Dynamics of the demineralization of temporary teeth using ultrasonic shadow velosymmetry and autofluorescence microscopy in vitro
Alexey G. Sedoykin , Sergey N. Ermolyev , Larisa P. Kiselnikova , Alexander M. Zatevalov , Alexandra A. Fokina
Russian Journal of Dentistry ›› 2023, Vol. 27 ›› Issue (5) : 385 -394.
Dynamics of the demineralization of temporary teeth using ultrasonic shadow velosymmetry and autofluorescence microscopy in vitro
BACKGROUND: Given the high prevalence of caries in preschool children, additional methods for diagnosing hidden carious foci with deep structural demineralization of the hard tissues of temporary teeth without generating X-rays must be updated.
AIM: To improve methods for studying the demineralization of hard tissues of primary teeth using ultrasonic shadow velosymmetry and autofluorescence microscopy.
MATERIALS AND METHODS: The study included primary second molars (n=11). Samples of primary teeth were placed in a test tube with a demineralizing solution on days 1, 4, 8, 21, and 31. The samples were examined by autofluorescence microscopy and ultrasonic shadow velosymmetry according to the exposure time. The rate of acid demineralization of the primary teeth samples was assessed using our score scale. The averages were compared using the Wilcoxon W-test (p <0.05). Pearson correlation analysis was used, taking into account the statistical significance of the correlation coefficients for p <0.05.
RESULTS: Analysis of samples of hard tissues of primary teeth by ultrasonic shadow velosymmetry showed that the velocity of the ultrasonic wave passage decreases with increasing exposure to the demineralizing solution and acquires a linear character with a negative regression coefficient. The decrease in the ultrasonic wave velocity in the enamel and dentin of the samples directly correlated with the degree of demineralization.
CONCLUSION: The conducted experiment on the hard tissues of primary teeth showed that demineralization not only leads to micromorphological structural changes in the hard tissues of enamel and dentin but also affects the physical and acoustic properties of the samples.
artificial demineralization / primary teeth / autofluorescence microscopy of hard tooth tissues
| [1] |
Macey R, Walsh T, Riley P, et al. Fluorescence devices for the detection of dental caries. Cochrane Database Syst Rev. 2020;12(12):CD013811. doi: 10.1002/14651858.CD013811 |
| [2] |
Macey R., Walsh T., Riley P., et al. Fluorescence devices for the detection of dental caries // Cochrane Database Syst Rev. 2020. Vol. 12, N 12. CD013811. doi: 10.1002/14651858.CD01381 |
| [3] |
Sedoykin AG, Kiselnikova LP, Ermolyev SN, Fokina AA, Toma EI. Study of enamel and dentin zones in permanent teeth in children by ultrasonic microdensitometry. Proceedings of the Scientific Research Institute of Health Organization and Medical Management: collection of scientific papers. 2022;(2):103–106. (In Russ). |
| [4] |
Седойкин А.Г., Кисельникова Л.П., Ермольев С.Н., Фокина А.А., Тома Э.И. Изучение методом ультразвуковой микроденситометрии зон эмали и дентина в постоянных зубах у детей // Труды Научно-исследовательского института организации здравоохранения и медицинского менеджмента: сборник научных трудов. 2022. № 2. С. 103–106. |
| [5] |
Mazur M, Jedliński M, Ndokaj A, et al. Diagnostic drama. Use of ICDAS II and fluorescence-based intraoral camera in early occlusal caries detection: A clinical study. Int J Environ Res Public Health. 2020;17(8):2937. doi: 10.3390/ijerph17082937 |
| [6] |
Mazur M., Jedliński M., Ndokaj A., et al. Diagnostic drama. Use of ICDAS II and fluorescence-based intraoral camera in early occlusal caries detection: A clinical study // Int J Environ Res Public Health. 2020. Vol. 17, N 8. 2937. doi: 10.3390/ijerph17082937 |
| [7] |
Patent RUS № 2790947C1/ 28.02.23. Sedoykin AG, Fokina AA, Ermolyev SN, Kiselnikova LP, Yanushevich OO, Tekucheva SV. Method of ultrasonic bilosymmetry for assessing the state of hard tissues of teeth. |
| [8] |
Патент РФ на изобретение № 2790947C1/ 28.02.23. Седойкин А.Г., Фокина А.А., Ермольев С.Н., Кисельникова Л.П., Янушевич О.О., Текучёва С.В. Способ ультразвуковой велосимметрии для оценки состояния твёрдых тканей зубов. |
| [9] |
Chien YC, Burwell AK, Saeki K, et al. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties. Arch Oral Biol. 2016;63:93–105. doi: 10.1016/j.archoralbio.2015.10.001 |
| [10] |
Chiena Y.C., Burwell A.K., Saeki K., et al. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties // Arch Oral Biol. 2016. Vol. 63. P. 93–105. doi: 10.1016/j.archoralbio.2015.10.001 |
| [11] |
Boyarkin EV, Kochetkov AS, Bekher SA. Physical foundations of ultrasound control. Exam preparation guide. Novosibirsk: Izd-vo SGUPS; 2018. (In Russ). |
| [12] |
Бояркин Е.В., Кочетков А.С., Бехер С.А. Физические основы ультразвукового контроля. Руководство по подготовке к экзамену. Новосибирск : Изд-во СГУПС, 2018. |
| [13] |
Wang LJ, Tang R, Bonstein T, Bush P, Nancollas GH. Enamel demineralization in primary and permanent teeth. J Dent Res. 2006;85(4):359–363. doi: 10.1177/154405910608500415 |
| [14] |
Wang L.J., Tang R., Bonstein T., Bush P., Nancollas G.H. Enamel demineralization in primary and permanent teeth // J Dent Res. 2006. Vol. 85, N 4. P. 359–363. doi: 10.1177/154405910608500415 |
| [15] |
Zatsepin AF. Acoustic control. Shcherbinin VE, editor. Ekaterinburg: Izd-vo Ural’skogo universiteta; 2016. (In Russ). |
| [16] |
Зацепин А.Ф. Акустический контроль / под ред. В.Е. Щербинина. Екатеринбург : Изд-во Уральского университета, 2016. |
Eco-Vector
/
| 〈 |
|
〉 |