Detecting structural and functional mitochondrial abnormalities in periodontal tissues using an experimental periodontitis model

Albina I. Abdullaeva , Valentina N. Olesova , David Yu. Akopov , Serazhutdin A. Abdullaev

Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (5) : 452 -461.

PDF (855KB)
Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (5) : 452 -461. DOI: 10.17816/dent632937
Experimental and Theoretical Investigation
research-article

Detecting structural and functional mitochondrial abnormalities in periodontal tissues using an experimental periodontitis model

Author information +
History +
PDF (855KB)

Abstract

Background: Recent research indicates that mitochondrial dysfunction plays a significant role in the development and progression of oral inflammation, such as periodontitis and pulpitis.

Aim: To assess structural and functional mitochondrial abnormalities in periodontal tissues using an experimental periodontitis model in rats.

Materials and methods: The study used male Wistar rats aged 4 months, with a body weight of 221.0±7.5 g. Simple randomization was used to divide the animals into two groups (n=10 each). Group 1 (control) consisted of intact animals, while Group 2 consisted of animals with experimentally induced periodontitis. A ligature-induced periodontitis model was used, with a non-absorbable polyfilament thread sutured into the gum near the mandibular incisors. Histological examinations were used to validate the experimental periodontitis model. The following molecular genetic and biochemical parameters were assessed: nuclear DNA and mitochondrial DNA (mtDNA) damage, abundance and heteroplasmy of mtDNA, mitochondrial gene expression, and levels of hydrogen peroxide (H2O2), malondialdehyde, and reduced glutathione.

Results: The resulting experimental periodontitis model revealed histological changes in periodontal tissues, indicating periodontitis in the animals. On day 14 after ligation, histological findings showed that Group 2 had more significant mtDNA damage and heteroplasmy in periodontal tissues than Group 1 (control). Moreover, Group 2 showed a decrease in the expression of mtDNA genes involved in adenosine triphosphate synthesis. This group also had lower glutathione levels and higher H2O2 and malondialdehyde levels than the control group.

Conclusion: The experimental periodontitis model in rats revealed structural and functional mitochondrial abnormalities in periodontal tissues. New approaches to assessing mitochondrial function in periodontitis may facilitate the diagnosis and treatment of the disease and its complications.

Keywords

periodontitis / mitochondrial dysfunction / mitochondrial DNA damage / gene expression / ROS / hydrogen peroxide / ATP / reduced glutathione / malondialdehyde / rats

Cite this article

Download citation ▾
Albina I. Abdullaeva, Valentina N. Olesova, David Yu. Akopov, Serazhutdin A. Abdullaev. Detecting structural and functional mitochondrial abnormalities in periodontal tissues using an experimental periodontitis model. Russian Journal of Dentistry, 2024, 28(5): 452-461 DOI:10.17816/dent632937

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Herrera D, Sanz M, Shapira L, et al. Periodontal diseases and cardiovascular diseases, diabetes, and respiratory diseases: Summary of the consensus report by the European Federation of Periodontology and WONCA Europe. Eur J Gen Pract. 2024;30(1):2320120. doi: 10.1080/13814788.2024.2320120

[2]

Herrera D., Sanz M., Shapira L., et al. Periodontal diseases and cardiovascular diseases, diabetes, and respiratory diseases: Summary of the consensus report by the European Federation of Periodontology and WONCA Europe // Eur J Gen Pract. 2024. Vol. 30, N 1. P. 2320120. doi: 10.1080/13814788.2024.2320120

[3]

Wu KCH, Liu L, Xu A, et al. Shared genetic architecture between periodontal disease and type 2 diabetes: a large scale genome-wide cross-trait analysis. Endocrine. 2024;85(2):685–694. doi: 10.1007/s12020-024-03766-8

[4]

Wu K.C.H., Liu L., Xu A., et al. Shared genetic architecture between periodontal disease and type 2 diabetes: a large scale genome-wide cross-trait analysis // Endocrine. 2024. Vol. 85, N 2. P. 685–694. doi: 10.1007/s12020-024-03766-8

[5]

Tsimpiris A, Tsolianos I, Grigoriadis A, et al. Association of chronic periodontitis with helicobacter pylori infection in stomach or mouth: a systematic review and meta-analysis. Eur J Dent. 2023;17(2):270–282. doi: 10.1055/s-0042-1756690

[6]

Tsimpiris A., Tsolianos I., Grigoriadis A., et al. Association of chronic periodontitis with helicobacter pylori infection in stomach or mouth: a systematic review and meta-analysis // Eur J Dent. 2023. Vol. 17, N 2. P. 270–282. doi: 10.1055/s-0042-1756690

[7]

Aguiar FJN, Menezes FDS, Fagundes MA, et al. Gastric adenocarcinoma and periodontal disease: A systematic review and meta-analysis. Clinics (Sao Paulo). 2024;79:100321. doi: 10.1016/j.clinsp.2023.100321

[8]

Aguiar F.J.N., Menezes F.D.S., Fagundes M.A., et al. Gastric adenocarcinoma and periodontal disease: A systematic review and meta-analysis // Clinics (Sao Paulo). 2024. Vol. 79. P. 100321. doi: 10.1016/j.clinsp.2023.100321

[9]

Miklyaev SV, Leonova OM, Sushchenko AV. Analysis of the prevalence of chronic inflammatory diseases of periodontal tissues. Modern Problems of Science and Education. 2018;(2):15. EDN: XNYEHR

[10]

Микляев С.В., Леонова О.М., Сущенко А.В. Анализ распространенности хронических воспалительных заболеваний тканей пародонта // Современные проблемы науки и образования. 2018. № 2. С. 15. EDN: XNYEHR

[11]

Zhang J, Yu, J, Dou J, et al. The impact of smoking on subgingival plaque and the development of periodontitis: a literature review. Front Oral Health. 2021;2:751099. doi: 10.3389/froh.2021.751099

[12]

Zhang J., Yu J., Dou J., et al. The impact of smoking on subgingival plaque and the development of periodontitis: a literature review // Front Oral Health. 2021. Vol. 2. P. 751099. doi: 10.3389/froh.2021.751099

[13]

Coll PP, Lindsay A, Meng J, et al. The prevention of infections in older adults: oral health. J Am Geriatr Soc. 2020;68(2):411–416. doi: 10.1111/jgs.16154

[14]

Coll P.P., Lindsay A., Meng J., et al. The prevention of infections in older adults: oral health // J Am Geriatr Soc. 2020. Vol. 68, N 2. P. 411–416. doi: 10.1111/jgs.16154

[15]

Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017;75(1):152–188. doi: 10.1111/prd.12201

[16]

Graziani F., Karapetsa D., Alonso B., Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? // Periodontol 2000. 2017. Vol. 75, N 1. P. 152–188. doi: 10.1111/prd.12201

[17]

Li L, Zhang YL, Liu XY, et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front Microbiol. 2021;12:656372. doi: 10.3389/fmicb.2021.656372

[18]

Li L., Zhang Y.L., Liu X.Y., et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress // Front Microbiol. 2021. Vol. 12. P. 656372. doi: 10.3389/fmicb.2021.656372

[19]

Govindaraj P, Khan NA, Gopalakrishna P, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis. Mitochondrion. 2011;11(3):504–512. doi: 10.1016/j.mito.2011.01.009

[20]

Govindaraj P., Khan N.A., Gopalakrishna P., et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis // Mitochondrion. 2011. Vol. 11, N 3. P. 504–512. doi: 10.1016/j.mito.2011.01.009

[21]

Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–985. doi: 10.1089/scd.2019.0031

[22]

Tomokiyo A., Wada N., Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium // Stem Cells Dev. 2019. Vol. 28, N 15. P. 974–985. doi: 10.1089/scd.2019.0031

[23]

Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol. 2021;110(3):565–576. doi: 10.1002/JLB.4MR0421-750R

[24]

Zhang Z., Deng M., Hao M., Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms // J Leukoc Biol. 2021. Vol. 110, N 3. P. 565–576. doi: 10.1002/JLB.4MR0421-750R

[25]

Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 2018;41:37–44. doi: 10.1016/j.mito.2017.12.001

[26]

Dela Cruz C.S., Kang M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases // Mitochondrion. 2018. Vol. 41. P. 37–44. doi: 10.1016/j.mito.2017.12.001

[27]

Chen Y, Ji Y, Jin X, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress. Biochem Biophys Res Commun. 2019;509(2):483–490. doi: 10.1016/j.bbrc.2018.12.143

[28]

Chen Y., Ji Y., Jin X., et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress // Biochem Biophys Res Commun. 2019. Vol. 509, N 2. P. 483–490. doi: 10.1016/j.bbrc.2018.12.143

[29]

Savkina AA, Lengert EV, Ermakov AV, et al. Effects of the gel containing microcapsules with silver nanoparticles loaded with metronidazole on the state of the gingival microcirculation in animals with experimental periodontitis. Regionarnoe krovoobrashhenie i mikrocirkuljacija. 2023;22(3):78–85. EDN: KBAKNN doi: 10.24884/1682-6655-2023-22-3-78-85

[30]

Савкина А.А., Ленгерт Е.В., Ермаков А.В., и др. Влияние геля, содержащего микрокапсулы наночастиц серебра, загруженные метронидазолом, на состояние микроциркуляторного русла десны у животных с экспериментальным пародонтитом // Регионарное кровообращение и микроциркуляция. 2023. Т. 22, № 3. P. 78–85. EDN: KBAKNN doi: 10.24884/1682-6655-2023-22-3-78-85

[31]

Ionel A, Lucaciu O, Moga M, et al. Periodontal disease induced in Wistar rats — experimental study. HVM Bioflux. 2015;7(2):90–95.

[32]

Ionel A., Lucaciu O., Moga M., et al. Periodontal disease induced in Wistar rats — experimental study // HVM Bioflux. 2015. Vol. 7, N 2. P. 90–95.

[33]

Abdullaev S, Gubina N, Bulanova T, Gaziev A. Assessment of nuclear and mitochondrial DNA, expression of mitochondria-related genes in different brain regions in rats after whole-body X-ray irradiation. Int J Mol Sci. 2020;21(4):1196. doi: 10.3390/ijms21041196

[34]

Abdullaev S., Gubina N., Bulanova T., Gaziev A. Assessment of nuclear and mitochondrial DNA, expression of mitochondria-related genes in different brain regions in rats after whole-body x-ray irradiation // Int J Mol Sci. 2020. Vol. 21, N 4. P. 1196. doi: 10.3390/ijms21041196

[35]

Abdullaev SA, Glukhov SI, Gaziev AI. Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity. Antioxidants (Basel). 2021;10(12):1885. doi: 10.3390/antiox10121885

[36]

Abdullaev S.A., Glukhov S.I., Gaziev A.I. Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity // Antioxidants (Basel). 2021. Vol. 10, N 12. P. 1885. doi: 10.3390/antiox10121885

[37]

Abdullaev SA, Glukhov, SI, Gaziev AI. Melatonin reduces radiation damage to the spleen and increases survival when administered before and after the exposure of mice to X-ray radiation. Biology Bulletin. 2023;50(11):3069–3076. doi: 10.1134/S1062359023110018

[38]

Abdullaev S.A., Glukhov S.I., Gaziev A.I. Melatonin reduces radiation damage to the spleen and increases survival when administered before and after the exposure of mice to X-ray radiation // Biology Bulletin. 2023. Vol. 50, N 11. P. 3069–3076. doi: 10.1134/S1062359023110018

[39]

Abdullaev S, Bulanova T, Timoshenko G, Gaziev AI. Increase of mtDNA number and its mutant copies in rat brain after exposure to 150 MeV protons. Mol Biol Rep. 2020;47(6):4815–4820. doi: 10.1007/s11033-020-05491-7

[40]

Abdullaev S., Bulanova T., Timoshenko G., Gaziev A.I. Increase of mtDNA number and its mutant copies in rat brain after exposure to 150 MeV protons // Mol Biol Rep. 2020. Vol. 47, N 6. P. 4815–4820. doi: 10.1007/s11033-020-05491-7

[41]

Moretton A, Morel F, Macao B, et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One. 2017;12(4):e0176795. doi: 10.1371/journal.pone.0176795

[42]

Moretton A., Morel F., Macao B., et al. Selective mitochondrial DNA degradation following double-strand breaks // PLoS One. 2017. Vol. 12, N 4. P. e0176795. doi: 10.1371/journal.pone.0176795

[43]

Peeva V, Blei D, Trombly G, et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9(1):1727. doi: 10.1038/s41467-018-04131-w

[44]

Peeva V., Blei D., Trombly G., et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery // Nat Commun. 2018. Vol. 9, N 1. P. 1727. doi: 10.1038/s41467-018-04131-w

[45]

Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes. 2019;45:311–341. doi: 10.1016/bs.enz.2019.08.004

[46]

Zhao L. Mitochondrial DNA degradation: a quality control measure for mitochondrial genome maintenance and stress response // Enzymes. 2019. Vol. 45, P. 311–341. doi: 10.1016/bs.enz.2019.08.004

[47]

Golpich M, Amini E, Mohamed Z, et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655

[48]

Golpich M., Amini E., Mohamed Z., et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment // CNS Neurosci Ther. 2017. Vol. 23, N 1. P. 5–22. doi: 10.1111/cns.12655

[49]

Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett. 2018;592(5):663–678. doi: 10.1002/1873-3468.12890

[50]

Hunt R.J., Bateman J.M. Mitochondrial retrograde signaling in the nervous system // FEBS Lett. 2018. Vol. 592, N 5. P. 663–678. doi: 10.1002/1873-3468.12890

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (855KB)

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/