Influence of soft tissue on the reparative abilities of the jaw bone tissue in patients with dentoalveolar lesions
Oleg V. Slesarev , Darya V. Malchikova , Yuliya R. Yunusova , Olesia V. Kulakova , Irina F. Nefedova , Vyacheslav G. Belanov
Russian Journal of Dentistry ›› 2023, Vol. 27 ›› Issue (2) : 111 -119.
Influence of soft tissue on the reparative abilities of the jaw bone tissue in patients with dentoalveolar lesions
BACKGROUND: Treating patients with a jaw bone defect requires eliminating the defect, restoring dentition, and providing long-term support for the functional state of the dental system. However, dental damage reduces the reparative capabilities of the jaw bone tissue. Therefore, when developing ways to repair such defects, the proportion of soft tissue in the bone defect must be determined.
AIM: To study the effect of soft-tissue elements on the reparative abilities of jaw bone tissue.
MATERIALS AND METHODS: This study included 98 people with acquired combined jaw bone defects. The material was taken during a surgical intervention to study the tissue environment and the characteristics of the transformation of the tissues surrounding the defect. The samples were sent for histological examination.
RESULTS: Microscopic examination of the histological sections obtained from the area of the jaw bone defects revealed the proliferation of a multilayer flat non-corneating epithelium with “creeping” and massive ingrowth of the epithelium into the area of the bone defect. The epithelium had advanced into the underlying bone, which led to atrophy and destruction of the bone over the entire area of the defect, increasing the volume of the defect. An epithelial-connective tissue complex lined the bone surface of the defect, replacing the periosteum.
CONCLUSIONS: The morphology of the tissues surrounding the area of a bone defect suggests a decrease in cambial bone elements. Treating jaws with bone defects requires eliminating the soft tissue that fills the bone defect, followed by guided bone regeneration using a granular osteoconductive graft and a resorbable collagen membrane.
bone defect of the jaw / granular osteoconductive bone-plastic material / bone growth factors / directed bone regeneration / optimization of reparative osteogenesis / dentoalveolar lesions
| [1] |
Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23 Suppl. 5:S1-21. doi: 10.1111/j.1600-0501.2011.02375.x |
| [2] |
Tan W.L., Wong T.L., Wong M.C., Lang N.P. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans // Clin Oral Implants Res. 2012. Vol. 23, Suppl. 5. P. S1–S21. doi: 10.1111/j.1600-0501.2011.02375.x |
| [3] |
Murphy MP, Irizarry D, Lopez M, et al. The Role of Skeletal Stem Cells in the Reconstruction of Bone Defects. J Craniofac Surg. 2017;28(5):1136–1141. doi: 10.1097/SCS.0000000000003893 |
| [4] |
Murphy M.P., Irizarry D., Lopez M., et al. The Role of Skeletal Stem Cells in the Reconstruction of Bone Defects // J Craniofac Surg. 2017. Vol. 28, N 5. P.1136-1141. doi: 10.1097/SCS.0000000000003893 |
| [5] |
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696–711. doi: 10.1038/s41580-020-00279-w |
| [6] |
Salhotra A., Shah H.N., Levi B., Longaker M.T. Mechanisms of bone development and repair // Nat Rev Mol Cell Biol. 2020. Vol. 21, N 11. P. 696–711. doi: 10.1038/s41580-020-00279-w |
| [7] |
Jiang SY, Shu R, Xie YF, Zhang SY. Age-related changes in biological characteristics of human alveolar osteoblasts. Cell Prolif. 2010;43(5):464–470. doi: 10.1111/j.1365-2184.2010.00696.x |
| [8] |
Jiang S.Y., Shu R., Xie Y.F., Zhang S.Y. Age-related changes in biological characteristics of human alveolar osteoblasts // Cell Prolif. 2010. Vol. 43, N 5. P. 464–470. doi: 10.1111/j.1365-2184.2010.00696.x |
| [9] |
Elsalanty ME, Genecov DG. Bone Grafts in Craniofacial Surgery. Craniomaxillofacial Trauma Reconstr. 2009;2(3):125–134. doi: 10.1055/s-0029-1215875 |
| [10] |
Elsalanty M.E., Genecov D.G. Bone Grafts in Craniofacial Surgery // Craniomaxillofacial Trauma Reconstr. 2009. Vol. 2, N 3. P. 125–134. doi: 10.1055/s-0029-1215875 |
| [11] |
Slesarev OV, Malchikova DV, Bayricov IM. Guided bone regeneration biologically transformed multicomponent graft [Internet]. Journal of Dental Research. [cited 2023 May 17]. Available from: https://iadr.abstractarchives.com/abstract/21iags-3575687/guided-bone-regeneration-biologically-transformed-multicomponent-graft |
| [12] |
Slesarev O.V., Malchikova D.V., Bayricov I.M. Guided bone regeneration biologically transformed multicomponent graft [интернет]. Journal of Dental Research. [дата обращения: 17.05.2023]. Доступ по ссылке: https://iadr.abstractarchives.com/abstract/21iags-3575687/guided-bone-regeneration-biologically-transformed-multicomponent-graft. |
| [13] |
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000. 2021;86(1):157–187. doi: 10.1111/prd.12368 |
| [14] |
Hathaway-Schrader J.D., Novince C.M. Maintaining homeostatic control of periodontal bone tissue // Periodontol 2000. 2021. Vol. 86, N 1. P. 157–187. doi: 10.1111/prd.12368 |
| [15] |
Jafri Z, Sultan N, Ahmad N, Daing A. An infrequent clinical case of mucosal fenestration: Treated with an interdisciplinary approach and regenerative therapy. J Indian Soc Periodontol. 2019;23(2):168–171. doi: 10.4103/jisp.jisp_325_18 |
| [16] |
Jafri Z., Sultan N., Ahmad N., Daing A. An infrequent clinical case of mucosal fenestration: Treated with an interdisciplinary approach and regenerative therapy // J Indian Soc Periodontol. 2019. Vol. 23, N 2. P. 168–171. doi: 10.4103/jisp.jisp_325_18 |
| [17] |
Anikumar R, Koduganti RR, Harika TSL, Rajaram H. Ridge Augmentation Is a Prerequisite for Successful Implant Placement: A Literature Review. Cureus. 2022;14(1):e20872. doi: 10.7759/cureus.20872 |
| [18] |
Anikumar R., Koduganti R.R., Harika T.SL., Rajaram H. Ridge Augmentation Is a Prerequisite for Successful Implant Placement: A Literature Review // Cureus. 2022/ Vol. 14, N 1. P. e20872. doi: 10.7759/cureus.20872 |
| [19] |
Zhao R, Yang R, Cooper PR, et al. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules. 2021;26(10):3007. doi: 10.3390/molecules26103007 |
| [20] |
Zhao R., Yang R., Cooper P.R., et al. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments // Molecules. 2021. Vol. 26, N 10. P. 3007. doi: 10.3390/molecules26103007 |
| [21] |
Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone. 2022;154:116256. doi: https://doi.org/10.1016/j.bone.2021.116256 |
| [22] |
Maia F.R., Bastos A.R., Oliveira J.M., Correlo V.M., Reis R.L.Recent approaches towards bone tissue engineering // Bone. 2022. Vol. 154. P. 116256. doi: 10.1016/j.bone.2021.116256 |
| [23] |
The certificate of state registration of software № 2021666327 / 12.10.2021. Rusanov NV, Slesarev ОV, Bolotov МА, Malchikova DV. Programma dlya prognosticheskogo raschyota neobhodimogo ob’’yoma granulirovannogo kostno-plasticheskogo materiala pri ustranenii defektov kosti. (In Russ). |
| [24] |
Свидетельство о регистрации программы для ЭВМ № 2021666327/ 12.10.2021. Рузанов Н.В., Слесарев О.В., Болотов М.А., Мальчикова Д.В. Программа для прогностического расчёта необходимого объёма гранулированного костно-пластического материала при устранении дефектов кости. |
| [25] |
Alias MA, Buenzli PR. Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours. Biomech Model Mechanobiol. 2018;17(5):1357–1371. doi: 10.1007/s10237-018-1031-x |
| [26] |
Alias M.A., Buenzli P.R. Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours // Biomech Model Mechanobiol. 2018. Vol 17. N 5. P. 1357-1371. doi: 10.1007/s10237-018-1031-x |
| [27] |
Patent RUS № 2766978 C1/ 16.03.2022. Slesarev OV, Kolsanov AV, Bairicov IM, Malchikova DV, Tumina ОV, Volchkov SE, Ovchinnikov PA, Postnikov MA, Chaikin MB. Mnogokomponentnyi osteogennyi transplantat dlya khirurgicheskogo ustraneniya vrozhdennykh i priobretennykh defektov kosti chelyustei. (In Russ). Available from: https://yandex.ru/patents/doc/RU2766978C1_20220316 |
| [28] |
Патент РФ на изобретение № 2766978 C1/ 16.03.2022. Слесарев О.В., Колсанов А.В., Байриков И.М., Мальчикова Д.В., Тюмина О.В., Волчков С.Е., Овчинников П.А., Постников М.А., Хайкин М.Б. Многокомпонентный остеогенный трансплантат для хирургического устранения врождённых и приобретённых дефектов кости челюстей. Режим доступа: https://yandex.ru/patents/doc/RU2766978C1_20220316 |
| [29] |
Khoury F, Hanser T. Mandibular bone block harvesting from the retromolar region: A 10-year prospective clinical study. Int J Oral Maxillofac Implant. 2015;30:688–697. doi: 10.11607/jomi.4117 |
| [30] |
Khoury F., Hanser T., Mandibular bone block harvesting from the retromolar region: A 10-year prospective clinical study // Int J Oral Maxillofac Implant. 2015. Vol. 30. P. 688–697. doi: 10.11607/jomi.4117 |
| [31] |
Khoury F, Dolieux R. The Bone Core Technique for the Augmentation of Limited Bony Defects: Five-Year Prospective Study with a New Minimally Invasive Technique. Int J Periodontics Restor Dent. 2018;38:199–207. doi: 10.11607/prd.3467 |
| [32] |
Khoury F., Dolieux R. The Bone Core Technique for the Augmentation of Limited Bony Defects: Five-Year Prospective Study with a New Minimally Invasive Technique // Int J Periodontics Restor Dent. 2018. Vol 38. P.199–207. doi: 10.11607/prd.3467 |
| [33] |
Scarano A, Lorusso F, Ravera L, Mortellaro C, Piattelli A. Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep. Biomed Res Int. 2016;2016:4086870. doi: 10.1155/2016/4086870 |
| [34] |
Scarano A., Lorusso F., Ravera L., Mortellaro C., Piattelli A. Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep // Biomed Res Int. 2016. Vol. 2016. P. 4086870. doi: 10.1155/2016/4086870 |
| [35] |
Patent RUS № 2758570 C1/29.10.2021. Slesarev OV, Bajrikov IM, Malchikova DV, Platonov VI, Iordanishvili AK, Muzykin MI, Gribkova OV, Komarova MV. Sposob degazacii granulirovannogo osteokonduktivnogo kostnoplasticheskogo materiala. (In Russ). Available from: https://patenton.ru/patent/RU2758570C1 |
| [36] |
Патент РФ на изобретение № 2758570 C1/29.10.2021. Слесарев О.В., Байриков И.М., Мальчикова Д.В., Платонов В.И., Иорданишвили А.К., Музыкин М.И., Грибкова О.В., Комарова М.В. Способ дегазации гранулированного остеокондуктивного костнопластического материала. Режим доступа: https://patenton.ru/patent/RU2758570C1 |
| [37] |
Brouwers JEIG, van der Vorm LN, Buis S, et al. Implant stability in patients treated with platelet-rich fibrin and bovine bone substitute for alveolar ridge preservation is associated with peripheral blood cells and coagulation factors. Clin Exp Dent Res. 2020;6(2):236–243. doi: 10.1002/cre2.263. |
| [38] |
Brouwers J.E., van der Vorm L.N., Buis S., et al. Implant stability in patients treated with platelet-rich fibrin and bovine bone substitute for alveolar ridge preservation is associated with peripheral blood cells and coagulation factors // Clin Exp Dent Res. 2020. Vol. 6, N 2. P. 236–243. doi: 10.1002/cre2.263 |
| [39] |
Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA. 2014;111:12097–12102. |
| [40] |
Tsang K.Y., Tang H.C., Chan D., Cheah K.S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation // Proc Natl Acad Sci USA. 2014. Vol. 111. P. 12097–12102. |
Eco-Vector
/
| 〈 |
|
〉 |