Sensitivity of parodontopatogens to the cell juice of Siberian fir (microbiological investigation)

Alexey S. Romanov , Arseniy V. Ragulin , Egor E. Olesov , Viktor N. Tsarev , Valentina N. Olesova

Russian Journal of Dentistry ›› 2021, Vol. 25 ›› Issue (6) : 505 -510.

PDF
Russian Journal of Dentistry ›› 2021, Vol. 25 ›› Issue (6) : 505 -510. DOI: 10.17816/1728-2802-2021-25-6-505-510
Experimental and Theoretical Investigation
research-article

Sensitivity of parodontopatogens to the cell juice of Siberian fir (microbiological investigation)

Author information +
History +
PDF

Abstract

BACKGROUND: Search for new effective means of preventing inflammatory complications in the state of peri-implant tissues is relevant; in particular, products from coniferous greens produced by the Solagift company (Tomsk) are of interest. The “bioeffective cell juice of the Siberian fir,” the 100% carbon dioxide extract of Siberian fir (water fraction), stands out among them. Fir cell juice is recommended for enhancing immunity, preventing inflammatory diseases of the upper respiratory tract, and treating several pathological conditions. Fir juice contains vitamin C, carotene, polyphenolic compounds, flavonoids, iron, magnesium, copper, manganese, zinc, and maltol–iron chelate complex (a natural antioxidant).

AIM: This microbiological study aimed to examine the sensitivity of periodontal pathogens to “bioeffective cell juice of Siberian fir” of various concentrations.

MATERIAL AND METHODS: A number of periodontal pathogens were cultivated in the presence of “bioeffective Siberian fir cell juice” in the following proportions: 1:5, 1:10, and 1:15. Incubation for up to 3 days was conducted in a reverse-spinner RTS-1 bioreactor (BioSan, Latvia) with automatic analysis of the optical density (OD) of the culture at a wavelength (λ) of 850 nm. OD was measured in McFarland units (mcf). The assessment of culture growth control was based on the analysis of the growth phases of periodontal pathogens: adaptive (lag phase), exponential (log phase), stationary, and withering away. The following clinical isolates of microorganisms were used: Streptococcus constellatus, Staphylococcus aureus, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans.

RESULTS: The microbiological study of the sensitivity of periodontal pathogens (such as S. constellatus, S. aureus, F. nucleatum, and A. actinomycetemcomitans) to “bioeffective cell juice of Siberian fir” showed a growth slowdown of microorganisms in the presence of fir juice and inhibition of the growth of a culture of periodontal pathogens when co-cultivated with fir juice. A significant decrease in the OD of cultures of all studied periodontal pathogens was observed at a fir juice concentration of 1:10 and 1: 5. At these concentrations, there was no growth of S. aureus culture, and the degree of decrease in the average OD of other periodontal pathogens reached 27.1% (A. actinomycetemcomitans), 31.8% (F. nucleatum), and 33.6% (S. constellatus).

Keywords

periodontal pathogens / fir juice / cultivation / optical density / sensitivity / bacteriostatic effect

Cite this article

Download citation ▾
Alexey S. Romanov, Arseniy V. Ragulin, Egor E. Olesov, Viktor N. Tsarev, Valentina N. Olesova. Sensitivity of parodontopatogens to the cell juice of Siberian fir (microbiological investigation). Russian Journal of Dentistry, 2021, 25(6): 505-510 DOI:10.17816/1728-2802-2021-25-6-505-510

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Olesova VN, Bronstein DA, Stepanov AF, et al. The incidence of inflammatory complications in peri-implant tissues according to long-term clinical analysis. Dentist. 2017;(1):58–62. (In Russ).

[2]

Олесова В.Н., Бронштейн Д.А., Степанов А.Ф., и др. Частота развития воспалительных осложнений в периимплантатных тканях по данным отдаленного клинического анализа // Стоматолог. 2017. № 1. С. 58–62.

[3]

Kulakov AA. Dental implantation: national guidelines. Moscow: GEOTAR-Media; 2018. (In Russ).

[4]

Кулаков А.А. Дентальная имплантация: национальное руководство. Москва: ГЭОТАР-Медиа, 2018.

[5]

Nikitin VV, Olesova VN, Pashkova GS, et al. Prevention of peri-implantitis using a bacteriophage-based agent. Russian Bulletin of Dental Implantology. 2017;(2):55–59. (In Russ).

[6]

Никитин В.В., Олесова В.Н., Пашкова Г.С., и др. Профилактика периимплантита с использованием средства на основе бактериофагов // Российский вестник дентальной имплантологии. 2017. № 2. С. 55–59.

[7]

Revazova ZE, editor. Periodontics. National leadership. 2nd edition. Moscow. 2018; 752s. (In Russ).

[8]

Пародонтология. Национальное руководство. 2-е издание / под ред. Ревазовой З.Э. Москва, 2018.

[9]

Tsarev VN, Panin AM, Chuvilkin VI, et al. Comprehensive assessment of the content of periodontal pathogenic bacteria and cytokines in peri-implantitis using PCR and enzyme-linked immunosorbent assay. Russian Bulletin of Dental Implantology. 2017;(3–4):86–90. (In Russ).

[10]

Царев В.Н., Панин А.М., Чувилкин В.И., и др. Комплексная оценка содержания пародонтопатогенных бактерий и цитокинов при периимплантите с помощью ПЦР и иммуноферментного анализа // Российский вестник дентальной имплантологии. 2017. № 3–4. С. 86–90.

[11]

Gvetadze RS, Dmitrieva NA, Voronin AN. Comparative analysis of the degree of colonization of microorganisms on the surface of individual gingiva formers. Institute of Dentistry. 2019;(3):30–31. (In Russ).

[12]

Гветадзе Р.Ш., Дмитриева Н.А., Воронин А.Н. Сравнительный анализ степени колонизации микроорганизмов на поверхности индивидуальных формирователей десны // Институт стоматологии. 2019. № 3. С. 30–31.

[13]

Ushakov RV, Tsarev VN. Antimicrobial therapy in dentistry. Principles and algorithms. Moscow: RMANPO; 2019. (In Russ).

[14]

Ушаков Р.В., Царев В.Н. Антимикробная терапия в стоматологии. Принципы и алгоритмы Москва: РМАНПО, 2019.

[15]

Tsarev VN, Nikolaeva EN, Ippolitov EV. Periodontal pathogenic bacteria are the main factor in the onset and development of periodontitis. Journal of Microbiology, Epidemiology and Immunobiology. 2017;(5):101–112. (In Russ).

[16]

Царев В.Н., Николаева Е.Н., Ипполитов Е.В. Пародонтопатогенные бактерии – основной фактор возникновения и развития пародонтита // Журнал микробиологии, эпидемиологии и иммунобиологии. 2017. № 5. С. 101–112.

[17]

Solagift [Internet]. Company Solagift company [cited 06 Jan 2022]. Available from: www.solagift.ru.

[18]

Солагифт [Internet]. Компания Солагифт [дата обращения: 06.01.2022]. Доступ по ссылке: www.solagift.ru

[19]

Tsarev VN, Atrushkevich VG, Ippolitov EV, Podporin MS. Comparative analysis of the antimicrobial activity of periodontal antiseptics using an automated system for monitoring the growth of microorganisms in real time. Periodontics. 2017;(1):4–10. (In Russ).

[20]

Царев В.Н., Атрушкевич В.Г., Ипполитов Е.В., Подпо- рин М.С. Сравнительный анализ антимикробной активности пародонтальных антисептиков с использованием автоматизированной системы контроля роста микроорганизмов в режиме реального времени // Пародонтология. 2017. № 1. С. 4–10.

[21]

Morozov DI, Volkov AG, Dikopova NZ, et al. Determination of the minimum inhibitory concentration to metronidazole of representatives of obligate and facultative anaerobic microflora of periodontal pockets. Russian dental journal. 2021;1(25):53–57. (In Russ).

[22]

Морозов Д.И., Волков А.Г., Дикопова Н.Ж., Олесов Е.Е., Пономарева А.Г. Определение минимальной подавляющей концентрации к метронидазолу представителей облигатно и факультативно-анаэробной микрофлоры пародонтальных карманов // Российский стоматологический журнал. 2021. Т. 1, № 25. С. 53–57.

RIGHTS & PERMISSIONS

Romanov A.S., Ragulin A.V., Olesov E.E., Tsarev V.N., Olesova V.N.

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/