Mitochondrial dysfunction in the pathogenesis and treatment of oral inflammatory diseases

Albina I. Abdullaeva , Valentina N. Olesova , David Yu. Akopov , Egor E. Olesov , Serazhutdin A. Abdullaev

Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (6) : 612 -623.

PDF (436KB)
Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (6) : 612 -623. DOI: 10.17816/dent632944
Reviews
review-article

Mitochondrial dysfunction in the pathogenesis and treatment of oral inflammatory diseases

Author information +
History +
PDF (436KB)

Abstract

Oral inflammatory diseases (OIDs) include various prevalent conditions, such as periodontal disease and pulpitis. The most common causes of OIDs are microorganisms, injuries, occlusion factors, autoimmune diseases, and radiation therapy. If not treated properly, these diseases not only affect the oral health, but may also compromise the overall well-being. Thus, early detection of OIDs and new treatment strategies are key challenges of oral therapy research.

Mitochondria are essential organelles for numerous cellular processes. Mitochondrial dysfunction not only affects cell metabolism, but also has an indirect impact on health and life expectancy. Several common polygenic diseases, such as cardiovascular and neurodegenerative disorders, are associated with mitochondrial dysfunction. Recent evidence suggests that mitochondrial dysfunction plays a significant role in the development and progression of OIDs and associated systemic diseases.

This review provides critical insights into mitochondrial dysfunction and its role in inflammatory reactions in OIDs.

Keywords

oral inflammatory diseases / mitochondrial dysfunction / periodontal disease / oxidative stress / mitochondrial DNA damage

Cite this article

Download citation ▾
Albina I. Abdullaeva, Valentina N. Olesova, David Yu. Akopov, Egor E. Olesov, Serazhutdin A. Abdullaev. Mitochondrial dysfunction in the pathogenesis and treatment of oral inflammatory diseases. Russian Journal of Dentistry, 2024, 28(6): 612-623 DOI:10.17816/dent632944

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X, Liu XC, Ding X, et al. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats. Oral Dis. 2023;29(4):1812–1825. doi: 10.1111/odi.14148

[2]

Li X., Liu X.C., Ding X., et al. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats // Oral Dis. 2023. Vol. 29, N. 4. P. 1812–1825. doi: 10.1111/odi.14148

[3]

Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139–153. doi: 10.1016/j.semcdb.2019.05.022

[4]

Abate M., Festa A., Falco M., et al. Mitochondria as playmakers of apoptosis, autophagy and senescence // Semin Cell Dev Biol. 2020. Vol. 98. P. 139–153. doi: 10.1016/j.semcdb.2019.05.022

[5]

Sangwung P, Petersen KF, Shulman GI, Knowles JW. Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology. 2020;161(4):bqaa017. doi: 10.1210/endocr/bqaa017

[6]

Sangwung P., Petersen K.F., Shulman G.I., Knowles J.W. Mitochondrial dysfunction, insulin resistance, and potential genetic implications // Endocrinology. 2020. Vol. 161, N. 4. P. bqaa017. doi: 10.1210/endocr/bqaa017

[7]

Gong W, Wang F, He Y, et al. Mesenchymal stem cell therapy for oral inflammatory diseases: research progress and future perspectives. Curr Stem Cell Res Ther. 2021;16(2):165–174. doi: 10.2174/1574888X15666200726224132

[8]

Gong W., Wang F., He Y., et al. Mesenchymal stem cell therapy for oral inflammatory diseases: research progress and future perspectives // Curr Stem Cell Res Ther. 2021. Vol. 16, N. 2. P. 165–174. doi: 10.2174/1574888X15666200726224132

[9]

Vujovic S, Desnica J, Stevanovic M, et al. Oral health and oral health-related quality of life in patients with primary Sjögren’s syndrome. Medicina (Kaunas). 2023;59(3):473. doi: 10.3390/medicina59030473

[10]

Vujovic S., Desnica J., Stevanovic M., et al. Oral health and oral health-related quality of life in patients with primary sjögren’s syndrome // Medicina (Kaunas). 2023. Vol. 59, N. 3. P. 473. doi: 10.3390/medicina59030473

[11]

Jiang W, Wang Y, Cao Z, et al. The role of mitochondrial dysfunction in periodontitis: From mechanisms to therapeutic strategy. J Periodontal Res. 2023;58(5):853–863. doi: 10.1111/jre.13152

[12]

Jiang W., Wang Y., Cao Z., et al. The role of mitochondrial dysfunction in periodontitis: From mechanisms to therapeutic strategy // J Periodontal Res. 2023. Vol. 58, N. 5. P. 853–863. doi: 10.1111/jre.13152

[13]

Seo BJ, Yoon SH, Do JT. Mitochondrial dynamics in stem cells and differentiation. Int J Mol Sci. 2018;19(12):3893. doi: 10.3390/ijms19123893

[14]

Seo B.J., Yoon S.H., Do J.T. Mitochondrial dynamics in stem cells and differentiation // Int J Mol Sci. 2018. Vol. 19. N. 12. P. 3893. doi: 10.3390/ijms19123893

[15]

Chen X, Zhang Z, Li H, et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2020;35(11):2009–2019. doi: 10.1111/jgh.15027

[16]

Chen X., Zhang Z., Li H., et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease // J Gastroenterol Hepatol. 2020. Vol. 35, N. 11. P. 2009–2019. doi: 10.1111/jgh.15027

[17]

Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312. doi: 10.1038/nrneph.2018.9

[18]

Forbes J.M., Thorburn D.R. Mitochondrial dysfunction in diabetic kidney disease // Nat Rev Nephrol. 2018. Vol. 14, N. 5. P. 291–312. doi: 10.1038/nrneph.2018.9

[19]

Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066–1077. doi: 10.1016/j.bbadis.2016.11.010

[20]

Bhatti J.S., Bhatti G.K., Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies // Biochim Biophys Acta Mol Basis Dis. 2017. Vol. 1863, N. 5. P. 1066–1077. doi: 10.1016/j.bbadis.2016.11.010

[21]

West AP. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology. 2017;391:54–63. doi: 10.1016/j.tox.2017.07.016

[22]

West A.P. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation // Toxicology. 2017. Vol. 391. P. 54–63. doi: 10.1016/j.tox.2017.07.016

[23]

Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 2018;41:37–44. doi: 10.1016/j.mito.2017.12.001

[24]

Dela Cruz C.S., Kang M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases // Mitochondrion. 2018. Vol. 41. P. 37–44. doi: 10.1016/j.mito.2017.12.001

[25]

Wang LW, Shen H, Nobre L, et al. Epstein-barr-virus-induced one-carbon metabolism drives b cell transformation. Cell Metab. 2019;30(3):539–555.e11. doi: 10.1016/j.cmet.2019.06.003

[26]

Wang L.W., Shen H., Nobre L., et al. Epstein-Barr-virus-induced one-carbon metabolism drives B cell transformation // Cell Metab. 2019. Vol. 30, N. 3. P. 539–555. doi: 10.1016/j.cmet.2019.06.003

[27]

Xu L, Yan X, Zhao Y, et al. Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity. Int J Mol Sci. 2022;23(16):9252. doi: 10.3390/ijms23169252

[28]

Xu L., Yan X., Zhao Y., et al. Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity // Int J Mol Sci. 2022. Vol. 23, N. 16. P. 9252. doi: 10.3390/ijms23169252

[29]

Demmer RT, Papapanou PN. Epidemiologic patterns of chronic and aggressive periodontitis. Periodontol 2000. 2010;53:28–44. doi: 10.1111/j.1600-0757.2009.00326.x

[30]

Demmer R.T., Papapanou P.N. Epidemiologic patterns of chronic and aggressive periodontitis // Periodontol 2000. 2010. Vol. 53. P. 28–44. doi: 10.1111/j.1600-0757.2009.00326.x

[31]

Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89 Suppl. 1:S173–S182. doi: 10.1002/JPER.17-0721

[32]

Papapanou P.N., Sanz M., Buduneli N., et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions // J Periodontol. 2018. Vol. 89, Suppl. 1. P. S173–S182. doi: 10.1002/JPER.17-0721

[33]

Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis. Periodontol 2000. 2012;58(1):37–68. doi: 10.1111/j.1600-0757.2011.00415.x

[34]

Laine M.L., Crielaard W., Loos B.G. Genetic susceptibility to periodontitis // Periodontol 2000. 2012. Vol. 58, N. 1. P. 37–68. doi: 10.1111/j.1600-0757.2011.00415.x

[35]

Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017;75(1):152–188. doi: 10.1111/prd.12201

[36]

Graziani F., Karapetsa D., Alonso B., Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? // Periodontol 2000. 2017. Vol. 75, N. 1. P. 152–188. doi: 10.1111/prd.12201

[37]

Li L, Zhang YL, Liu XY, et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front Microbiol. 2021;12:656372. doi: 10.3389/fmicb.2021.656372

[38]

Li L., Zhang Y.L., Liu X.Y., et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress // Front Microbiol. 2021. Vol. 12. P. 656372. doi: 10.3389/fmicb.2021.656372

[39]

Govindaraj P, Khan NA, Gopalakrishna P, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis. Mitochondrion. 2011;11(3):504–512. doi: 10.1016/j.mito.2011.01.009

[40]

Govindaraj P., Khan N.A., Gopalakrishna P., et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis // Mitochondrion. 2011. Vol. 11, N. 3. P. 504–512. doi: 10.1016/j.mito.2011.01.009

[41]

Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–985. doi: 10.1089/scd.2019.0031

[42]

Tomokiyo A., Wada N., Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium // Stem Cells Dev. 2019. Vol. 28, N. 15. P. 974–985. doi: 10.1089/scd.2019.0031

[43]

Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol. 2021;110(3):565–576. doi: 10.1002/JLB.4MR0421-750R

[44]

Zhang Z., Deng M., Hao M., Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms // J Leukoc Biol. 2021. Vol. 110, N. 3. P. 565–576. doi: 10.1002/JLB.4MR0421-750R

[45]

Li J, Wang Z, Huang X, et al. Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation. Stem Cell Res Ther. 2021;12(1):98. doi: 10.1186/s13287-020-02123-6

[46]

Li J., Wang Z., Huang X., et al. Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation // Stem Cell Res Ther. 2021. Vol. 12, N. 1. P. 98. doi: 10.1186/s13287-020-02123-6

[47]

Chen Y, Ji Y, Jin X, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress. Biochem Biophys Res Commun. 2019;509(2):483–490. doi: 10.1016/j.bbrc.2018.12.143

[48]

Chen Y., Ji Y., Jin X., et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress // Biochem Biophys Res Commun. 2019. Vol. 509, N. 2. P. 483–490. doi: 10.1016/j.bbrc.2018.12.143

[49]

Liu J, Zeng J, Wang X, et al. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts. J Periodontol. 2018;89(9):1142–1151. doi: 10.1002/JPER.18-0026

[50]

Liu J., Zeng J., Wang X., et al. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts // J Periodontol. 2018. Vol. 89, N. 9. P. 1142–1151. doi: 10.1002/JPER.18-0026

[51]

Liu J, Wang X, Xue F, et al. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. J Periodontal Res. 2022;57(1):94–103. doi: 10.1111/jre.12941

[52]

Liu J., Wang X., Xue F., et al. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis // J Periodontal Res. 2022. Vol. 57, N. 1. P. 94–103. doi: 10.1111/jre.12941

[53]

Liu J, Wang X, Zheng M, Luan Q. Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts. Oral Dis. 2023;29(3):1214–1225. doi: 10.1111/odi.14103

[54]

Liu J., Wang X., Zheng M., Luan Q. Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts // Oral Dis. 2023. Vol. 29, N. 3. P. 1214–1225. doi: 10.1111/odi.14103

[55]

França LFC, Vasconcelos ACCG, da Silva FRP, et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation. J Clin Periodontol. 2017;44(6):568–576. doi: 10.1111/jcpe.12729

[56]

França L.F.C., Vasconcelos A.C.C.G., da Silva F.R.P., et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation // J Clin Periodontol. 2017. Vol. 44, N. 6. P. 568–576. doi: 10.1111/jcpe.12729

[57]

Kose O, Kurt Bayrakdar S, Unver B, et al. Melatonin improves periodontitis-induced kidney damage by decreasing inflammatory stress and apoptosis in rats. J Periodontol. 2021;92(6):22–34. doi: 10.1002/JPER.20-0434

[58]

Kose O., Kurt Bayrakdar S., Unver B., et al. Melatonin improves periodontitis-induced kidney damage by decreasing inflammatory stress and apoptosis in rats // J Periodontol. 2021. Vol. 92, N. 6. P. 22–34. doi: 10.1002/JPER.20-0434

[59]

Sun X, Mao Y, Dai P, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes. J Clin Periodontol. 2017;44(5):463–471. doi: 10.1111/jcpe.12711

[60]

Sun X., Mao Y., Dai P., et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes // J Clin Periodontol. 2017. Vol. 44, N. 5. P. 463–471. doi: 10.1111/jcpe.12711

[61]

Liu Q, Guo S, Huang Y, et al. Inhibition of trpa1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via perk/eif2α/atf-4/chop signal pathway. Oxid Med Cell Longev. 2022;2022:4107915. doi: 10.1155/2022/4107915

[62]

Liu Q., Guo S., Huang Y., et al. Inhibition of trpa1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via perk/eif2α/atf-4/chop signal pathway // Oxid Med Cell Longev. 2022. Vol. 2022. P. 4107915. doi: 10.1155/2022/4107915

[63]

Gölz L, Memmert S, Rath-Deschner B. Hypoxia and p. gingivalis synergistically induce hif-1 and nf-κb activation in pdl cells and periodontal diseases. Mediators Inflamm. 2015;2015:438085. doi: 10.1155/2015/438085

[64]

Gölz L., Memmert S., Rath-Deschner B. Hypoxia and p. gingivalis synergistically induce hif-1 and nf-κb activation in pdl cells and periodontal diseases // Mediators Inflamm. Vol. 2015. P. 438085. doi: 10.1155/2015/438085

[65]

Zhao J, Faure L, Adameyko I, Sharpe P.T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells. 2021;39(1):92–102. doi: 10.1002/stem.3288

[66]

Zhao J., Faure L., Adameyko I., Sharpe P.T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis // Stem Cells. 2021. Vol. 39, N. 1. P. 92–102. doi: 10.1002/stem.3288

[67]

Wang H, Wang X, Ma L, et al. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann N Y Acad Sci. 2022;1516(1):300–311. doi: 10.1111/nyas.14872

[68]

Wang H., Wang X., Ma L., et al. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization // Ann N Y Acad Sci. 2022. Vol. 1516, N. 1. P. 300–311. doi: 10.1111/nyas.14872

[69]

Zhao B, Zhang W, Xiong Y, et al. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism. J Mol Histol. 2020;51(2):161–171. doi: 10.1007/s10735-020-09866-9

[70]

Zhao B., Zhang W., Xiong Y., et al. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism // J Mol Histol. 2020. Vol. 51, N. 2. P. 161–171. doi: 10.1007/s10735-020-09866-9

[71]

Iova GM, Calniceanu H, Popa A, et al. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic wistar rats. Molecules. 2021;26(5):1332. doi: 10.3390/molecules26051332

[72]

Iova G.M., Calniceanu H., Popa A., et al. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic wistar rats // Molecules. 2021. Vol. 26, N. 5. P. 1332. doi: 10.3390/molecules26051332

[73]

Cai WJ, Chen Y, Shi LX, et al. Akt-gsk3β signaling pathway regulates mitochondrial dysfunction-associated opa١ cleavage contributing to osteoblast apoptosis: preventative effects of hydroxytyrosol. Oxid Med Cell Longev. 2019;2019:4101738. doi: 10.1155/2019/4101738

[74]

Cai W.J., Chen Y., Shi L.X., et al. Akt-gsk3β signaling pathway regulates mitochondrial dysfunction-associated OPA١ cleavage contributing to osteoblast apoptosis: preventative effects of hydroxytyrosol // Oxid Med Cell Longev. 2019. Vol. 2019. P. 4101738. doi: 10.1155/2019/4101738

[75]

Zhang X, Jiang Y, Mao J, et al. Hydroxytyrosol prevents periodontitis-induced bone loss by regulating mitochondrial function and mitogen-activated protein kinase signaling of bone cells. Free Radic Biol Med. 2021;176:298–311. doi: 10.1016/j.freeradbiomed.2021.09.027

[76]

Zhang X., Jiang Y., Mao J., et al. Hydroxytyrosol prevents periodontitis-induced bone loss by regulating mitochondrial function and mitogen-activated protein kinase signaling of bone cells // Free Radic Biol Med. 2021. Vol. 176. P. 298–311. doi: 10.1016/j.freeradbiomed.2021.09.027

[77]

Jiang C, Yang W, Wang C, et al. Methylene blue-mediated photodynamic therapy induces macrophage apoptosis via ROS and reduces bone resorption in periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. doi: 10.1155/2019/1529520

[78]

Jiang C., Yang W., Wang C., et al. Methylene blue-mediated photodynamic therapy induces macrophage apoptosis via ros and reduces bone resorption in periodontitis // Oxid Med Cell Longev. 2019. Vol. 2019. P. 1529520. doi: 10.1155/2019/1529520

[79]

Sui L, Wang J, Xiao Z, et al. ROS-scavenging nanomaterials to treat periodontitis. Front Chem. 2020;8:595530. doi: 10.3389/fchem.2020.595530

[80]

Sui L., Wang J., Xiao Z., et al. ROS-scavenging nanomaterials to treat periodontitis // Front Chem. 2020. Vol. 8. P. 595530. doi: 10.3389/fchem.2020.595530

[81]

Li X, Zhao Y, Peng H, et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK١-Parkin pathway. Front Bioeng Biotechnol. 2022;10:1081977. doi: 10.3389/fbioe.2022.1081977

[82]

Li X., Zhao Y., Peng H., et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway // Front Bioeng Biotechnol. 2022. Vol. 10. P. 1081977. doi: 10.3389/fbioe.2022.1081977

[83]

Qiu X, Yu Y, Liu H, et al. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform. Acta Biomater. 2021;135:593–605. doi: 10.1016/j.actbio.2021.08.009

[84]

Qiu X., Yu Y., Liu H., et al. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform // Acta Biomater. 2021. Vol. 135. P. 593–605. doi: 10.1016/j.actbio.2021.08.009

[85]

Zhai Q, Chen X, Fei D, et al. Nanorepairers rescue inflammation-induced mitochondrial dysfunction in mesenchymal stem cells. Adv Sci (Weinh). 2022;9(4):e2103839. doi: 10.1002/advs.202103839

[86]

Zhai Q., Chen X., Fei D., et al. Nanorepairers rescue inflammation-induced mitochondrial dysfunction in mesenchymal stem cells // Adv Sci (Weinh). 2022. Vol. 9, N. 4. P. e2103839. doi: 10.1002/advs.202103839

[87]

Nessa N, Kobara M, Toba H, et al. Febuxostat attenuates the progression of periodontitis in rats. Pharmacology. 2021;106(5-6):294–304. doi: 10.1159/000513034

[88]

Nessa N., Kobara M., Toba H., et al. Febuxostat attenuates the progression of periodontitis in rats // Pharmacology. 2021. Vol. 106, N. 5-6. P. 294–304. doi: 10.1159/000513034

[89]

Vaseenon S, Weekate K, Srisuwan T, et al. Observation of inflammation, oxidative stress, mitochondrial dynamics, and apoptosis in dental pulp following a diagnosis of irreversible pulpitis. Eur Endod J. 2023;8(2):148–155. doi: 10.14744/eej.2022.74745

[90]

Vaseenon S., Weekate K., Srisuwan T., et al. Observation of inflammation, oxidative stress, mitochondrial dynamics, and apoptosis in dental pulp following a diagnosis of irreversible pulpitis // Eur Endod J. 2023. Vol. 8, N. 2. P. 148–155. doi: 10.14744/eej.2022.74745

[91]

Dogan Buzoglu H, Ozcan M, Bozdemir O, et al. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation. Clin Oral Investig. 2023;27(10):5913–5923. doi: 10.1007/s00784-023-05203-y

[92]

Dogan Buzoglu H., Ozcan M., Bozdemir O., et al. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation // Clin Oral Investig. 2023. Vol. 27, N. 10. P. 5913–5923. doi: 10.1007/s00784-023-05203-y

[93]

Vengerfeldt V, Mändar R, Saag M, et al. Oxidative stress in patients with endodontic pathologies. J Pain Res. 2017;10:2031–2040. doi: 10.2147/JPR.S141366

[94]

Vengerfeldt V., Mändar R., Saag M., et al. Oxidative stress in patients with endodontic pathologies // J Pain Res. 2017. Vol. 10. P. 2031–2040. doi: 10.2147/JPR.S141366

[95]

Pan H, Cheng L, Yang H, et al. Lysophosphatidic acid rescues human dental pulp cells from ischemia-induced apoptosis. J Endod. 2014;40(2):217–222. doi: 10.1016/j.joen.2013.07.015

[96]

Pan H., Cheng L., Yang H., et al. Lysophosphatidic acid rescues human dental pulp cells from ischemia-induced apoptosis // J Endod. 2014. Vol. 40, N. 2. P. 217–222. doi: 10.1016/j.joen.2013.07.015

[97]

Guo X, Chen J. The protective effects of saxagliptin against lipopolysaccharide (LPS)-induced inflammation and damage in human dental pulp cells. Artif Cells Nanomed Biotechnol. 2019;47(1):1288–1294. doi: 10.1080/21691401.2019.1596925

[98]

Guo X., Chen J. The protective effects of saxagliptin against lipopolysaccharide (LPS)-induced inflammation and damage in human dental pulp cells // Artif Cells Nanomed Biotechnol. 2019. Vol. 47, N. 1. P. 1288–1294. doi: 10.1080/21691401.2019.1596925

[99]

Zhang X, Wang C, Zhou Z, Zhang Q. The mitochondrial-endoplasmic reticulum co-transfer in dental pulp stromal cell promotes pulp injury repair. Cell Prolif. 2024;57(1):e13530. doi: 10.1111/cpr.13530

[100]

Zhang X., Wang C., Zhou Z., Zhang Q. The mitochondrial-endoplasmic reticulum co-transfer in dental pulp stromal cell promotes pulp injury repair // Cell Prolif. 2024. Vol. 57, N. 1. P. e13530. doi: 10.1111/cpr.13530

[101]

Zhang YF, Zhou L, Mao HQ, et al. Mitochondrial DNA leakage exacerbates odontoblast inflammation through gasdermin D-mediated pyroptosis. Cell Death Discov. 2021;7(1):381. doi: 10.1038/s41420-021-00770-z

[102]

Zhang Y.F., Zhou L., Mao H.Q., et al. Mitochondrial DNA leakage exacerbates odontoblast inflammation through gasdermin D-mediated pyroptosis // Cell Death Discov. 2021. Vol. 7, N. 1. P. 381. doi: 10.1038/s41420-021-00770-z

[103]

Wang K, Zhou L, Mao H, et al. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif. 2023;56(9):e13442. doi: 10.1111/cpr.13442

[104]

Wang K., Zhou L., Mao H., et al. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage // Cell Prolif. 2023. Vol. 56, N. 9. P. e13442. doi: 10.1111/cpr.13442

[105]

Mendenhall WM, Suárez C, Genden EM, et al. Parameters associated with mandibular osteoradionecrosis. Am J Clin Oncol. 2018;41(12):1276–1280. doi: 10.1097/COC.0000000000000424

[106]

Mendenhall W.M., Suárez C., Genden E.M., et al. Parameters associated with mandibular osteoradionecrosis // Am J Clin Oncol. 2018. Vol. 41, N. 12. P. 1276–1280. doi: 10.1097/COC.0000000000000424

[107]

Shuster A, Reiser V, Trejo L, et al. Comparison of the histopathological characteristics of osteomyelitis, medication-related osteonecrosis of the jaw, and osteoradionecrosis. Int J Oral Maxillofac Surg. 2019;48(1):17–22. doi: 10.1016/j.ijom.2018.07.002

[108]

Shuster A., Reiser V., Trejo L., et al. Comparison of the histopathological characteristics of osteomyelitis, medication-related osteonecrosis of the jaw, and osteoradionecrosis // Int J Oral Maxillofac Surg. 2019. Vol. 48, N. 1. P. 17–22. doi: 10.1016/j.ijom.2018.07.002

[109]

Danielsson D, Brehwens K, Halle M, et al. Influence of genetic background and oxidative stress response on risk of mandibular osteoradionecrosis after radiotherapy of head and neck cancer. Head Neck. 2016;38(3):387–393. doi: 10.1002/hed.23903

[110]

Danielsson D., Brehwens K., Halle M., et al. Influence of genetic background and oxidative stress response on risk of mandibular osteoradionecrosis after radiotherapy of head and neck cancer // Head Neck. 2016. Vol. 38, N. 3. P. 387–393. doi: 10.1002/hed.23903

[111]

Xu J, Zheng Z, Fang D, et al. Mesenchymal stromal cell-based treatment of jaw osteoradionecrosis in Swine. Cell Transplant. 2012;21(8):1679–1686. doi: 10.3727/096368911X637434

[112]

Xu J., Zheng Z., Fang D., et al. Mesenchymal stromal cell-based treatment of jaw osteoradionecrosis in Swine // Cell Transplant. 2012. Vol. 21, N. 8. P. 1679–1686. doi: 10.3727/096368911X637434

[113]

Wang C, Blough E, Dai X, et al. Protective effects of cerium oxide nanoparticles on mc3t3-e1 osteoblastic cells exposed to x-ray irradiation. Cell Physiol Biochem. 2016;38(4):1510–1519. doi: 10.1159/000443092

[114]

Wang C., Blough E., Dai X., et al. Protective effects of cerium oxide nanoparticles on mc3t3-e1 osteoblastic cells exposed to x-ray irradiation // Cell Physiol Biochem. 2016. Vol. 38, N. 4. P. 1510–1519. doi: 10.1159/000443092

[115]

Li J, Yin P, Chen X, et al. Effect of α٢-macroglobulin in the early stage of jaw osteoradionecrosis. Int J Oncol. 2020;57(1):213–222. doi: 10.3892/ijo.2020.5051

[116]

Li J., Yin P., Chen X., et al. Effect of α٢-macroglobulin in the early stage of jaw osteoradionecrosis // Int J Oncol. 2020. Vol. 57, N. 1. P. 213–222. doi: 10.3892/ijo.2020.5051

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (436KB)

428

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/