Mechanism of light polymerization of composites

Galina E. Bordina , Nadezhda P. Lopina , Gleb S. Parshin , Alexey A. Andreev , Ilya A. Nekrasov

Russian Journal of Dentistry ›› 2022, Vol. 26 ›› Issue (2) : 163 -170.

PDF
Russian Journal of Dentistry ›› 2022, Vol. 26 ›› Issue (2) : 163 -170. DOI: 10.17816/1728-2802-2022-26-2-163-170
Reviews
review-article

Mechanism of light polymerization of composites

Author information +
History +
PDF

Abstract

BACKGROUND: The article presents a review of the chemical aspects of the reaction of light polymerization of composites in dental practice. This reaction refers to free radical polymerization reactions, with photons as activators. In dentistry, composites are classified as chemically cured, light cured, doubly cured, and thermally cured. This depends on the origin of the activation energy of free radical polymerization of methacrylates. Chemically, dental composites are usually a mixture of four main components: an organic polymer matrix, an inorganic filler, an appret compound, a binder matrix and filler, and an initiator–accelerator system. The radical polymerization process includes four main stages. The first stage is activation; in the case of light cured dental composites, it is photoactivation. In this case, a photoinitiator molecule is excited, for example, camphorquinone, which is widely used in the production of dental composite materials. If a free radical is formed, the polymerization process is similar for all composite materials based on a methacrylate organic matrix. The only difference is exactly how free radicals are formed and the rate of their formation. Under the influence of light quanta, the carbon atom of the ketone group of camphorquinone passes into an excited state, which allows the excited photoinitiator molecule to interact with two methacrylate molecules by a double bond. The double bond gives one electron to the excited camphorquinone molecule, and the second electron acts as a free radical agent; in other words, a macroradical is formed–a monomer molecule that can attach other monomer molecules to itself.

Keywords

composites / light polymerization / photoinitiator / coinitiator / camphorquinone

Cite this article

Download citation ▾
Galina E. Bordina, Nadezhda P. Lopina, Gleb S. Parshin, Alexey A. Andreev, Ilya A. Nekrasov. Mechanism of light polymerization of composites. Russian Journal of Dentistry, 2022, 26(2): 163-170 DOI:10.17816/1728-2802-2022-26-2-163-170

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lalatovich AM, Vaniev MA, Sidorenko NV, et al. Photopolymerizable compositions and light sources for dental practice (review). Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2021;(12):7–22. (In Russ). doi: 10.35211/1990-5297-2021-12-259-7-22

[2]

Лалатович А.М., Ваниев М.А., Сидоренко Н.В., и др. Фотополимеризующиеся композиции и источники света для стоматологической практики (обзор) // Известия Волгоградского государственного технического университета. 2021. № 12 (259). С. 7–22. doi: 10.35211/1990-5297-2021-12-259-7-22

[3]

Riva YR, Rahman SF. Dental composite resin: A review. AIP Conf Proc. 2019;2193(1):020011. doi: 10.1063/1.5139331

[4]

Riva Y.R., Rahman S.F. Dental composite resin: A review // AIP Conf Proc. 2019. Vol. 2193, N 1. P. 020011. doi: 10.1063/1.5139331

[5]

Kim DH, Sung AY. Photopolymerization and Characterization of Dental Resin Cement Containing Nano Material. J Nanosci Nanotechnol. 2018;18(9):6122–6126. doi: 10.1166/jnn.2018.15605

[6]

Kim D.H., Sung A.Y. Photopolymerization and Characterization of Dental Resin Cement Containing Nano Material // J Nanosci Nanotechnol. 2018. Vol. 18, N 9. P. 6122–6126. doi: 10.1166/jnn.2018.15605

[7]

Burkova AA, Shcherbakova SB. Choice of dental curing lamp for Filtek Ultimate light-curing composite material. Bulletin of Medical Internet Conferences. 2018;8(7):260. (In Russ).

[8]

Буркова А.А., Щербакова С.Б. Выбор стоматологической полимеризационной лампы для светоотверждаемого композиционного материала Filtek Ultimate // Бюллетень медицинских интернет-конференций. 2018. Т. 8, № 7. С. 260.

[9]

Zhou X, Huang X, Li M, et al. Development and status of resin composite as dental restorative materials. J Appl Polym Sci. 2019;136(44):48180. doi: 10.1002/app.48180

[10]

Zhou X., Huang X., Li M., et al. Development and status of resin composite as dental restorative materials // J Appl Polym Sci. 2019. Vol. 136, N 44. P. 48180. doi: 10.1002/app.48180

[11]

Bait Said OM, Razumova SV, Velichko EV. On the issue of composite materials. Russian Journal of Dentistry. 2020;24(4):278–282. (In Russ). doi: 10.17816/1728-2802-2020-24-4-278-282

[12]

Байт Саид О.М., Разумова С.Н., Величко Э.В. К вопросу о композитных материалах // Российский стоматологический журнал. 2020. Т. 24, № 4. С. 278–282. doi: 10.17816/1728-2802-2020-24-4-278-282

[13]

Lima AF, Salvador MVO, Dressano D, et al. Increased rates of photopolymerisation by ternary type II photoinitiator systems in dental resins. J Mech Behav Biomed Mater. 2019;98:71–78. doi: 10.1016/j.jmbbm.2019.06.005

[14]

Lima A.F., Salvador M.V.O., Dressano D., et al. Increased rates of photopolymerisation by ternary type II photoinitiator systems in dental resins // J Mech Behav Biomed Mater. 2019. Vol. 98. P. 71–78. doi: 10.1016/j.jmbbm.2019.06.005

[15]

Kim DH, Lee MJ, Sung AY. Preparation and Characterization of Novel Dental Material with High Shear Bond Strength. J Nanosci Nanotechnol. 2018;18(9):6355–6359. doi: 10.1166/jnn.2018.15654

[16]

Kim D.H., Lee M.J., Sung A.Y. Preparation and Characterization of Novel Dental Material with High Shear Bond Strength // J Nanosci Nanotechnol. 2018. Vol. 18, N 9. 6355–6359. doi: 10.1166/jnn.2018.15654

[17]

Bobyleva YuV, Petrova AP, Korotkov MM. Evaluation of the physical and technical characteristics of photopolymerizing devices in dentistry. Eurasian Scientific Association. 2018;(1–2):96–98. (In Russ).

[18]

Бобылева Ю.В., Петрова А.П., Коротков М.М. Оценка физико-технических характеристик фотополимеризующих устройств в стоматологии // Евразийское научное объединение. 2018. № 1–2 (35). С. 96–98.

[19]

Koulaouzidou EA, Roussou K, Sidiropoulos K, et al. Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants. Food Chem Toxicol. 2018;120:536–543. doi: 10.1016/j.fct.2018.07.042

[20]

Koulaouzidou E.A., Roussou K., Sidiropoulos K., et al. Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants // Food Chem Toxicol. 2018. Vol. 120. P. 536–543. doi: 10.1016/j.fct.2018.07.042

[21]

Fugolin APP, Pfeifer CS. New Resins for Dental Composites. J Dent Res. 2017;96(10):1085–1091. doi: 10.1177/0022034517720658

[22]

Fugolin A.P.P., Pfeifer C.S. New Resins for Dental Composites // J Dent Res. 2017. Vol. 96, N 10. P. 1085–1091. doi: 10.1177/0022034517720658

[23]

Topa M. Light cured dental composite resins [Internet]. Encyclopedia [cited 2022 June 7]. Available from: https://encyclopedia.pub/item/revision/cc56ab086bd8c94dd72116f4b2e9eb6d.

[24]

Topa M. Light cured dental composite resins [Internet]. Encyclopedia [дата обращения: 7.06.2022]. Режим доступа: https://encyclopedia.pub/item/revision/cc56ab086bd8c94dd72116f4b2e9eb6d.

[25]

Le Gars M, Bras J, Salmi-Mani H, et al. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Carbohydr Polym. 2020;234:115899. doi: 10.1016/j.carbpol.2020.115899

[26]

Le Gars M., Bras J., Salmi-Mani H., et al. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites // Carbohydr Polym. 2020. Vol. 234. P. 115899. doi: 10.1016/j.carbpol.2020.115899

[27]

Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017;31(Suppl. 1):e61. doi: 10.1590/1807-3107BOR-2017.vol31.0061

[28]

Rueggeberg F.A., Giannini M., Arrais C.A.G., Price R.B.T. Light curing in dentistry and clinical implications: a literature review // Braz Oral Res. 2017. Vol. 31, suppl. 1. P. e61. doi: 10.1590/1807-3107BOR-2017.vol31.0061

[29]

Palialol AR, Martins CP, Dressano D, et al. Improvement on properties of experimental resin cements containing an iodonium salt cured under challenging polymerization conditions. Dent Mater. 2021;37(10):1569–1575. doi: 10.1016/j.dental.2021.08.006

[30]

Palialol A.R., Martins C.P., Dressano D., et al. Improvement on properties of experimental resin cements containing an iodonium salt cured under challenging polymerization conditions // Dent Mater. 2021. Vol. 37, N 10. P. 1569–1575. doi: 10.1016/j.dental.2021.08.006

[31]

Gushchin AA, Adamchik AA. Methods for improving the physicomechanical and chemical properties of composite filling materials. Medical and Pharmaceutical Journal “Pulse”. 2020;22(2):36–41. (In Russ). doi: 10.26787/nydha-2686-6838-2020-22-2-36-41

[32]

Гущин А.А., Адамчик А.А. Способы улучшения физико-механических и химических свойств композитных пломбировочных материалов // Медико-фармацевтический журнал «Пульс». 2020. Т. 22, № 2. С. 36–41. doi: 10.26787/nydha-2686-6838-2020-22-2-36-41

[33]

Favarão J, Oliveira DCRS, Rocha MG, et al. Solvent Degradation and Polymerization Shrinkage Reduction of Resin Composites Using Isobornyl Methacrylate. Braz Dent J. 2019;30(3):272–278. doi: 10.1590/0103-6440201802525

[34]

Favarão J., Oliveira D.C.R.S., Rocha M.G., et al. Solvent Degradation and Polymerization Shrinkage Reduction of Resin Composites Using Isobornyl Methacrylate // Braz Dent J. 2019. Vol. 30, N 3. P. 272–278. doi: 10.1590/0103-6440201802525

[35]

Albuquerque PPAC, Rodrigues EC, Schneider LF, et al. Effect of an acidic sodium salt on the polymerization behavior of self-adhesive resin cements formulated with different adhesive monomers. Dent Mater. 2018;34(9):1359–1366. doi: 10.1016/j.dental.2018.06.022

[36]

Albuquerque P.P.A.C., Rodrigues E.C., Schneider L.F., et al. Effect of an acidic sodium salt on the polymerization behavior of self-adhesive resin cements formulated with different adhesive monomers // Dent Mater. 2018. Vol. 34, N 9. P. 1359–1366. doi: 10.1016/j.dental.2018.06.022

[37]

Wang R, Li Y, Hass V, et al. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers — Part 2: Effects on polymerization, microhardness and leaching of adhesives. Dent Mater. 2021;37(7):1193–1201. doi: 10.1016/j.dental.2021.04.010

[38]

Wang R., Li Y., Hass V., et al. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers — Part 2: Effects on polymerization, microhardness and leaching of adhesives // Dent Mater. 2021. Vol. 37, N 7. P. 1193–1201. doi: 10.1016/j.dental.2021.04.010

[39]

Kruly PC, Giannini M, Pascotto RC, et al. Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One. 2018;13(2):e0191942. doi: 10.1371/journal.pone.0191942

[40]

Kruly P.C., Giannini M., Pascotto R.C., et al. Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin // PLoS One. 2018. Vol. 13, N 2. P. e0191942. doi: 10.1371/journal.pone.0191942

[41]

Inami C, Shimizu H, Suzuki S, et al. Study on the performance of methyl methacrylate polymerization: Comparison of partially oxidized tri-n-butylborane and benzoyl peroxide with aromatic tertiary amines. Dent Mater J. 2019;38(3):430–436. doi: 10.4012/dmj.2018-166

[42]

Inami C., Shimizu H., Suzuki S., et al. Study on the performance of methyl methacrylate polymerization: Comparison of partially oxidized tri-n-butylborane and benzoyl peroxide with aromatic tertiary amines // Dent Mater J. 2019. Vol. 38, N 3. P. 430–436. doi: 10.4012/dmj.2018-166

[43]

He J, Garoushi S, Säilynoja E, et al. The effect of adding a new monomer “Phene” on the polymerization shrinkage reduction of a dental resin composite. Dent Mater. 2019;35(4):627–635. doi: 10.1016/j.dental.2019.02.006

[44]

He J., Garoushi S., Säilynoja E., et al. The effect of adding a new monomer “Phene” on the polymerization shrinkage reduction of a dental resin composite // Dent Mater. 2019. Vol. 35, N 4. P. 627–635. doi: 10.1016/j.dental.2019.02.006

[45]

Yoshihara K, Nagaoka N, Benino Y, et al. Touch-Cure Polymerization at the Composite Cement-Dentin Interface. J Dent Res. 2021;100(9):935–942. doi: 10.1177/00220345211001020

[46]

Yoshihara K., Nagaoka N., Benino Y., et al. Touch-Cure Polymerization at the Composite Cement-Dentin Interface // J Dent Res. 2021. Vol. 100, N 9. P. 935–942. doi: 10.1177/00220345211001020

[47]

Fugolin AP, de Paula AB, Dobson A, et al. Alternative monomer for BisGMA-free resin composites formulations. Dent Mater. 2020;36(7):884–892. doi: 10.1016/j.dental.2020.04.009

[48]

Fugolin A.P., de Paula A.B., Dobson A., et al. Alternative monomer for BisGMA-free resin composites formulations // Dent Mater. 2020. Vol. 36, N 7. P. 884–892. doi: 10.1016/j.dental.2020.04.009

[49]

Fugolin APP, Costa AR, Correr-Sobrinho L, et al. Toughening and polymerization stress control in composites using thiourethane-treated fillers. Sci Rep. 2021;11(1):7638. doi: 10.1038/s41598-021-87151-9

[50]

Fugolin A.P.P., Costa A.R., Correr-Sobrinho L., et al. Toughening and polymerization stress control in composites using thiourethane-treated fillers // Sci Rep. 2021. Vol. 11, N 1. P. 7638. doi: 10.1038/s41598-021-87151-9

[51]

Fugolin AP, Dobson A, Ferracane JL, Pfeifer CS. Effect of residual solvent on performance of acrylamide-containing dental materials. Dent Mater. 2019;35(10):1378–1387. doi: 10.1016/j.dental.2019.07.003

[52]

Fugolin A.P., Dobson A., Ferracane J.L., Pfeifer C.S. Effect of residual solvent on performance of acrylamide-containing dental materials // Dent Mater. 2019. Vol. 35, N 10. P. 1378–1387. doi: 10.1016/j.dental.2019.07.003

[53]

Sprick E, Becht JM, Graff B, et al. New hydrogen donors for amine-free photoinitiating systems in dental materials. Dent Mater. 2021;37(3):382–390. doi: 10.1016/j.dental.2020.12.013

[54]

Sprick E., Becht J.M., Graff B., et al. New hydrogen donors for amine-free photoinitiating systems in dental materials // Dent Mater. 2021. Vol. 37, N 3. P. 382–390. doi: 10.1016/j.dental.2020.12.013

[55]

Amiri P, Talebi Z, Semnani D, et al. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers. J Mater Sci Mater Med. 2021;32(7):82. doi: 10.1007/s10856-021-06557-z

[56]

Amiri P., Talebi Z., Semnani D., et al. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers // J Mater Sci Mater Med. 2021. Vol. 32, N 7. P. 82. doi: 10.1007/s10856-021-06557-z

[57]

Salvador MV, Fronza BM, Pecorari VGA, et al. Physicochemical properties of dental resins formulated with amine-free photoinitiation systems. Dent Mater. 2021;37(9):1358–1365. doi: 10.1016/j.dental.2021.06.005

[58]

Salvador M.V., Fronza B.M., Pecorari V.G.A., et al. Physicochemical properties of dental resins formulated with amine-free photoinitiation systems // Dent Mater. 2021. Vol. 37, N 9. P. 1358–1365. doi: 10.1016/j.dental.2021.06.005

[59]

Fugolin AP, Dobson A, Mbiya W, et al. Use of (meth)acrylamides as alternative monomers in dental adhesive systems. Dent Mater. 2019;35(5):686–696. doi: 10.1016/j.dental.2019.02.012

[60]

Fugolin A.P., Dobson A., Mbiya W., et al. Use of (meth)acrylamides as alternative monomers in dental adhesive systems // Dent Mater. 2019. Vol. 35, N 5. P. 686–696. doi: 10.1016/j.dental.2019.02.012

[61]

Sinha J, Dobson A, Bankhar O, et al. Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization. Dent Mater. 2020;36(2):249–256. doi: 10.1016/j.dental.2019.11.012

[62]

Sinha J., Dobson A., Bankhar O., et al. Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization // Dent Mater. 2020. Vol. 36, N 2. 249–256. doi: 10.1016/j.dental.2019.11.012

RIGHTS & PERMISSIONS

Bordina G.E., Lopina N.P., Parshin G.S., Andreev A.A., Nekrasov I.A.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/