056/NEJMoa1500925 |
| [41] |
Shah AC, Minturn JE, Li Y, et al. Carboplatin rechallenge after hypersensitivity reactions in pediatric patients with low-grade glioma. Pediatr Blood Cancer. 2016; 63(1):21–26. doi: 10.1002/pbc.25697 |
| [42] |
Shah A.C., Minturn J.E., Li Y., et al. Carboplatin rechallenge after hypersensitivity reactions in pediatric patients with low-grade glioma // Pediatr Blood Cancer. 2016. Vol. 63, N. 1. P. 21–26. doi: 10.1002/pbc.25697 |
| [43] |
Goodden J, Pizer B, Pettorini B, et al. The role of surgery in optic pathway/hypothalamic gliomas in children. Neurosurg Pediatr. 2014;13:1–12. doi: 10.3171/2013.8.PEDS12546 |
| [44] |
Goodden J., Pizer B., Pettorini B., et al. The role of surgery in optic pathway/hypothalamic gliomas in children // Neurosurg Pediatr. 2014. Vol. 13. P. 1–12. doi: 10.3171/2013.8.PEDS12546 |
| [45] |
Liao C, Zhang H, Liu Z, et al. The visual acuity outcome and relevant factors affecting visual improvement in pediatric sporadic chiasmatic-hypothalamic glioma patients who received surgery. Front Neurology. 2020;11:766. doi: 10.3389/fneur.2020.00766 |
| [46] |
Liao C., Zhang H., Liu Z., et al. The visual acuity outcome and relevant factors affecting visual improvement in pediatric sporadic chiasmatic-hypothalamic glioma patients who received surgery // Front Neurology. 2020. Vol. 11. P. 766. doi: 10.3389/fneur.2020.00766 |
| [47] |
Liu ZM, Liao CH, An X, et al. The role of imaging features and resection status in the survival outcome of sporadic optic pathway glioma children receiving different adjuvant treatments. Neurosurg Rev. 2022;45(3):2277–2287. doi: 10.1007/s10143-022-01743-1 |
| [48] |
Liu Z.M., Liao C.H., An X., et al. The role of imaging features and resection status in the survival outcome of sporadic optic pathway glioma children receiving different adjuvant treatments // Neurosurg Rev. 2022. Vol. 45, N. 3. P. 2277–2287. doi: 10.1007/s10143-022-01743-1 |
| [49] |
Konovalov A, Gorelyshev S, Serova N. Surgery of giant gliomas of chiasma and IIIrd ventricle. Acta Neurochir (Wien). 1994;130(1–4):71–79. doi: 10.1007/BF01405505 |
| [50] |
Konovalov A., Gorelyshev S., Serova N. Surgery of giant gliomas of chiasma and IIIrd ventricle // Acta Neurochir (Wien). 1994. Vol. 130, N. 1–4. P.71–79. doi: 10.1007/BF01405505 |
| [51] |
Matuev KB, Gorelyshev SK, Shishkina LV, et al. Biological features and long-term results of comprehensive treatment of brain tumors in infants. Burdenko’s Journal of Neurosurgery. 2014;78(2):46–56. (in Russ.) EDN: SDIAFZ |
| [52] |
Матуев К.Б., Горелышев С.К., Шишкина Л.В., и др. Биологические особенности и отдаленные результаты комплексного лечения опухолей головного мозга у детей грудного возраста // Вопросы нейрохирургии имени Н.Н. Бурденко. 2014. Т. 78, № 2. С. 46–56. EDN: SDIAFZ |
| [53] |
Gorelyshev SK, Medvedeva OA. Surgical approaches to the third ventricle of the brain in children. Russian journal of pediatric surgery, anesthesia and intensive care. 2021;11(1):47–54. EDN: ZCGGSC doi: 10.17816/psaic726. |
| [54] |
Горелышев С.К., Медведева О.А. Хирургические доступы к III желудочку головного мозга у детей // Российский вестник детской хирургии, анестезиологии и реаниматологии. 2021. Т. 11, № 1. С. 47–54. EDN: ZCGGSC doi: 10.17816/psaic726 |
| [55] |
Cross KA, Salehi A, Abdelbaki MS, et al. MRI-guided laser interstitial thermal therapy for deep-seated gliomas in children with neurofibromatosis type 1: Report of two cases. Child’s Nerv Syst. 2023;39(3):787–791. doi: 10.1007/s00381-022-05660-y |
| [56] |
Cross K.A., Salehi A., Abdelbaki M.S., et al. MRI-guided laser interstitial thermal therapy for deep-seated gliomas in children with neurofibromatosis type 1: Report of two cases // Child’s Nerv Syst. 2023. Vol. 39, N. 3. P. 787–791. doi: 10.1007/s00381-022-05660-y |
| [57] |
Cherlow JM, Shaw DWW., Margraf LR, et.al. Conformal radiation therapy for pediatric patients with low-grade glioma: Results from the Children’s Oncology Group Phase 2 Study ACNS0221. Int J Radiat Oncol Biol Phys. 2019;103:861–868. doi: 10.1016/j.ijrobp.2018.11.004 |
| [58] |
Cherlow J.M., Shaw D.W.W., Margraf L.R., et.al. Conformal radiation therapy for pediatric patients with low-grade glioma: Results from the Children’s Oncology Group Phase 2 Study ACNS0221 // Int J Radiat Oncol Biol Phys. 2019. Vol. 103. P. 861–868. doi: 10.1016/j.ijrobp.2018.11.004 |
| [59] |
Tsang DS, Murphy ES, Merchant TE. Radiation therapy for optic pathway and hypothalamic low-grade gliomas in children. Int J Radiat Oncol Biol Phys. 2017;99:642–651. doi: 10.1016/j.ijrobp.2017.07.023 |
| [60] |
Tsang D.S., Murphy E.S., Merchant T.E. Radiation therapy for optic pathway and hypothalamic low-grade gliomas in children // Int J Radiat Oncol Biol Phys. 2017. Vol. 99. P. 642–651. doi: 10.1016/j.ijrobp.2017.07.023 |
| [61] |
Gan HW, Phipps K, Aquilina K, et al. Neuroendocrine morbidity after pediatric optic gliomas: A longitudinal analysis of 166 children over 30 years. Clin Endocrinol and Metab. 2015;100(10):3787–3799. doi: 10.1210/jc.2015-2028 |
| [62] |
Gan H.W., Phipps K., Aquilina K., et al. Neuroendocrine morbidity after pediatric optic gliomas: A longitudinal analysis of 166 children over 30 years // Clin Endocrinol and Metab. 2015. Vol. 100, N. 10. P. 3787–3799. doi: 10.1210/jc.2015-2028 |
| [63] |
Merchant TE, Conklin HM, Wu S, et al. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: Prospective evaluation of cognitive, endocrine, and hearing deficits. J Clin Oncol. 2009;27(22):3691–3697. doi: 10.1200/JCO.2008.21.2738 |
| [64] |
Merchant T.E., Conklin H.M., Wu S., et al. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: Prospective evaluation of cognitive, endocrine, and hearing deficits // J Clin Oncol. 2009. Vol. 27, N. 22. P. 3691–3697. doi: 10.1200/JCO.2008.21.2738 |
| [65] |
Indelicato DJ, Rotondo RL, Uezono H, et al. Outcomes following proton therapy for pediatric low-grade glioma. Int J Radiat Oncol Biol Phys. 2019;104(1):149–56. doi: 10.1016/j.ijrobp.2019.01.078 |
| [66] |
Indelicato D.J., Rotondo R.L., Uezono H., et al. Outcomes following proton therapy for pediatric low-grade glioma // Int J Radiat Oncol Biol Phys. 2019. Vol. 104, N. 1. P. 149–156. doi: 10.1016/j.ijrobp.2019.01.078 |
| [67] |
Merchant TE, Hua CH, Shukla H, et al. Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51:110–117. doi: 10.1002/pbc.21530 |
| [68] |
Merchant T.E., Hua C.H., Shukla H., et al. Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive function // Pediatr Blood Cancer. 2008. Vol. 51. P. 110–117. doi: 10.1002/pbc.21530 |
| [69] |
Eaton BR, Yock T. The use of proton therapy in the treatment of benign or low-grade pediatric brain tumors. Cancer J. 2014;20(6):403–408. doi: 10.1097/ppo.0000000000000079 |
| [70] |
Eaton B.R., Yock T. The use of proton therapy in the treatment of benign or low-grade pediatric brain tumors // Cancer J. 2014. Vol. 20, N. 6. P. 403–408. doi: 10.1097/ppo.0000000000000079 |
| [71] |
Hall MD, Bradley JA, Rotondo RL, et al. Risk of radiation vasculopathy and stroke in pediatric patients treated with proton therapy for brain and skull base tumors. Int J Radiat Oncol Biol Phys. 2018;101(4):854–859. doi: 10.1016/j.ijrobp.2018.03.027 |
| [72] |
Hall M.D., Bradley J.A., Rotondo R.L, et al. Risk of radiation vasculopathy and stroke in pediatric patients treated with proton therapy for brain and skull base tumors // Int J Radiat Oncol Biol Phys. 2018. Vol. 101, N. 4. P. 854–859. doi: 10.1016/j.ijrobp.2018.03.027 |
| [73] |
Greenberger BA, Pulsifer MB, Ebb DH, et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys.2014;89(5):1060–1068.doi: 10.1016/j.ijrobp.2014.04.053 |
| [74] |
Greenberger B.A., Pulsifer M.B., Ebb D.H., et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas // Int J Radiat Oncol Biol Phys. 2014. Vol. 89, N. 5. P. 1060–1068. doi: 10.1016/j.ijrobp.2014.04.053 |
| [75] |
Simonova G, Kozubikova P, Liscak R, Novotny JJr. Leksell Gamma Knife treatment for pilocytic astrocytomas: long-term results. J Neurosurg Pediatr. 2016;18(1):58–64. doi: 10.3171/2015.10.PEDS14443 |
| [76] |
Simonova G., Kozubikova P., Liscak R., Novotny J. Jr. Leksell Gamma Knife treatment for pilocytic astrocytomas: long-term results // J Neurosurg Pediatr. 2016. Vol. 18, N. 1. P. 58–64. doi: 10.3171/2015.10.PEDS14443 |
| [77] |
El-Shehaby AM, Reda WA, Abdel Karim KM, et al. Single-session gamma knife radiosurgery for optic pathway/hypothalamic gliomas. J Neurosurg. 2016;125:50–57. doi: 10.3171/2016.8.GKS161432 |
| [78] |
El-Shehaby A.M., Reda W.A., Abdel Karim K.M., et al. Single-session gamma knife radiosurgery for optic pathway/ hypothalamic gliomas // J Neurosurg. 2016. Vol. 125. P. 50–57. doi: 10.3171/2016.8.GKS161432 |
| [79] |
Fangusaro JR, Onar-Thomas A, Poussaint TY, et al. LTBK-01. Updates On The Phase Ii And Re-treatment Study Of AZD6244 (Selumetinib) For Children With Recurrent Or Refractory Pediatric Low Grade Glioma: A Pediatric Brain Tumor Consortium (PBTC) Study. Neuro Oncol. 2022;24(8):1404. doi: 10.1093/neuonc/noac029. Erratum for: doi: 10.1093/neuonc/noy109 |
| [80] |
Fangusaro J.R., Onar-Thomas A., Poussaint T.Y., et al. Ltbk-01.updates on the phase Ii and re-treatment study of Azd6244(Selumetinib)for children with recurrent or refractory pediatric low grade glioma: a pediatric brain tumor consortium(Pbtc)study // Neuro Oncol. 2022. Vol. 24, N. 8. P. 1404. doi:10.1093/neuonc/noac029. Erratum for: doi: 10.1093/neuonc/noy109 |
| [81] |
Fangusaro J, Onar-Thomas A, Young Poussaint T, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011–1022. doi: 10.1016/S1470-2045(19)30277-3 |
| [82] |
Fangusaro J., Onar-Thomas A., Young Poussaint T., et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial // Lancet Oncol. 2019. Vol. 20, N. 7. P. 1011–1022. doi: 10.1016/S1470-2045(19)30277-3 |
| [83] |
Fangusaro J, Onar-Thomas A, Poussaint TY, et al. A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro Oncol. 2021;23(10):1777–1788. doi: 10.1093/neuonc/noab047 |
| [84] |
Fangusaro J., Onar-Thomas A., Poussaint T.Y., et al. A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study // Neuro Oncol. 2021. Vol. 23, N. 10. P. 1777–1788. doi: 10.1093/neuonc/noab047 |
| [85] |
Selt F, van Tilburg CM, Bison B, et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neurooncol.2020;149(3):499–510. doi: 10.1007/s11060-020-03640-3 |
| [86] |
Selt F., van Tilburg C.M., Bison B., et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients // J Neurooncol. 2020. Vol. 149, N. 3. P. 499–510. doi: 10.1007/s11060-020-03640-3 |
| [87] |
Barbato MI, Nashed J, Bradford D, et al. FDA Approval Summary:Dabrafenib in combination with trametinib for BRAF V600E mutation-positive low-grade glioma. Clin Cancer Res. 2023:30(2):263–268. doi: 10.1158/1078-0432.CCR-23-1503 |
| [88] |
Barbato M.I., Nashed J., Bradford D., et al. FDA Approval Summary:Dabrafenib in combination with trametinib for BRAF V600E mutation-positive low-grade glioma // Clin Cancer Res. 2024. Vol. 30, N. 2. P. 263–268. doi: 10.1158/1078-0432.CCR-23-1503 |
| [89] |
de Marcellus C, Tauziède-Espariat A, Cuinet A, et al. The role of irinotecan-bevacizumab as rescue regimen in children with low-grade gliomas: a retrospective nationwide study in 72 patients. J Neurooncol. 2022;157(2):355–364. doi: 10.1007/s11060-022-03970-4 |
| [90] |
de Marcellus C., Tauziède-Espariat A., Cuinet A., et al. The role of irinotecan-bevacizumab as rescue regimen in children with low-grade gliomas: a retrospective nationwide study in 72 patients // J Neurooncol. 2022. Vol. 157, N. 2. P. 355–364. doi: 10.1007/s11060-022-03970-4 |
| [91] |
Green K, Panagopoulou P, D’Arco F, et al. A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: Safety, efficacy, visual morbidity, and outcomes. Neuro Oncol. 2023;25(4):774–785. doi: 10.1093/neuonc/noac223 |
| [92] |
Green K., Panagopoulou P., D’Arco F., et al. A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: Safety, efficacy, visual morbidity, and outcomes // Neuro Oncol. 2023. Vol. 25, N. 4. P. 774–785. doi: 10.1093/neuonc/noac223 |
Eco-Vector
/
| 〈 |
|
〉 |