Value of optical coherence tomography angiography for the assessment of visual functions in children with retinopathy of prematurity

Lyudmila A. Katargina , Lyudmila V. Kogoleva , Natalya A. Osipova , Nina Sh. Kokoeva

Russian Pediatric Ophthalmology ›› 2023, Vol. 18 ›› Issue (1) : 13 -20.

PDF
Russian Pediatric Ophthalmology ›› 2023, Vol. 18 ›› Issue (1) : 13 -20. DOI: 10.17816/rpoj112251
Original study article
research-article

Value of optical coherence tomography angiography for the assessment of visual functions in children with retinopathy of prematurity

Author information +
History +
PDF

Abstract

AIM: To compare and assess morphometric, structural, and microvascular parameters of the macular zone in children with cicatricial ROP grades I–III with different visual acuity from those in healthy peers.

MATERIAL AND METHODS: Eighteen children (36 eyes) aged 8–18 years with cicatricial ROP grades I–III were examined. Ten peers (20 eyes) made up the control group. All children, in addition to the standard ophthalmological examination, underwent optical coherence tomography and optical coherence tomography with angiography (OCTA). The diagnosis was carried out on a tomograph RS-3000 Advance 2 (Nidek (Japan)). In the resulting 3×3 mm scans with a center in the fovea, the vascular and perfusion density of the superficial retinal capillary plexus (SCP), deep retinal capillary plexus (DSP), and the foveolar avascular zone, were measured, the thickness of the retina in the fovea was evaluated, and the structure of the neuroepithelium in the macula was assessed.

RESULTS: In children born before 27 weeks, the central retinal thickness was higher than that in more “mature” children (231.8±18.2 and 208.2±15.2 mµ, respectively), and the relationship of this parameter with visual acuity was not explored. The vascular density of SCP in children with ROP and best-corrected visual acuity (BCVA) up to 0.4 and more than 0.4 were 1.46 mm-1 and 1.35 mm-1, respectively; and in the control group, it was 1.89 mm-1.

The perfusion densities of the SCP in these groups were 9.2%, 10.03%, and 13.3%, respectively. The vascular densities of the Deep capillary plexus (DCP) in children with ROP with BCVA up to 0.4 and more than 0.4 were 2.8 mm-1 and 3.0 mm-1, respectively; in the control group, it was 3.2 mm-1, and the perfusion density of the deep capillary plexus (DCP) in indicated groups were 25.7%, 30.9%, and 31.7%, respectively.

CONCLUSION: The analysis of the architectonics of the retinal vascular bed in children with ROP using OCTA makes it possible to assess the relationship between microcirculation disorders in the central zone of the retina and visual acuity, which is of great scientific and practical importance.

Keywords

optical coherence tomography / optical coherence tomography with angiography / retinopathy of prematurity / visual acuity

Cite this article

Download citation ▾
Lyudmila A. Katargina, Lyudmila V. Kogoleva, Natalya A. Osipova, Nina Sh. Kokoeva. Value of optical coherence tomography angiography for the assessment of visual functions in children with retinopathy of prematurity. Russian Pediatric Ophthalmology, 2023, 18(1): 13-20 DOI:10.17816/rpoj112251

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Samara WA, Say EA, Khoo CNL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35(11):2188–2195. doi: 10.1097/IAE.0000000000000847

[2]

Samara W.A., Say E.A., Khoo C.N.L., et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography // Retina. 2015. Vol. 35, N 11. Р. 2188–2195. doi: 10.1097/IAE.0000000000000847

[3]

Mintz-Hittner HA, Knight-Nanan DM, Satriano DR, Kretzer FL. A small foveal avascular zone may be an historic mark of prematurity. Ophthalmology. 1999;106(7):1409–1413. doi: 10.1016/S0161-6420(99)00732-0

[4]

Mintz-Hittner H.A., Knight-Nanan D.M., Satriano D.R., Kretzer F.L. A small foveal avascular zone may be an historic mark of prematurity // Ophthalmology. 1999. Vol. 106, N 7. Р. 1409–1413. doi: 10.1016/S0161-6420(99)00732-0

[5]

Tereshchenko AV, Trifanenkova IG, Panamareva SV. Optical Coherence Tomography-Angiography in Pediatric Ophthalmological Practice (Review). Ophthalmology in Russia. 2021;18(1):5–11. (In Russ). doi: 10.18008/1816-5095-2021-1-5-11

[6]

Терещенко А.В., Трифаненкова И.Г., Панамарева С.В. Оптическая когерентная томография-ангиография в детской офтальмологической практике (обзор литературы) // Офтальмология. 2021. Т. 18, № 1. С. 5–11. doi: 10.18008/1816-5095-2021-1-5-11

[7]

Kogoleva LV. Clinical and functional eye’s parameters in extremely low birth weight patients with retinopathy of prematurity. Russian Pediatric Ophthalmology. 2014;9(3):14–19. (In Russ). doi: 10.17816/rpoj37594

[8]

Коголева Л.В. Клинико-функциональное состояние глаз у глубоко недоношенных детей в отдаленный период // Российская педиатрическая офтальмология. 2014. Т. 9, № 3. С. 14–20. doi: 10.17816/rpoj37594

[9]

Falavarjani KG, Iafe NA, Velez FG, et al. Optical coherence tomography angiography of the fovea in children born preterm. Retina. 2017;37(12):2289–2294. doi: 10.1097/IAE.0000000000001471

[10]

Falavarjani K.G., Iafe N.A., Velez F.G., et al. Optical coherence tomography angiography of the fovea in children born preterm // Retina. 2017. Vol. 37, N 12. Р. 2289–2294. doi: 10.1097/IAE.0000000000001471

[11]

Bowl W, Bowl M, Schweinfurth S, et al. OCT Angiography in Young Children with a History of Retinopathy of Prematurity. Ophthalmol Retina. 2018;2(9):972–978. doi: 10.1016/j.oret.2018.02.004

[12]

Bowl W., Bowl M., Schweinfurth S., et al. OCT Angiography in Young Children with a History of Retinopathy of Prematurity // Ophthalmol Retina. 2018. Vol. 2, N 9. Р. 972–978. doi: 10.1016/j.oret.2018.02.004

[13]

Jabroun MN, AlWattar BK, Fulton AB. Optical Coherence Tomography Angiography in Prematurity. Semin Ophthalmol. 2021;36(4):264–269. doi: 10.1080/08820538.2021.1893760

[14]

Jabroun M.N., AlWattar B.K., Fulton A.B. Optical Coherence Tomography Angiography in Prematurity // Semin Ophthalmol. 2021. Vol. 36, N 4. Р. 264–269. doi: 10.1080/08820538.2021.1893760

[15]

Rezar-Dreindl S, Eibenberger K, Told R, et al. Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography. Acta Ophthalmol. 2021;99(2):e232–e239. doi: 10.1111/aos.14557

[16]

Rezar-Dreindl S., Eibenberger K., Told R., et al. Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography // Acta Ophthalmol. 2021. Vol. 99, N 2. Р. e232–e239. doi: 10.1111/aos.14557

[17]

Nonobe N, Kaneko H, Ito Y, et al. Optical coherence tomography angiography of the foveal avascular zone in children with a history of treatment-requiring retinopathy of prematurity. Retina. 2019;39(1):111–117. doi: 10.1097/IAE.0000000000001937

[18]

Nonobe N., Kaneko H., Ito Y., et al. Optical coherence tomography angiography of the foveal avascular zone in children with a history of treatment-requiring retinopathy of prematurity // Retina. 2019. Vol. 39, N 1. Р. 111–117. doi: 10.1097/IAE.0000000000001937

[19]

Czeszyk A, Hautz W, Jaworski M, et al. Morphology and Vessel Density of the Macula in Preterm Children Using Optical Coherence Tomography Angiography. J Clin Med. 2022;11(5):1337. doi: 10.3390/jcm11051337

[20]

Czeszyk A., Hautz W., Jaworski M., et al. Morphology and Vessel Density of the Macula in Preterm Children Using Optical Coherence Tomography Angiography // J Clin Med. 2022. Vol. 11, N 5. Р. 1337. doi: 10.3390/jcm11051337

[21]

Carreira AR, Cardoso J, Lopes D, et al. Long-term macular vascular density measured by OCT-A in children with retinopathy of prematurity with and without need of laser treatment. Eur J Ophthalmol. 2021;31(6):3337–3341. doi: 10.1177/1120672120983204

[22]

Carreira A.R., Cardoso J., Lopes D., et al. Long-term macular vascular density measured by OCT-A in children with retinopathy of prematurity with and without need of laser treatment // Eur J Ophthalmol. 2021. Vol. 31, N 6. Р. 3337–3341. doi: 10.1177/1120672120983204

[23]

Lepore D, Ji MH, Quinn GE, et al. Functional and Morphologic Findings at Four Years After Intravitreal Bevacizumab or Laser for Type 1 ROP. Ophthalmic Surg Lasers Imaging Retina. 2020;51(3):180–186. doi: 10.3928/23258160-20200228-07

[24]

Lepore D., Ji M.H., Quinn G.E., et al. Functional and Morphologic Findings at Four Years After Intravitreal Bevacizumab or Laser for Type 1 ROP // Ophthalmic Surg Lasers Imaging Retina. 2020. Vol. 51, N 3. Р. 180–186. doi: 10.3928/23258160-20200228-07

[25]

Deng X, Cheng Y, Zhu X-M, et al. Foveal structure changes in infants treated with anti-VEGF therapy or laser therapy guided by optical coherence tomography angiography for retinopathy of prematurity. Int J Ophthalmol. 2022;15(1):106–112. doi: 10.18240/ijo.2022.01.16

[26]

Deng X., Cheng Y., Zhu X.-M., et al. Foveal structure changes in infants treated with anti-VEGF therapy or laser therapy guided by optical coherence tomography angiography for retinopathy of prematurity // Int J Ophthalmol. 2022. Vol. 15, N 1. Р. 106–112. doi: 10.18240/ijo.2022.01.16

[27]

Chen YC, Chen YT, Chen SN. Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):23–30. doi: 10.1007/s00417-018-4162-y

[28]

Chen Y.C., Chen Y.T., Chen S.N. Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity // Graefes Arch Clin Exp Ophthalmol. 2019. Vol. 257, N 1. P. 23–30. doi: 10.1007/s00417-018-4162-y

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/