Morphometric and functional features in children with pseudophakic myopia after congenital cataract extraction in infancy

Aleхandra S. Galkina , Lyudmila A. Katargina , Tatiana B. Kruglova , Naira S. Egiyan

Russian Pediatric Ophthalmology ›› 2022, Vol. 17 ›› Issue (4) : 5 -15.

PDF
Russian Pediatric Ophthalmology ›› 2022, Vol. 17 ›› Issue (4) : 5 -15. DOI: 10.17816/rpoj110881
Original study article
research-article

Morphometric and functional features in children with pseudophakic myopia after congenital cataract extraction in infancy

Author information +
History +
PDF

Abstract

AIM: To investigate the morphometric parameters of the macular zone in children with pseudophakia and different refractive states after congenital cataract extraction in infancy and their correlations with vision parameters.

MATERIAL AND METHODS: Thirty children (49 eyes) who underwent bilateral cataract surgery with primary intraocular lens (IOL) implantation, with a median age at surgery of 7.94±2.70 (2–12) months, were identified. These children were divided into two groups: group 1 with target refraction (n=18, 21 eyes) and group 2 with pseudophakic myopia (n=14,28 eyes). All patients were examined with the Nidek RS-3000 Advance two optical coherence tomography.

RESULTS: A significant reduction was found in the morphometric parameters in group 2 relative to that in group 1: foveal thickness (253.11±27.84 and 266.42±21.52 μm), average inner macula thickness (307.64±30.9 and 330.14±28.29 μm) and average outer macula thickness (281.17±22.51 and 298.78±28.23 μm), central choroidal thickness (221.87±79.04 and 311.94±68.38 μm), macular volume (7.99±0.71 and 8.76±0.49 mm3), and foveal volume (0.19±0.02 и 0,21±0.02 mm3). This can be due to axial elongation (24.72±2.18 and 21.28±1.55 mm). The correlation between the best-corrected visual acuity (BCVA) and macular volume was moderate in pseudophakic children (r=0.418; p <0.01).

CONCLUSION: The data indicate an impairment of the macular zone formation in children with pseudophakic myopia which to a certain extent can explain the decrease in functional prognosis.

Keywords

congenital cataract / pseudophakic myopia / optical coherence tomography / macular zone

Cite this article

Download citation ▾
Aleхandra S. Galkina, Lyudmila A. Katargina, Tatiana B. Kruglova, Naira S. Egiyan. Morphometric and functional features in children with pseudophakic myopia after congenital cataract extraction in infancy. Russian Pediatric Ophthalmology, 2022, 17(4): 5-15 DOI:10.17816/rpoj110881

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Neroev VV. Invalidnost’ po zreniyu v Rossiiskoi Federatsii. Report at the 23rd Ophthalmological Congress «Belye nochi»: «Voprosy organizatsii oftal’mologicheskoi pomoshchi naseleniyu Rossiiskoi Federatsii. Po materialam dokladov za period 2013–2018 gg.»; 2017 May 29; St. Petersburg. Moscow, 2017. P. 156–184. Available from: http://avo-portal.ru/events/reports/item/450-doklad-neroeva-vv-invalidnost-po-zreniyu-v-rossiyskoy-federatsii. Accessed: 08.11.2022. (In Russ).

[2]

Нероев В.В. Инвалидность по зрению в Российской Федерации // Доклад на XXIII международном офтальмологическом конгрессе «Белые ночи»: «Вопросы организации офтальмологической помощи населению Российской Федерации. По материалам докладов за период 2013–2018 гг.»; Май 29, 2017, Санкт-Петербург. Москва, 2017. С. 156–184. Режим доступа: http://avo-portal.ru/events/reports/item/450-doklad-neroeva-vv-invalidnost-po-zreniyu-v-rossiyskoy-federatsii. Дата обращения: 08.11.2022.

[3]

Kruglova TB, Katargina LA, Egiyan NS, Arestova NN. Surgical tactics and peculiarities of intraocular correction in children of the first year of life with congenital cataract. Fyodorov Journal of Optalmic Surgery. 2018;1:13–18. (In Russ). doi: 10.25276/0235-4160-2018-1-13-18

[4]

Круглова Т.Б., Катаргина Л.А., Егиян Н.С., Арестова Н.Н. Хирургическая тактика и особенности интраокулярной коррекции у детей с врожденными катарактами первого года жизни // Офтальмохирургия. 2018. Т. 1. С. 13–18. doi: 10.25276/0235-4160-2018-1-13-18

[5]

Zaidullin IS, Aznabaev RA. Primary artificial lens implantation in young children with the primary hyperplastic vitreos body. The Russian Annals of Ophtalmology. 2008;124(3):44–45. (In Russ).

[6]

Зайдуллин И.С., Азнабаев Р.А. Первичная имплантация ИОЛ у детей младшего возраста с первичным гиперпластическим стекловидным телом // Вестник офтальмологии. 2008. Т. 124, № 3. С. 44–45.

[7]

Lenhart PD, Lambert SR. Current management of infantile cataracts. Surv Ophthalmol. 2022;67(5):1476–1505. doi: 10.1016/j.survophthal.2022.03.005

[8]

Lenhart P.D., Lambert S.R. Current management of infantile cataracts // Surv Ophthalmol. 2022. Vol. 67, N 5. P. 1476–1505. doi: 10.1016/j.survophthal.2022.03.005

[9]

Solebo AL, Cumberland P, Rahi JS. British Isles Congenital Cataract Interest Group. 5-year outcomes after primary intraocular lens implantation in children aged 2 years or younger with congenital or infantile cataract: findings from the IoLunder2 prospective inception cohort study. Lancet Child Adolesc Health. 2018;2(12):863–871. doi: 10.1016/S2352-4642(18)30317-1

[10]

Solebo A.L., Cumberland P., Rahi J.S. British Isles Congenital Cataract Interest Group. 5-year outcomes after primary intraocular lens implantation in children aged 2 years or younger with congenital or infantile cataract: findings from the IoLunder2 prospective inception cohort study // Lancet Child Adolesc Health. 2018. Vol. 2, N 12. P. 863–871. doi: 10.1016/S2352-4642(18)30317-1

[11]

Wilson ME, Trivedi RH, Weakley DR Jr., et al. Infant Aphakia Treatment Study Group. Globe Axial Length Growth at Age 10.5 Years in the Infant Aphakia Treatment Study. Am J Ophthalmol. 2020;216:147–155. doi: 10.1016/j.ajo.2020.04.010

[12]

Wilson M.E., Trivedi R.H., Weakley D.R. Jr., et al. Infant Aphakia Treatment Study Group. Globe Axial Length Growth at Age 10.5 Years in the Infant Aphakia Treatment Study // Am J Ophthalmol. 2020. N. 216. P. 147–155. doi: 10.1016/j.ajo.2020.04.010

[13]

Khvatova AV, Kruglova TB, Fil’chikova LI. Klinicheskie osobennosti i patogeneticheskie mekhanizmy narusheniya zritel’nykh funktsii pri vrozhdennykh kataraktakh. In: Zritel’nye funktsii i ikh korrektsiya u detei. Moscow: Meditsina; 2005. (In Russ).

[14]

Хватова А.В., Круглова Т.Б., Фильчикова Л.И. Клинические особенности и патогенетические механизмы нарушения зрительных функций при врожденных катарактах. В кн.: Зрительные функции и их коррекция у детей. Москва: Медицина, 2005.

[15]

Slyshalova NN, Shamshinova AM. Retinal bioelectrical activity in amblyopia. The Russian Annals of Ophtalmology. 2008;124(4):32–36. (In Russ).

[16]

Слышалова Н.Н., Шамшинова А.М. Биоэлектрическая активность сетчатки при амблиопии // Вестник офтальмологии. 2008. Т. 124, № 4. С. 32–36.

[17]

Al-Haddad C, Mehanna CJ, Ismail K. High-Definition Optical Coherence Tomography of the Macula in Deprivational Amblyopia. Ophthalmic Surg Lasers Imaging Retina. 2018;49(3):198–204. doi: 10.3928/23258160-20180221-08

[18]

Al-Haddad C., Mehanna C.J., Ismail K. High-Definition Optical Coherence Tomography of the Macula in Deprivational Amblyopia // Ophthalmic Surg Lasers Imaging Retina. 2018. Vol. 49, N 3. P. 198–204. doi: 10.3928/23258160-20180221-08

[19]

Wang J, Smith HA, Donaldson DL, et al. Macular structural characteristics in children with congenital and developmental cataracts. J AAPOS. 2014;18(5):417–422. doi: 10.1016/j.jaapos.2014.05.008

[20]

Wang J., Smith H.A., Donaldson D.L., et al. Macular structural characteristics in children with congenital and developmental cataracts // J AAPOS. 2014. Vol. 18, N 5. P. 417–422. doi: 10.1016/j.jaapos.2014.05.008

[21]

Hansen MM, Bach Holm D, Kessel L. Associations between visual function and ultrastructure of the macula and optic disc after childhood cataract surgery. Acta Ophthalmol. 2021;100(6):640–647. doi: 10.1111/aos.15065

[22]

Hansen M.M., Bach Holm D., Kessel L. Associations between visual function and ultrastructure of the macula and optic disc after childhood cataract surgery // Acta Ophthalmol. 2021. Vol. 100, N 6. P. 640–647. 6. doi: 10.1111/aos.15065

[23]

Bansal P, Ram J, Sukhija J, et al. Retinal Nerve Fiber Layer and Macular Thickness Measurements in Children After Cataract Surgery Compared With Age-Matched Controls. Am J Ophthalmol. 2016;166:126–132. doi: 10.1016/j.ajo.2016.03.041

[24]

Bansal P., Ram J., Sukhija J., et al. Retinal Nerve Fiber Layer and Macular Thickness Measurements in Children After Cataract Surgery Compared With Age-Matched Controls // Am J Ophthalmol. 2016. N. 166. P. 126–132. doi: 10.1016/j.ajo.2016.03.041

[25]

Kim YW, Kim SJ, Yu YS. Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2811–2819. doi: 10.1007/s00417-013-2494-1

[26]

Kim Y.W., Kim S.J., Yu Y.S. Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients // Graefes Arch Clin Exp Ophthalmol. 2013. Vol. 251, N 12. P. 2811–2819. doi: 10.1007/s00417-013-2494-1

[27]

Sacchi M, Serafino M, Trivedi RH, et al. Spectral-domain optical coherence tomography measurements of central foveal thickness before and after cataract surgery in children. J Cataract Refract Surg. 2015;41(2):382–386. doi: 10.1016/j.jcrs.2014.05.047

[28]

Sacchi M., Serafino M., Trivedi R.H., et al. Spectral-domain optical coherence tomography measurements of central foveal thickness before and after cataract surgery in children // J Cataract Refract Surg. 2015. Vol. 41, N 2. P. 382–386. doi: 10.1016/j.jcrs.2014.05.047

[29]

Mosin IM, Kudryavtseva EA, Neudakhina EA. Primenenie metodov vizualizatsii zadnego otrezka glaza dlya otsenki funktsional’nykh iskhodov u detei s artifakiei. Russian Pediatric Ophthalmology. 2008;124(4):17–18. (In Russ).

[30]

Мосин И.М., Кудрявцева Е.А., Неудахина Е.А. Применение методов визуализации заднего отрезка глаза для оценки функциональных исходов у детей с артифакией // Российская педиатрическая офтальмология. 2008. Т. 124, № 4. С. 17–18.

[31]

Ryabtseva AA, Yugay MP, Andryukhina OM. Changes of the retina in the early postoperative period after cataract phacoemulsification in children. Tochka zreniya. Vostok–Zapad. 2017;4:84–86. (In Russ).

[32]

Рябцева А.А., Югай М.П., Андрюхина О.М. Особенности изменений сетчатки в раннем послеоперационном периоде после факоэмульсификации катаракты у детей // Точка зрения. Восток–Запад. 2017. № 4. С. 84–86.

[33]

Chen HS, Liu CH, Lu DW. Comparison of glaucoma diagnostic accuracy of macular ganglion cell complex thickness based on nonhighly myopic and highly myopic normative database. Taiwan J Ophthalmol. 2016;6(1):15–20. doi: 10.1016/j.tjo.2016.01.001

[34]

Chen H.S., Liu C.H., Lu D.W. Comparison of glaucoma diagnostic accuracy of macular ganglion cell complex thickness based on nonhighly myopic and highly myopic normative database // Taiwan J Ophthalmol. 2016. Vol. 6, N 1. P. 15–20. doi: 10.1016/j.tjo.2016.01.001

[35]

Pérez-García D, Ibañez-Alperte J, Remón L, et al. Study of spectral-domain optical coherence tomography in children: normal values and influence of age, sex, and refractive status. Eur J Ophthalmol. 2016;26(2):135–141. doi: 10.5301/ejo.5000665

[36]

Pérez-García D., Ibañez-Alperte J., Remón L., et al. Study of spectral-domain optical coherence tomography in children: normal values and influence of age, sex, and refractive status // Eur J Ophthalmol. 2016. Vol. 26, N 2. P. 135–141. doi: 10.5301/ejo.5000665

[37]

Herrera L, Perez-Navarro I, Sanchez-Cano A, et al. Choroidal thickness and volume in a healthy pediatric population and its relationship with age, axial length, ametropia, and sex. Retina. 2015;35(12):2574–2583. doi: 10.1097/IAE.0000000000000636

[38]

Herrera L., Perez-Navarro I., Sanchez-Cano A., et al. Choroidal thickness and volume in a healthy pediatric population and its relationship with age, axial length, ametropia, and sex // Retina. 2015. Vol. 35, N 12. P. 2574–2583. doi: 10.1097/IAE.0000000000000636

[39]

Barrio-Barrio J, Noval S, Galdós M, et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol. 2013;91(1):e56–e63. doi: 10.1111/j.1755-3768.2012.02562.x

[40]

Barrio-Barrio J., Noval S., Galdós M., et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children // Acta Ophthalmol. 2013. Vol. 91, N 1. P. e56–e63. doi: 10.1111/j.1755-3768.2012.02562.x

[41]

Katargina LA, Kruglova TB, Egiyan NS, et al. The Morphometric Status of the Macula in Children with Pseudophakia after Surgical Treatment of Congenital Cataracts. Russian Ophthalmological Journal. 2016;9(1):27–31. (In Russ). doi: 10.21516/2072-0076-2016-9-1-27-31

[42]

Катаргина Л.А., Круглова Т.Б., Егиян Н.С., и др. Морфометрическое состояние макулярной зоны у детей с артифакией после оперативного лечения врожденных катаракт // Российский офтальмологический журнал. 2016. Т. 9, № 1. С. 27–31. doi: 10.21516/2072-0076-2016-9-1-27-31

[43]

Salehi MA, Nowroozi A, Gouravani M, et al. Associations of refractive errors and retinal changes measured by optical coherence tomography: A systematic review and meta-analysis. Surv Ophthalmol. 2022;67(2):591–607. doi: 10.1016/j.survophthal.2021.07.007

[44]

Salehi M.A., Nowroozi A., Gouravani M., et al. Associations of refractive errors and retinal changes measured by optical coherence tomography: A systematic review and meta-analysis // Surv Ophthalmol. 2022. Vol. 67, N 2. P. 591–607. doi: 10.1016/j.survophthal.2021.07.007

[45]

Chen S, Wang B, Dong N, et al. Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children. Invest Ophthalmol Vis Sci. 2014;55(11):7410–7416. doi: 10.1167/iovs.14-13894

[46]

Chen S., Wang B., Dong N., et al. Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children // Invest Ophthalmol Vis Sci. 2014. Vol. 55, N 11. P. 7410–7416. doi: 10.1167/iovs.14-13894

[47]

Read SA, Alonso-Caneiro D, Vincent SJ. Longitudinal changes in macular retinal layer thickness in pediatric populations: Myopic vs non-myopic eyes. PLoS One. 2017;12(6):e0180462. doi: 10.1371/journal.pone.0180462

[48]

Read S.A., Alonso-Caneiro D., Vincent S.J. Longitudinal changes in macular retinal layer thickness in pediatric populations: Myopic vs non-myopic eyes // PLoS One. 2017. Vol. 12, N 6. P. e0180462. doi: 10.1371/journal.pone.0180462

[49]

Markosyan GA, Tarutta EP, Ryabina MV. Retina thickness in the macular area in children with congenital and acquired high myopia according to optical coherence tomography. Russian Ophthalmological Journal. 2010;3(3):21–24. (In Russ).

[50]

Маркосян Г.А., Тарутта Е.П., Рябина М.В. Толщина сетчатки в макулярной области у детей с врожденной и приобретенной миопией высокой степени по данным оптической когерентной томографии // Российский офтальмологический журнал. 2010. Т. 3, № 3. С. 21–24.

[51]

Wan J, Zhang Z, Tian Y. Examination of Macular Retina and Choroidal Thickness in High Myopic Amblyopia Using Spectral-Domain Optical Coherence Tomography. Front Med (Lausanne). 2022;9:808409. doi: 10.3389/fmed.2022.808409

[52]

Wan J., Zhang Z., Tian Y. Examination of Macular Retina and Choroidal Thickness in High Myopic Amblyopia Using Spectral-Domain Optical Coherence Tomography // Front Med (Lausanne). 2022. N. 9. P. 808409. doi: 10.3389/fmed.2022.808409

[53]

Jin P, Zou H, Zhu J, et al.Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography. Am J Ophthalmol. 2016;168:164–176. doi: 10.1016/j.ajo.2016.05.008

[54]

Jin P., Zou H., Zhu J., et al.Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography // Am J Ophthalmol. 2016. N 168. P. 164–176. doi: 10.1016/j.ajo.2016.05.008

[55]

Matalia J, Anegondi NS, Veeboy L, Roy AS. Age and myopia associated optical coherence tomography of retina and choroid in pediatric eyes. Indian J Ophthalmol. 2018;66(1):77–82. doi: 10.4103/ijo.IJO_652_17

[56]

Matalia J., Anegondi N.S., Veeboy L., Roy A.S. Age and myopia associated optical coherence tomography of retina and choroid in pediatric eyes // Indian J Ophthalmol. 2018. Vol. 66, N 1. P. 77–82. doi: 10.4103/ijo.IJO_652_17

[57]

El-Shazly AA, Farweez YA, ElSebaay ME, El-Zawahry WMA. Correlation between choroidal thickness and degree of myopia assessed with enhanced depth imaging optical coherence tomography. Eur J Ophthalmol. 2017;27(5):577–584. doi: 10.5301/ejo.5000936

[58]

El-Shazly A.A., Farweez Y.A., ElSebaay M.E., El-Zawahry W.M.A. Correlation between choroidal thickness and degree of myopia assessed with enhanced depth imaging optical coherence tomography // Eur J Ophthalmol. 2017. Vol. 27, N. 5. P. 577–584. doi: 10.5301/ejo.5000936

[59]

Muhiddin HS, Mayasari AR, Umar BT, et al. Choroidal Thickness in Correlation with Axial Length and Myopia Degree. Vision. 2022;6(1):16. doi: 10.3390/vision6010016

[60]

Muhiddin H.S., Mayasari A.R., Umar B.T., et al. Choroidal Thickness in Correlation with Axial Length and Myopia Degree // Vision. 2022. Vol. 6, N 1. P. 16. doi: 10.3390/vision6010016

[61]

Wang T, Li H, Zhang R, et al. Evaluation of retinal vascular density and related factors in youth myopia without maculopathy using OCTA. Sci Rep. 2021;11(1):15361. doi: 10.1038/s41598-021-94909-8

[62]

Wang T., Li H., Zhang R., et al. Evaluation of retinal vascular density and related factors in youth myopia without maculopathy using OCTA // Sci Rep. 2021. Vol. 11, N 1. P. 15361. doi: 10.1038/s41598-021-94909-8

[63]

Liu X, Lin Z, Wang F, et al. Choroidal thickness and choriocapillaris vascular density in myopic anisometropia. Eye Vis (Lond). 2021;8(1):48. doi: 10.1186/s40662-021-00269-9

[64]

Liu X., Lin Z., Wang F., et al. Choroidal thickness and choriocapillaris vascular density in myopic anisometropia // Eye Vis (Lond). 2021. Vol. 8, N 1. P. 48. doi: 10.1186/s40662-021-00269-9

RIGHTS & PERMISSIONS

Galkina A.S., Katargina L.A., Kruglova T.B., Egiyan N.S.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/