In vivo biodegradation rates of domestic membranes for guided tissue regeneration
Alexandr G. Stepanov , Samvel V. Apresyan , Georgii K. Zakharyan , Sergey V. Bersenev
Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (4) : 337 -347.
In vivo biodegradation rates of domestic membranes for guided tissue regeneration
Background: Experimental research is required to provide guidelines for the use of domestic biodegradable membranes.
Aim: To assess the swelling index and biodegradation rate of barrier membranes (non-collagen and collagen) for guided tissue regeneration in vitro, as well as their biocompatibility in vivo.
Materials and Methods: The swelling index of two types of membranes was assessed after 24 h of exposure to phosphate-buffered saline (PBS) at different pH levels (6.50 and 7.37). The spontaneous degradation rate of the two types of membranes was assessed; changes in their weight following exposure to PBS at different pH levels (6.50 and 7.37) were measured at predetermined time points. Moreover, the biocompatibility of two membrane samples following subcutaneous implantation in B/D male mice was assessed.
Results: The swelling index of non-collagen membranes was higher at neutral pH compared to acidic pH: 7.7 for pH 7.37 vs 7.2 for pH 6.50. For collagen membranes, the swelling index was pH-independent. There were no differences in membrane weight loss following exposure to PBS at pH 6.5 during 8 weeks. During the first two weeks, collagen membranes had a higher resorption rate at pH 7.37 than non-collagen membranes. Following subcutaneous implantation of both membranes, histopathological specimens collected two weeks after surgery revealed the formation of foreign body granulomas with well-defined boundaries around the implants. Macrophages, monocytes, single giant cells of foreign bodies, and Pirogov–Langhans giant cells were detected, with the number gradually increasing over time.
Conclusion: Non-collagen membranes had a larger swelling index than collagen membranes, which depended on pH. At pH 7.37, collagen membranes had a higher resorption rate during the first two weeks compared to non-collagen membranes. In vitro weight loss after 8 weeks was 20–30% for both membranes, regardless of pH. Subcutaneous implantation in mice confirmed the biocompatibility of the membranes. The biodegradation rate of non-collagen membranes was higher than that of collagen membranes.
experimental study / biodegradation / biocompatibility / guided tissue regeneration / biodegradable membrane
| [1] |
Scantlebury TV. 1982–1992: a decade of technology development for guided tissue regeneration. J Periodontol. 1993;64 Suppl. 11S:1129–1137. doi: 10.1902/jop.1993.64.11s.1129 |
| [2] |
Scantlebury T.V. 1982–1992: a decade of technology development for guided tissue regeneration // J Periodontol. 1993. Vol. 64, Suppl. 11S. P. 1129–1137. doi: 10.1902/jop.1993.64.11s.1129 |
| [3] |
Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011;6(10):1187–1197. doi: 10.1002/biot.201100294 |
| [4] |
Gentile P., Chiono V., Tonda-Turo C., et al. Polymeric membranes for guided bone regeneration // Biotechnol J. 2011. Vol. 6, N 10. P. 1187–1197. doi: 10.1002/biot.201100294 |
| [5] |
Zakharyan GK, Stepanov AG, Apresyan SV. Barrier membrane in dental practice. Russian Bulletin of Dental Implantology. 2022;(3-4):66–75. EDN: MQSLIK |
| [6] |
Захарян Г.К., Степанов А.Г., Апресян С.В. Барьерные мембраны в стоматологической практике // Российский вестник дентальной имплантологии. 2022. № 3-4. С. 66–75. EDN: MQSLIK |
| [7] |
Khojasteh A, Kheiri L, Motamedian SR, Khoshkam V. Guided bone regeneration for the reconstruction of alveolar bone defects. Ann Maxillofac Surg. 2017;7(2):263–277. doi: 10.4103/ams.ams_76_17 |
| [8] |
Khojasteh A., Kheiri L., Motamedian S.R., Khoshkam V. Guided bone regeneration for the reconstruction of alveolar bone defects // Ann Maxillofac Surg. 2017. Vol. 7, N 2. P. 263–277. doi: 10.4103/ams.ams_76_17 |
| [9] |
Bartee BK. Evaluation of a new polytetrafluoroethylene guided tissue regeneration membrane in healing extraction sites. Compend Contin Educ Dent. 1998;19(12):1256–1258, 1260, 1262–1264. |
| [10] |
Bartee B.K. Evaluation of a new polytetrafluoroethylene guided tissue regeneration membrane in healing extraction sites // Compend Contin Educ Dent. 1998. Vol. 19, N 12. P. 1256–1258, 1260, 1262–1264. |
| [11] |
Watzinger F, Luksch J, Millesi W, et al. Guided bone regeneration with titanium membranes: a clinical study. Br J Oral Maxillofac Surg. 2000;38(4):312–315. doi: 10.1054/bjom.1999.0228 |
| [12] |
Watzinger F., Luksch J., Millesi W., et al. Guided bone regeneration with titanium membranes: a clinical study // Br J Oral Maxillofac Surg. 2000. Vol. 38, N 4. P. 312–315. doi: 10.1054/bjom.1999.0228 |
| [13] |
Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57(1):3–14. doi: 10.1016/j.jpor.2012.12.001 |
| [14] |
Rakhmatia Y.D., Ayukawa Y., Furuhashi A., Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications // J Prosthodont Res. 2013. Vol. 57, N 1. P. 3–14. doi: 10.1016/j.jpor.2012.12.001 |
| [15] |
Lundgren D, Sennerby L, Falk H, et al. The use of a new bioresorbable barrier for guided bone regeneration in connection with implant installation. Case reports. Clin Oral Implants Res. 1994;5(3):177–184. doi: 10.1034/j.1600-0501.1994.050309.x |
| [16] |
Lundgren D., Sennerby L., Falk H., et al. The use of a new bioresorbable barrier for guided bone regeneration in connection with implant installation. Case reports // Clin Oral Implants Res. 1994. Vol. 5, N 3. P. 177–184. doi: 10.1034/j.1600-0501.1994.050309.x |
| [17] |
Mayfield L, Nobréus N, Attström R, Linde A. Guided bone regeneration in dental implant treatment using a bioabsorbable membrane. Clin Oral Implants Res. 1997;8(1):10–17. doi: 10.1111/j.1600-0501.1997.tb00002.x |
| [18] |
Mayfield L., Nobréus N., Attström R., Linde A. Guided bone regeneration in dental implant treatment using a bioabsorbable membrane // Clin Oral Implants Res. 1997. Vol. 8, N 1. P. 10–17. doi: 10.1111/j.1600-0501.1997.tb00002.x |
| [19] |
Geurs NC, Korostoff JM, Vassilopoulos PJ, et al. Clinical and histologic assessment of lateral alveolar ridge augmentation using a synthetic longterm bioabsorbable membrane and an allograft. J Periodontol. 2008;79(7):1133–1140. doi: 10.1902/jop.2008.070595 |
| [20] |
Geurs N.C., Korostoff J.M., Vassilopoulos P.J., et al. Clinical and histologic assessment of lateral alveolar ridge augmentation using a synthetic longterm bioabsorbable membrane and an allograft // J Periodontol. 2008. Vol. 79, N 7. P. 1133–1140. doi: 10.1902/jop.2008.070595 |
| [21] |
Simion M, Scarano A, Gionso L, Piattelli A. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants. 1996;11(6):735–742. |
| [22] |
Simion M., Scarano A., Gionso L., Piattelli A. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans // Int J Oral Maxillofac Implants. 1996. Vol. 11, N 6. P. 735–742. |
| [23] |
Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–542. doi: 10.1016/j.biomaterials.2004.01.066 |
| [24] |
Sung H.J., Meredith C., Johnson C., Galis Z.S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis // Biomaterials. 2004. Vol. 25, N 26. P. 5735–5742. doi: 10.1016/j.biomaterials.2004.01.066 |
| [25] |
Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259 |
| [26] |
Casalini T., Rossi F., Castrovinci A., Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications // Front Bioeng Biotechnol. 2019. Vol. 7. P. 259. doi: 10.3389/fbioe.2019.00259 |
| [27] |
Metsuku I, Muraev AA, Gazhva YuV, Ivashkevich SG. Comparative characteristics of various types of membranes used for bone grafting and guided tissue regeneration in dentistry and maxillofacial surgery. Russian Journal of Dentistry. 2017;21(5):291–296. EDN: ZSJHKZ doi: 10.18821/1728-2802-2017-21-5-291-296 |
| [28] |
Мецуку И., Мураев А.А., Гажва Ю.В., Ивашкевич С.Г. Сравнительная характеристика различного типа барьерных мембран, используемых для направленной костной регенерации в стоматологии и челюстно-лицевой хирургии // Российский стоматологический журнал. 2017. Т. 21, № 5. С. 291–296. EDN: ZSJHKZ doi: 10.18821/1728-2802-2017-21-5-291-296 |
| [29] |
Apresyan SV, Stepanov AG, Yakhyaev IM, et al. Experimental substantiation of the effectiveness of using a new domestic bioresorbable membrane for directed tissue regeneration. Russian Bulletin of Dental Implantology. 2020;(3–4):25–31. EDN: PWEWWR |
| [30] |
Апресян С.В., Степанов А.Г., Яхъяев И.М., и др. Экспериментальное обоснование эффективности применения новой отечественной биорезорбируемой мембраны для направленной тканевой регенерации // Российский вестник дентальной имплантологии. 2020. № 3-4. С. 25–31. EDN: PWEWWR |
| [31] |
Zakharyan GK, Stepanov AG, Apresyan SV. Physical and mechanical properties bioresorbable membranes used for guided bone regeneration. Russian Bulletin of Dental Implantology. 2023;(2):18–24. EDN: YFYOEY |
| [32] |
Захарян Г.К., Степанов А.Г., Апресян С.В. Физико-механические свойства биорезорбируемых мембран, используемых для направленной костной регенерации // Российский вестник дентальной имплантологии. 2023. № 2. С. 18–24. EDN: YFYOEY |
Eco-Vector
/
| 〈 |
|
〉 |