Assessment of the stress–strain state of pin structures and crowns of teeth used to restore the lost crown part of a tooth in a decompensated form of pathological abrasion

Maksim M. Romanov , Irek R. Khafizov , Farid R. Shakirzyanov , Ildar R. Khafizov , Rais G. Khafizov

Russian Journal of Dentistry ›› 2023, Vol. 27 ›› Issue (4) : 281 -294.

PDF
Russian Journal of Dentistry ›› 2023, Vol. 27 ›› Issue (4) : 281 -294. DOI: 10.17816/dent430322
Experimental and Theoretical Investigation
research-article

Assessment of the stress–strain state of pin structures and crowns of teeth used to restore the lost crown part of a tooth in a decompensated form of pathological abrasion

Author information +
History +
PDF

Abstract

BACKGROUND: Restoration of the height of the crown part of the tooth in the decompensated form of pathological abrasion includes measures for reconstructing the general aesthetic appearance, restoring functional components, and correcting temporomandibular joint manifestations. However, even high-quality crowns are not always able to meet the needs of patients while in use. Deformation of orthopedic structures is common, and fractures of the roots used as support for the orthopedic structure are often possible. To prevent negative consequences in the manufacture of orthopedic structures for dentures, specialists who manufacture these prostheses must be familiar with not only the anatomical and topographic features of the teeth’s roots, the state of the alveolar process of the upper and alveolar parts of the lower jaw, the mobility of the mucous membrane, the correctness of determining the central ratio of the jaws, determining the correct position when modeling teeth, and taking into account the functional features of the dentoalveolar system but also the technical, technological, microbiological, and precision characteristics and parametric data of future artificial crowns fixed in the oral cavity. The use of reverse engineering methods allows the traditional technique of manufacturing dentures to be transferred into the digital technology framework and to create a biomechanically sound individual orthopedic design using software and hardware tools, such as CAD/CAM, Exocad, and Ansys. The application of mathematical modeling allows for a more in-depth analysis and, in some cases, the acquisition of strictly individual information about the studied prosthetic structure and the process of its interaction with human biological tissues. All of this will allow orthopedic structures to be built as close to the dentoalveolar system as possible, increasing the period of operation. This paper presents a study of the stress–strain state (SSS) of tooth roots, stump pins, and jaws. Various suprastructure design variants and various materials of stump pins are investigated. A comparative analysis of SSS for various materials of pins and crowns was performed.

AIM: To optimize the design of crowns and pin structures to reduce the load on the remaining roots of the teeth and the surrounding bone structures of the alveolar process’ crest.

MATERIALS AND METHODS: A comparative analysis of the SSS of the jaw with three variants of suprastructures was performed. Option 1: separate single suprastructures, where each is fixed to the root of the tooth. Option 2: a suprastructure combined into a single block by groups of teeth (premolar–molar segments from canine to canine). Option 3: a suprastructure combined into a single block as a “horseshoe.”

RESULTS: For each option, SSS were obtained for various materials of the stump pin inlays.

CONCLUSION: The developed methodology and calculation program enabled three sets of calculations for three options for constructing suprastructures with step displacement along the jaw and a comparative analysis of their SSS.

Keywords

finite element method / strength / stress–strain state / stump pin inlay

Cite this article

Download citation ▾
Maksim M. Romanov, Irek R. Khafizov, Farid R. Shakirzyanov, Ildar R. Khafizov, Rais G. Khafizov. Assessment of the stress–strain state of pin structures and crowns of teeth used to restore the lost crown part of a tooth in a decompensated form of pathological abrasion. Russian Journal of Dentistry, 2023, 27(4): 281-294 DOI:10.17816/dent430322

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bragin EA, Skryl AV, Mrikaeva MR. The intense deformed condition roots of the teeth restored by different pin constructions. Kubanskii nauchnyi meditsinskii vestnik. 2013;(1):35–37. (In Russ).

[2]

Брагин Е.А., Скрыль А.В., Мрикаева М.Р. Напряжённо-деформированное состояние корней зубов, восстановленных различными штифтовыми конструкциями // Кубанский научный медицинский вестник. 2013. № 1. С. 35–37.

[3]

Manatina VI. Comparative analysis of stressed-deformed states of depulped tooth structures and orthopedic constructions with elimination coronal defects using different proteses and structures. Stomatologicheskii zhurnal. 2019;20(1):47–53. (In Russ).

[4]

Манатина В.И. Сравнительный анализ напряжённо-деформированных состояний структур депульпированного зуба и ортопедических конструкций при устранении дефектов коронковой части // Стоматологический журнал. 2019. Т. 20, № 1. С. 47–53.

[5]

Khafizov IR. Assessment of stress-strain states of the girder-frame orthopedic structures based on dental implants in the complete absence of teeth. Sovremennaya nauka: aktual’nye problemy teorii i praktiki. Seriya: Estestvennye i tekhnicheskie nauki. 2019;(6 Pt 2):169–172. (In Russ).

[6]

Хафизов И.Р. Оценка напряжённо-деформируемых состояний балочно-каркасных ортопедических конструкций с опорой на дентальные имплантаты при полном отсутствии зубов // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2019. № 6-2. С. 169–172.

[7]

Massarsky IG, Massarskaya NG, Abolmasov NN, Abolmasova EV. The mathematical modeling and finite element analysis of stress-strain state of the system «tooth-byonet tub-crown». The Dental Institute. 2014;(2):95–97. (In Russ).

[8]

Массарский И.Г., Массарская Н.Г., Аболмасов Н.Н., Аболмасова Е.В. Математическое моделирование и конечно-элементный анализ напряжённо-деформированного состояния системы «зуб–штифтовая культевая вкладка–цельнолитая коронка» // Институт стоматологии. 2014. № 2. С. 95–97.

[9]

Olesova VN, Bober SA, Olesov EE, et al. Dependence of stress-strain state root tooth of conditions of construction pin design. Russian Journal of Dentistry. 2017;21(3):124–125. (In Russ). doi: 10.18821/1728-2802-2017-21-3-124-125

[10]

Олесова В.Н., Бобер С.А., Олесов Е.Е., и др. Зависимость напряжённо-деформированного состояния корня зуба от условий функционирования штифтовой конструкции // Российский стоматологический журнал. 2017. Т. 21, № 3. С. 124–125. doi: 10.18821/1728-2802-2017-21-3-124-125

[11]

Nesterov AM, Sadykov MI, Sagirov MR. Matematicheskaya otsenka napryazhenno-deformirovannogo sostoyaniya sistemy «Predlozhennoe i klassicheskoe ustroistva dlya vosstanovleniya razrushennoi koronki zuba–koren’ zuba». In: Gulyaev GYu, editor. Aktual’nye voprosy nauki i sovremennogo obshchestva. Penza: Nauka i Prosveshchenie (IP Gulyaev G.Yu.); 2022. P:121–133. (In Russ).

[12]

Нестеров А.М., Садыков М.И., Сагиров М.Р. Математическая оценка напряжённо-деформированного состояния системы «Предложенное и классическое устройства для восстановления разрушенной коронки зуба–корень зуба» // Актуальные вопросы науки и современного общества / под общ. ред. Г.Ю. Гуляева. Пенза : Наука и Просвещение (ИП Гуляев Г.Ю.), 2022. С. 121–133.

[13]

Ertesyan AR. Research of the stress-strain state in the system «a new artificial crown–prepared tooth stump» finite element. In: Postgraduate Readings 2016: Materials of the Scientific-practical conference with international participation «Molodye uchenye — ot tekhnologii XXI veka k prakticheskomu zdravookhraneniyu»; 2016 Oct 10; Samara. Samara: Samara State Medical University; 2016. P:267–268. (In Russ).

[14]

Эртесян А.Р. Исследование напряжённо-деформированного состояния в системе «новая искусственная коронка–культя препарированного зуба» методом конечных элементов // Аспирантские чтения 2016: материалы научно-практической конференции с международным участием «Молодые учёные — от технологий XXI века к практическому здравоохранению»; 10 октября, 2016; Самара. Самара : Самарский государственный медицинский университет, 2016. С. 267–268.

[15]

Rubnikovich SP, Fisjunov AD, Shukevich YI. Methods of biomechanical assessment of a strain-stress state of hard dental tissues and restorative post and core constructions. Stomatolog. Minsk. 2016;(4):48–56. (In Russ).

[16]

Рубникович С.П., Фисюнов А.Д., Шукевич Я.И. Методы биомеханической оценки напряжённо-деформированного состояния твёрдых тканей зубов и восстановительных штифтовых конструкций // Стоматолог. Минск. 2016. № 4. С. 48–56.

[17]

Romanov MM, Khafizov IR, Suleimanov AM, Khafizov IR, Khafizov RG. Study of the strength characteristics of post-stump structures used to restore the crown part of teeth in decompensated form of pathological abrasion. Russian Journal of Dentistry. 2023;27(3):229–239. (In Russ). doi: 10.17816/dent260872

[18]

Романов М.М., Хафизов И.Р., Сулейманов А.М., Хафизов И.Р., Хафизов Р.Г. Исследование прочностных характеристик культевых штифтовых конструкций, используемых для восстановления коронковой части зубов при декомпенсированной форме патологической стираемости // Российский стоматологический журнал. 2023. Т. 27, № 3. С. 229–239. doi: 10.17816/dent260872

[19]

Patent RUS № 2749694/ 16.06.21. Khafizov RG, Romanov MM, Khafizov IR, et al. Sposob izgotovleniya kul’tevoi shtiftovoi vkladki dlya vosstanovleniya odnokornevykh zubov i ustroistvo dlya ego realizatsii.

[20]

Патент РФ на изобретение № 2749694/ 16.06.21. Хафизов Р.Г., Романов М.М., Хафизов И.Р., и др. Способ изготовления культевой штифтовой вкладки для восстановления однокорневых зубов и устройство для его реализации.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/