Manufacture of ceramic structures in orthopedic dentistry
Galina E. Bordina , Nadezhda P. Lopina , Alexey A. Andreev , Vasiliy A. Osokin
Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (2) : 191 -198.
Manufacture of ceramic structures in orthopedic dentistry
This article presents a review of ceramic materials used in modern orthopedic dentistry. Currently, the main types of orthopedic structures containing dental porcelain are metal–ceramic and metal-free ceramic crowns and prostheses made using pressed ceramic technology, in particular veneers. All types dental porcelain prostheses have a common manufacturing technology, which involves the sequential application of ceramic layers with their subsequent firing. Moreover, each group of teeth has additional masses for firing, such as masses of the cutting edge and masses simulating various effects (e.g., blue, yellow, and other shades, imitation of tooth growth lines). These masses are created to give future crowns the most natural and aesthetic appearance. All structural components (layers) of ceramics used in the manufacture of ceramic prostheses have a similar chemical composition. The raw material is feldspar glass with crystalline quartz. Depending on the conditions of the reactions, the composition of mixtures can vary, and compounds with desired properties can be obtained using the phase analysis method, which will expand the range of domestic ceramic materials produced, which are currently relatively scarce. This is especially relevant in modern conditions of import substitution.
dental porcelain / metal-ceramic crowns / press ceramics / veneers
| [1] |
Veselkov SA, Vladimirova MD. The use of ceramic material in dentistry. Tribuna uchenogo. 2019;(7):70–78. EDN: YOYKOO |
| [2] |
Веселков С.А., Владимирова М.Д. Использование керамического материала в стоматологии // Трибуна учёного. 2019. № 7. С. 70–78. EDN: YOYKOO |
| [3] |
Kuz’mina OE. Errors in the manufacture of metal-ceramic prostheses. Causes and ways to eliminate them. Molodezhnyj innovacionnyj vestnik. 2021;10(S1):390–395. EDN: UNZWCQ |
| [4] |
Кузьмина О.Э. Ошибки при изготовлении металлокерамических протезов. Причины и способы их устранения // Молодежный инновационный вестник. 2021. Т. 10, № S1. С. 390–395. EDN: UNZWCQ |
| [5] |
Zajceva NV, Vecherkina ZhV, Kryuchkov MA, et al. Features of working with dentin ceramic mass in the manufacture of metal-ceramic dentures. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. 2020;19(3):104–110. EDN: CXKVUU doi: 10.36622/VSTU.2020.19.3.013 |
| [6] |
Зайцева Н.В., Вечеркина Ж.В., Крючков М.А., и др. Особенности работы с дентиновой керамической массой при изготовлении металлокерамического зубного протеза // Системный анализ и управление в биомедицинских системах. 2020. Т. 19, № 3. С. 104–110. EDN: CXKVUU doi: 10.36622/VSTU.2020.19.3.013 |
| [7] |
Shi HY, Pang R, Yang J, et al. Overview of several typical ceramic materials for restorative dentistry. Biomed Res Int. 2022;2022:8451445. doi: 10.1155/2022/8451445. |
| [8] |
Shi H.Y., Pang R., Yang J., et al. Overview of several typical ceramic materials for restorative dentistry // Biomed Res Int. 2022. Vol. 2022. P. 8451445. doi: 10.1155/2022/8451445 |
| [9] |
Lyukshted AR. Metal-ceramic — review of manufacturing technologies and comparative characteristics. Molodezhnyj innovacionnyj vestnik. 2021;10(S1):402–408. EDN: YLWFUY |
| [10] |
Люкштед А.Р. Металлокерамика — обзор технологий изготовления и сравнительная характеристика // Молодежный инновационный вестник. 2021. Т. 10, № S1. С. 402–408. EDN: YLWFUY |
| [11] |
Zajceva NV, Vecherkina ZhV, Andreeva EA, et al. Development of an algorithm for forming the main layer of ceramic cladding in the manufacture of metal-ceramic structures. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. 2020;19(1):66–74. EDN: OXXBEA doi: 10.25987/VSTU.2020.19.1.010 |
| [12] |
Зайцева Н.В., Вечеркина Ж.В., Андреева Е.А., и др. Разработка алгоритма формирования основного слоя керамической облицовки при изготовлении металлокерамической конструкции // Системный анализ и управление в биомедицинских системах. 2020. Т. 19, № 1. С. 66–74. EDN: OXXBEA doi: 10.25987/VSTU.2020.19.1.010 |
| [13] |
Sobir RK. Dental orthopedic treatment with the use of non-removable porcelain fused to metal prostheses for deformities of dentitions and dentofacial abnormalities. Zdravoohranenie Chuvashii. 2020;(4):81–85. EDN: BUVMBT doi: 10.25589/GIDUV.2020.34.46.031 |
| [14] |
Собир Р.К. Стоматологическое ортопедическое лечение с применением несъёмных металлокерамических протезов при деформациях зубных рядов и зубочелюстных аномалиях // Здравоохранение Чувашии. 2020. № 4. С. 81–85. EDN: BUVMBT doi: 10.25589/GIDUV.2020.34.46.031 |
| [15] |
Valandro LF, Cadore-Rodrigues AC, Dapieve KS, et al. A brief review on fatigue test of ceramic and some related matters in dentistry. J Mech Behav Biomed Mater. 2023;138:105607. doi: 10.1016/j.jmbbm.2022.105607 |
| [16] |
Valandro L.F., Cadore-Rodrigues A.C., Dapieve K.S., et al. A brief review on fatigue test of ceramic and some related matters in Dentistry // J Mech Behav Biomed Mater. 2023. Vol. 138. P. 105607. doi: 10.1016/j.jmbbm.2022.105607 |
| [17] |
Abdulrahman S, Von See Mahm C, Talabani R, Abdulateef D. Evaluation of the clinical success of four different types of lithium disilicate ceramic restorations: a retrospective study. BMC Oral Health. 2021;21(1):625. doi: 10.1186/s12903-021-01987-1 |
| [18] |
Abdulrahman S., Von See Mahm C., Talabani R., Abdulateef D. Evaluation of the clinical success of four different types of lithium disilicate ceramic restorations: a retrospective study // BMC Oral Health. 2021. Vol. 21, N 1. P. 625. doi: 10.1186/s12903-021-01987-1 |
| [19] |
Vecherkina ZhV, Zajceva NV, Smolina AA, et al. Results of evaluation of possible errors and methods of their elimination at the stages of manufacturing metal-ceramic dentures. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. 2021;20(2):54–62. EDN: ZNFDFC doi: 10.36622/VSTU.2021.20.2.007 |
| [20] |
Вечеркина Ж.В., Зайцева Н.В., Смолина А.А., и др. Результаты оценки возможных ошибок и методов их устранения на этапах изготовления металлокерамических зубных протезов // Системный анализ и управление в биомедицинских системах. 2021. Т. 20, № 2. С. 54–62. EDN: ZNFDFC doi: 10.36622/VSTU.2021.20.2.007 |
| [21] |
Rogozhnikov AG, Porozova SE, Gileva OS, et al. Chemical stability, structure and surface topology of domestic comprehensively stabilized zirconium dioxide ceramics in simulated aggressive environments. Actual Problems in Dentistry. 2023;19(4):136–142. EDN: KNKAJL doi: 10.18481/2077-7566-2023-19-4-136-142 |
| [22] |
Рогожников А.Г., Порозова С.Е., Гилева О.С., и др. Химическая стабильность, структура и топология поверхности отечественной комплексно стабилизированной диоксидциркониевой керамики в моделируемых агрессивных средах // Проблемы стоматологии. 2023. Т. 19, № 4. С. 136–142. EDN: KNKAJL doi: 10.18481/2077-7566-2023-19-4-136-142 |
| [23] |
Moshaverinia A. Review of the modern dental ceramic restorative materials for esthetic dentistry in the minimally invasive age. Dent Clin North Am. 2020;64(4):621–631. doi: 10.1016/j.cden.2020.05.002 |
| [24] |
Moshaverinia A. Review of the modern dental ceramic restorative materials for esthetic dentistry in the minimally invasive age // Dent Clin North Am. 2020. Vol. 64, N 4. P. 621–631. doi: 10.1016/j.cden.2020.05.002 |
| [25] |
Bustamante-Hernández N, Montiel-Company JM, Bellot-Arcís C, et al. Clinical behavior of ceramic, hybrid and composite onlays. A systematic review and meta-analysis. Int J Environ Res Public Health. 2020;17(20):7582. doi: 10.3390/ijerph17207582 |
| [26] |
Bustamante-Hernández N., Montiel-Company J.M., Bellot-Arcís C., et al. Clinical behavior of ceramic, hybrid and composite onlays. A systematic review and meta-analysis // Int J Environ Res Public Health. 2020. Vol. 17, N 20. P. 7582. doi: 10.3390/ijerph17207582 |
| [27] |
Vokulova YuA, Zhulev EN, Vel’makina IV. A method for correction of occlusal relationships between dental rows using digital technology. Siberian Medical Review. 2022;(4):83–88. EDN: RMHQSN doi: 10.20333/25000136-2022-4-83-88 |
| [28] |
Вокулова Ю.А., Жулев Е.Н., Вельмакина И.В., и др. Методика коррекции окклюзионных взаимоотношений зубных рядов с помощью цифровых технологий // Сибирское медицинское обозрение. 2022. № 4. С. 83–88. EDN: RMHQSN doi: 10.20333/25000136-2022-4-83-88 |
| [29] |
Nemscveridze YaE, Derbina LR. Pharmacologic agents used among patients with precancerous diseases of the oral mucosa. Vestnik medicinskogo instituta «Reaviz»: reabilitaciya, vrach i zdorov’e. 2022;(2):343–344. |
| [30] |
Немсцверидзе Я.Э., Дербина Л.Р. Фармакологические средства, применяемые среди пациентов с предраковыми заболеваниями слизистой оболочки полости рта // Вестник медицинского института «Реавиз»: реабилитация, врач и здоровье. 2022. № 2. С. 343–344. |
| [31] |
Jo EH, Huh YH, Ko KH, et al. Effect of different ceramic materials and substructure designs on fracture resistance in anterior restorations. J Prosthet Dent. 2022;127(5):785–792. doi: 10.1016/j.prosdent.2020.09.056 |
| [32] |
Jo E.H., Huh Y.H., Ko K.H., et al. Effect of different ceramic materials and substructure designs on fracture resistance in anterior restorations // J Prosthet Dent. 2022. Vol. 127, N 5. P. 785–792. doi: 10.1016/j.prosdent.2020.09.056 |
| [33] |
Manziuc M, Kui A, Chisnoiu A, et al. Zirconia-reinforced lithium silicate ceramic in digital dentistry: a comprehensive literature review of our current understanding. Medicina (Kaunas). 2023;59(12):2135. doi: 10.3390/medicina59122135 |
| [34] |
Manziuc M., Kui A., Chisnoiu A., et al. Zirconia-reinforced lithium silicate ceramic in digital dentistry: a comprehensive literature review of our current understanding // Medicina (Kaunas). 2023. Vol. 59, N 12. P. 2135. doi: 10.3390/medicina59122135 |
| [35] |
Sanal FA, Kilinc H. Evaluating ceramic repair materials in terms of bond strength and color stability. Int J Prosthodont. 2020;33(5):536–545. doi: 10.11607/ijp.6760 |
| [36] |
Sanal F.A., Kilinc H. Evaluating ceramic repair materials in terms of bond strength and color stability // Int J Prosthodont. 2020. Vol. 33, N 5. P. 536–545. doi: 10.11607/ijp.6760 |
| [37] |
Velho HC, Dapieve KS, Valandro LF, et al. Cyclic fatigue tests on non-anatomic specimens of dental ceramic materials: a scoping review. J Mech Behav Biomed Mater. 2022;126:104985. doi: 10.1016/j.jmbbm.2021.104985 |
| [38] |
Velho H.C., Dapieve K.S., Valandro L.F., et al. Cyclic fatigue tests on non-anatomic specimens of dental ceramic materials: a scoping review // J Mech Behav Biomed Mater. 2022. Vol. 126. P. 104985. doi: 10.1016/j.jmbbm.2021.104985 |
| [39] |
Liu C, Eser A, Albrecht T, et al. Strength characterization and lifetime prediction of dental ceramic materials. Dent Mater. 2021;37(1):94–105. doi: 10.1016/j.dental.2020.10.015 |
| [40] |
Liu C., Eser A., Albrecht T., et al. Strength characterization and lifetime prediction of dental ceramic materials // Dent Mater. 2021. Vol. 37, N 1. P. 94–105. doi: 10.1016/j.dental.2020.10.015 |
| [41] |
Dhesi GS, Sidhu S, Al-Haj Husain N, Özcan M. Evaluation of adhesion protocol for titanium base abutments to different ceramic and hybrid materials. Eur J Prosthodont Restor Dent. 2021;29(1):22–34. doi: 10.1922/EJPRD_2073Dhesi13 |
| [42] |
Dhesi G.S., Sidhu S., Al-Haj Husain N., Özcan M. Evaluation of adhesion protocol for titanium base abutments to different ceramic and hybrid materials // Eur J Prosthodont Restor Dent. 2021. Vol. 29, N 1. P. 22–34. doi: 10.1922/EJPRD_2073Dhesi13 |
| [43] |
Sodergren B, Wang J, Zhang Y, Kim J. Fracture resistance of ceramic-polymer hybrid materials using microscopic finite element analysis and experimental validation. Comput Methods Biomech Biomed Engin. 2022;25(16):1785–1795. doi: 10.1080/10255842.2022.2038141 |
| [44] |
Sodergren B., Wang J., Zhang Y., Kim J. Fracture resistance of ceramic-polymer hybrid materials using microscopic finite element analysis and experimental validation // Comput Methods Biomech Biomed Engin. 2022. Vol. 25, N 16. P. 1785–1795. doi: 10.1080/10255842.2022.2038141 |
| [45] |
Revilla-León M, Meyer MJ, Zandinejad A, Özcan M. Additive manufacturing technologies for processing zirconia in dental applications. Int J Comput Dent. 2020;23(1):27–37. |
| [46] |
Revilla-León M., Meyer M.J., Zandinejad A., Özcan M. Additive manufacturing technologies for processing zirconia in dental applications // Int J Comput Dent. 2020. Vol. 23, N 1. P. 27–37. |
| [47] |
Zhang Y, Vardhaman S, Rodrigues CS, Lawn BR. A critical review of dental lithia-based glass-ceramics. J Dent Res. 2023;102(3):245–253. doi: 10.1177/00220345221142755 |
| [48] |
Zhang Y., Vardhaman S., Rodrigues C.S., Lawn B.R. A critical review of dental lithia-based glass-ceramics // J Dent Res. 2023. Vol. 102, N 3. P. 245–253. doi: 10.1177/00220345221142755 |
| [49] |
Komine F, Honda J, Kusaba K, et al. Clinical outcomes of single crown restorations fabricated with resin-based CAD/CAM materials. J Oral Sci. 2020;62(4):353–355. doi: 10.2334/josnusd.20-0195 |
| [50] |
Komine F., Honda J., Kusaba K., et al. Clinical outcomes of single crown restorations fabricated with resin-based CAD/CAM materials // J Oral Sci. 2020. Vol. 62, N 4. P. 353–355. doi: 10.2334/josnusd.20-0195 |
| [51] |
Sirous S, Navadeh A, Ebrahimgol S, Atri F. Effect of preparation design on marginal adaptation and fracture strength of ceramic occlusal veneers: a systematic review. Clin Exp Dent Res. 2022;8(6):1391–1403. doi: 10.1002/cre2.653 |
| [52] |
Sirous S., Navadeh A., Ebrahimgol S., Atri F. Effect of preparation design on marginal adaptation and fracture strength of ceramic occlusal veneers: a systematic review // Clin Exp Dent Res. 2022. Vol. 8, N 6. P. 1391–1403. doi: 10.1002/cre2.653 |
| [53] |
Gresnigt MMM, Sugii MM, Johanns KBFW, van der Made SAM. Comparison of conventional ceramic laminate veneers, partial laminate veneers and direct composite resin restorations in fracture strength after aging. J Mech Behav Biomed Mater. 2021;114:104172. doi: 10.1016/j.jmbbm.2020.104172 |
| [54] |
Gresnigt M.M.M., Sugii M.M., Johanns K.B.F.W., van der Made S.A.M. Comparison of conventional ceramic laminate veneers, partial laminate veneers and direct composite resin restorations in fracture strength after aging // J Mech Behav Biomed Mater. 2021. Vol. 114. P. 104172. doi: 10.1016/j.jmbbm.2020.104172 |
| [55] |
Araujo E, Perdigão J. Anterior veneer restorations — an evidence-based minimal-intervention perspective. J Adhes Dent. 2021;23(2):91–110. doi: 10.3290/j.jad.b1079529 |
| [56] |
Araujo E., Perdigão J. Anterior veneer restorations — an evidence-based minimal-intervention perspective // J Adhes Dent. 2021. Vol. 23, N 2. P. 91–110. doi: 10.3290/j.jad.b1079529 |
| [57] |
Schlichting LH, Resende TH, Reis KR, et al. Ultrathin CAD-CAM glass-ceramic and composite resin occlusal veneers for the treatment of severe dental erosion: an up to 3-year randomized clinical trial. J Prosthet Dent. 2022;128(2):158.e1–158.e12. doi: 10.1016/j.prosdent.2022.02.009 |
| [58] |
Schlichting L.H., Resende T.H., Reis K.R., et al. Ultrathin CAD-CAM glass-ceramic and composite resin occlusal veneers for the treatment of severe dental erosion: an up to 3-year randomized clinical trial // J Prosthet Dent. 2022. Vol. 128, N 2. P. 158. doi: 10.1016/j.prosdent.2022.02.009 |
Eco-Vector
/
| 〈 |
|
〉 |