Stress-strain state of implant-supported restorations in tooth replacement
Makka R. Bersanova , Valentina N. Olesova , Roman S. Zaslavsky , Ruslan U. Bersanov , Svetlana P. Yarilkina
Russian Journal of Dentistry ›› 2024, Vol. 28 ›› Issue (4) : 432 -438.
Stress-strain state of implant-supported restorations in tooth replacement
Background: Dental implant therapy may be associated with breakage and deformation of implant-supported restorations, necessitating an assessment of their stress-strain state when applying a load.
Aim: To compare the stress-strain state of implants with their respective fixed restorations in tooth replacement.
Materials and Methods: A 3D mathematical model of the posterior mandible with three missing teeth was used to assess the stress-strain state for the following dental restoration options: three implant-supported crowns; a two-implant-supported bridge; or a bridge supported by tooth and implant. A 150 N load was applied to the central part of a restoration in both vertical and oblique directions to compare maximum stress values and their distribution.
Results: Oblique load was found to have a negative impact on stress intensity and distribution (471.7 MPa vs 90.7 MPa with vertical load for three implants). The most heavily loaded parts of restorations were identified: the border of the crown and the implant connection zone. A homogeneous stress distribution from a bridge to the two supporting implants was observed, along with a decrease in stress when using a bridge rather than three implant-supported crowns (160.0 MPa vs 16.1 MPa). In contrast, the load on the supporting implant increased when a bridge supported by tooth and implant was used (1,053.5 MPa with oblique load).
Conclusion: Compared to three implants replacing three missing teeth, a two-implant-supported bridge decreases stress on the implants and their respective restoration. Replacing one supporting implant with a tooth increases stress on the implant to the ultimate strength of titanium alloy in the abutment.
implant-supported restoration / stress-strain state / mathematical modeling
| [1] |
Kulakov AA, editor. Dental implantation: national guidelines [Internet]. Moscow: GEOTAR-Media; 2022 [cited: 2004 Jul 25]. Available from: https://www.rosmedlib.ru/book/ISBN9785970473269.html (In Russ.). |
| [2] |
Дентальная имплантация: национальное руководство / под ред. А.А. Кулакова [интернет]. Москва: ГЭОТАР-Медиа, 2022. Дата обращения: 25.07.2004. Режим доступа: https://www.rosmedlib.ru/book/ISBN9785970473269.html |
| [3] |
Lebedenko IY, Arutyunov SD, Ryakhovsky AN, editors. Orthopedic dentistry. Volume 1: National leadership: in 2 volumes. 2nd ed., reprint. and add. Moscow: GEOTAR-Media; 2022. 520 p. (In Russ.). |
| [4] |
Ортопедическая стоматология. Том 1: национальное руководство: в 2 т. / под ред. И.Ю. Лебеденко, С.Д. Арутюнова, А.Н. Ряховского. 2-е издание, переработанное и дополненное. Москва: ГЭОТАР-Медиа, 2022. 520 с. |
| [5] |
Ivanov AS, Olesova VN, Maksyukov SYu, et al. The structure of prosthetic structures based on dental implants in dynamics over 20 years. Russian Bulletin of Dental Implantology. 2021;(3-4):93–98. EDN: VVOYRC |
| [6] |
Иванов А.С., Олесова В.Н., Максюков С.Ю., и др. Структура протетических конструкций с опорой на дентальные имплантаты в динамике за 20 лет // Российский вестник дентальной имплантологии. 2021. № 3-4. С. 93–98. EDN: VVOYRC |
| [7] |
Karabushin VA. Results of dental implantation in patients with obesity and varying severity of cardiometabolic risk [dissertation]. Saratov; 2021. 132 p. (In Russ.). EDN: ZXNSTW |
| [8] |
Карабушин В.А. Результаты дентальной имплантации у пациентов с ожирением и различной выраженностью кардиометаболического риска: дис. … канд. мед. наук. Саратов, 2021. 132 с. EDN: ZXNSTW |
| [9] |
Muzikin MI. Pathophysiological justification of dental treatment using implants for atrophy of the alveolar processes (parts) of the jaws [dissertation]. Krasnodar; 2022. 336 p. (In Russ.). EDN: AQQGVY |
| [10] |
Музыкин М.И. Патофизиологическое обоснование стоматологического лечения с использованием имплантатов при атрофии альвеолярных отростков (частей) челюстей: дис. … д-ра мед. наук. Краснодар, 2022. 336 с. EDN: AQQGVY |
| [11] |
Muraev AA. Innovative Russian dental implant system: development, laboratory research and clinical implementation [dissertation]. Moscow; 2019. 294 p. (In Russ.). EDN: URZZAX |
| [12] |
Мураев А.А. Инновационная российская система дентальных имплантатов: разработка, лабораторные исследования и клиническое внедрение: дис. ... д-ра мед. наук. Москва, 2019. 294 с. EDN: URZZAX |
| [13] |
Olesov EE, Zaslavsky RS, Lerner AYa, et al. Comparative study of modern dental implants: experimental, clinical and technological aspects: textbook. Moscow: IPK FMBA Rossii; 2018. 24 p. (In Russ.). |
| [14] |
Олесов Е.Е., Заславский Р.С., Лернер А.Я., и др. Сравнительное исследование современных дентальных имплантатов: экспериментально-клинические и технологические аспекты: учебное пособие. Москва: ИПК ФМБА России, 2018. 24 с. |
| [15] |
Jiang X, Yao Y, Tang W, et al. Design of dental implants at materials level: an overview. J Biomed Mater Res A. 2020;108(8):1634–1661. doi: 10.1002/jbm.a.36931 |
| [16] |
Jiang X., Yao Y., Tang W., et al. Design of dental implants at materials level: an overview // J Biomed Mater Res A. 2020. Vol. 108, N 8. P. 1634–1661. doi: 10.1002/jbm.a.36931 |
| [17] |
Hingsammer L, Pommer B, Hunger S, et al. Influence of implant length and associated parameters upon biomechanical forces in finite element analyses: a systematic review. Implant Dent. 2019;28(3):296–305. doi: 10.1097/ID.0000000000000879 |
| [18] |
Hingsammer L., Pommer B., Hunger S., et al. Influence of implant length and associated parameters upon biomechanical forces in finite element analyses: a systematic review // Implant Dent. 2019. Vol. 28, N 3. P. 96–305. doi: 10.1097/ID.0000000000000879 |
| [19] |
Prados-Privado M, Martínez-Martínez C, Gehrke SA, Prados-Frutos JC. Influence of bone definition and finite element parameters in bone and dental implants stress: a literature review. Biology (Basel). 2020;9(8):224. doi: 10.3390/biology9080224 |
| [20] |
Prados-Privado M., Martínez-Martínez C., Gehrke S.A., Prados-Frutos J.C. Influence of bone definition and finite element parameters in bone and dental implants stress: a literature review // Biology (Basel). 2020. Vol. 9, N 8. P. 224. doi: 10.3390/biology9080224 |
| [21] |
Ichikawa H, Yoda N, Ogawa T, et al. Impact of implant location on load distribution of implant-assisted removable partial dentures: a review of in vitro model and finite-element analysis studies. Int J Implant Dent. 2023;9(1):31. doi: 10.1186/s40729-023-00500-3 |
| [22] |
Ichikawa H., Yoda N., Ogawa T., et al. Impact of implant location on load distribution of implant-assisted removable partial dentures: a review of in vitro model and finite-element analysis studies // Int J Implant Dent. 2023. Vol. 9, N 1. P. 31. doi: 10.1186/s40729-023-00500-3 |
| [23] |
Rozov RA, Trezubov VN, Gvetadze RSh, et al. Experimental modeling of the functional load of the mandible during prosthetics based on implants in adverse clinical conditions. Stomatology. 2022;101(6):28–34. EDN: KKPPHB doi: 10.17116/stomat202210106128 |
| [24] |
Розов Р.А., Трезубов В.Н., Гветадзе Р.Ш., и др. Экспериментальное моделирование функциональной нагрузки нижней челюсти при протезировании с опорой на имплантаты в неблагоприятных клинических условиях // Стоматология. 2022. Т. 101, № 6. С. 28–34. EDN: KKPPHB doi: 10.17116/stomat202210106128 |
| [25] |
Strekalov AA. Justification of the use of occlusal parameters of crowns of fixed structures based on dental implants in the restoration of terminal defects of dentition [dissertation]. Moscow; 2021. 169 p. (In Russ.). EDN: DOWQFL |
| [26] |
Стрекалов А.А. обоснование применения окклюзионных параметров коронок несъемных конструкций с опорой на дентальные имплантаты при восстановлении концевых дефектов зубных рядов: дис. ... канд. мед. наук. Москва, 2021. 169 с. EDN: DOWQFL |
Eco-Vector
/
| 〈 |
|
〉 |