The Role of Inflammasome in Development of Aseptic Inflammation in Pregnancy Loss
Yulia E. Dobrokhotova , Eleonora A. Markova , Polina I. Kukina , Ksenia A. Makhortova , Oxana A. Svitich
Cytokines and inflammation ›› 2024, Vol. 21 ›› Issue (3) : 125 -134.
The Role of Inflammasome in Development of Aseptic Inflammation in Pregnancy Loss
Innate immunity plays a key role in the processes of conception and the maintenance of physiological pregnancy. Changes in immune system functioning can lead to pregnancy disorders and loss. In recent years, the function of NOD-like receptors (NLRs) of the innate immune system in pregnancy pathologies has been actively studied. NLRs are intracellular receptors that recognize a wide range of ligands and are involved in various processes, including the assembly of the inflammasome. The inflammasome is a cytoplasmic, high molecular weight protein complex that initiates an inflammatory response to infection or endogenous signals of cellular stress and tissue damage. Gene expression, as well as protein products of NLRP3 inflammasome activation, have been detected at various levels of the female reproductive tract, including the placenta and fetal membranes. An increasing body of evidence supports the role of the NLRP3 inflammasome in the development of reproductive pathologies, including infertility and pregnancy loss. Inflammasome activity is influenced by numerous endogenous factors, and disruptions in any of these can lead to the development of aseptic inflammation. The outcome of such inflammation often includes spontaneous miscarriage or preterm birth. Triggers for NLRP3 inflammasome activation may involve conditions in which the concentration of molecules stimulating the NLRP3 receptor increases at the systemic or local level. Studying established noninfectious factors of excessive NLRP3 activation and integrating their diagnosis into clinical practice may allow for the timely identification and reduction of pregnancy loss risks.
inflammasome / pregnancy loss / preterm birth / NOD-like receptors / NLRP3
| [1] |
Medawar PD. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symposia of the society for experimental biology. 1953;7:320–338. |
| [2] |
Wegmann TG. The cytokine basis for cross-talk between the maternal immune and reproductive systems. Curr Opin Immunol. 1989–1990;2(5):765–769. doi: 10.1016/0952-7915(90)90048-l |
| [3] |
Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–87. doi: 10.1111/j.1749-6632.2010.05938.x |
| [4] |
Chaouat G. Innately moving away from the Th1/Th2 paradigm in pregnancy. Clin Exp Immunol. 2003;131(3):393–395. doi: 10.1046/j.1365-2249.2003.02100.x EDN: BEUKFT |
| [5] |
Schminkey DL, Groer M. Imitating a stress response: a new hypothesis about the innate immune system's role in pregnancy. Med Hypotheses. 2014;82(6):721–729. doi: 10.1016/j.mehy.2014.03.013 |
| [6] |
Montazeri F, Tajamolian M, Hosseini ES, Hoseini SM. Immunologic factors and genomic considerations in recurrent pregnancy loss: a review. International Journal of Medical Laboratory. 2023;10(4):279–305. doi: 10.18502/ijml.v10i4.15010 EDN: LECLUI |
| [7] |
Quenby S, Gallos ID, Dhillon-Smith RK, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397(10285):1658–1667. doi: 10.1016/S0140-6736(21)00682-6 EDN: CRHEWM |
| [8] |
Radzinskii VE, Dimitrova VI, Maiskova IYu. Non-developing pregnancy. Moscow: GEOTAR-Media; 2009. 200 p. (In Russ.) ISBN: 978-5-9704-0991-6 |
| [9] |
Ohuma EO, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–1271. doi: 10.1016/S0140-6736(23)00878-4 EDN: YJHWPA |
| [10] |
Glass HC, Costarino AT, Stayer SA, et al. Outcomes for extremely premature infants. Anesth Analg. 2015;120(6):1337–1351. doi: 10.1213/ANE.0000000000000705 |
| [11] |
Clinical practice guideline. Management of early pregnancy miscarriage. Institute of obstetricians and gynaecologists, royal college of physicians of Ireland and directorate of strategy and clinical programmes, health service executive. Date of publication: April 2012. Revision date: April 2014. 24 p. Available from: https://pregnancyandinfantloss.ie/wp-content/uploads/2019/03/CLINICAL-PRACTICE-GUIDELINE-ON-MANAGEMENT-OF-EARLY-PREGNANCY-MISCARRIAGE.pdf |
| [12] |
Savel'eva GM, Sukhikh GT, Serova VN, Radzinskii VE. Obstetrics: national guide. 2nd ed., revised and enlarged. Moscow: GEOTAR-Media; 2022. 1080 p. (In Russ.) ISBN: 978-5-9704-6632-2 |
| [13] |
Sargent IL, Borzychowski AM, Redman CW. NK cells and human pregnancy — an inflammatory view. Trends Immunol. 2006;27(9):399–404. doi: 10.1016/j.it.2006.06.009 |
| [14] |
Christiaens I, Zaragoza DB, Guilbert L, et al. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–57. doi: 10.1016/j.jri.2008.04.002 |
| [15] |
Young A, Thomson AJ, Ledingham M, et al. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002;66(2):445–449. doi: 10.1095/biolreprod66.2.445 |
| [16] |
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: an immune checkpoint perspective. J Cell Mol Med. 2021;25(22):10362–10375. doi: 10.1111/jcmm.17022 EDN: GJOEVI |
| [17] |
Koga K, Izumi G, Mor G, et al. Toll-like receptors at the maternal-fetal interface in normal pregnancy and pregnancy complications. Am J Reprod Immunol. 2014;72(2):192–205. doi: 10.1111/aji.12258 |
| [18] |
Weng J, Couture C, Girard S. Innate and adaptive immune systems in physiological and pathological pregnancy. Biology. 2023;12(3):402. doi: 10.3390/biology12030402 EDN: TEMTAD |
| [19] |
Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, et al. Innate immune cells and toll-like receptor-dependent responses at the maternal-fetal interface. Int J Mol Sci. 2019;20(15):3654. doi: 10.3390/ijms20153654 EDN: IZCVYN |
| [20] |
Bakhareva IV, Makarov OV, Kuznetsov PA, et al. Pathogenetic relationship between bacterial vaginosis and local immune changes. Russian Bulletin of Obstetrician-Gynecologist. 2012;12(3):21–23. EDN: PEJSRL |
| [21] |
Makarov OV, Bakhareva IV, Gankovskaya LV, et al. Toll-like receptors in the genesis of miscarriage. Akusherstvo i ginekologiya. 2008;(2):22–27. EDN: TJSARV |
| [22] |
Babaei K, Azimi Nezhad M, Sedigh Ziabari SN, et al. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon. 2024;10(15):e35345. doi: 10.1016/j.heliyon.2024.e35345 EDN: MUREWB |
| [23] |
Gankovskaya OV, Bakhareva IV, Gankovskaya LV, et al. Study of expression of TLR9, NF-κB, TNFα genes in cells of cervical canal mucosa in pregnant women with herpesvirus infection. Journal of Microbiology Epidemiology Immunobiology. 2009;(2):61–64. EDN: RSZBMB |
| [24] |
Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95(1):149–178. doi: 10.1152/physrev.00009.2014 EDN: UQSPFF |
| [25] |
Liao Z, Su J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost. Dev Comp Immunol. 2021;122:104131. doi: 10.1016/j.dci.2021.104131 EDN: CLSROU |
| [26] |
Kufer TA, Sansonetti PJ. NLR functions beyond pathogen recognition. Nat Immunol. 2011;12(2):121–128. doi: 10.1038/ni.1985 EDN: YBRIKT |
| [27] |
De Nardo D, Balka KR, Cardona Gloria Y, et al. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. J Biol Chem. 2018;293(39):15195–15207. doi: 10.1074/jbc.RA118.003314 |
| [28] |
de Rivero Vaccari JP. The inflammasome in reproductive biology: a promising target for novel therapies. Front Endocrinol. 2020;11:8. doi: 10.3389/fendo.2020.00008 EDN: JUTARK |
| [29] |
Omeljaniuk WJ, Garley M, Pryczynicz A, et al. NLRP3 inflammasome in the pathogenesis of miscarriages. Int J Mol Sci. 2024;25(19):10513. doi: 10.3390/ijms251910513 EDN: RQKXWC |
| [30] |
Duez H, Pourcet B. Nuclear receptors in the control of the NLRP3 inflammasome pathway. Front Endocrinol. 2021;12:630536. doi: 10.3389/fendo.2021.630536 EDN: IRLEER |
| [31] |
Shi H, Wang Y, Li X, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17(3):250–258. doi: 10.1038/ni.3333 |
| [32] |
Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91. doi: 10.4049/jimmunol.0901363 |
| [33] |
Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49(2):331–338. doi: 10.1016/j.molcel.2012.11.009 |
| [34] |
Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 2012;287(50):41732– 41743. doi: 10.1074/jbc.M112.381228 |
| [35] |
Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes. Cell Mol Immunol. 2017;14(1):65–79. doi: 10.1038/cmi.2016.29 |
| [36] |
Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 1997;240(2):419–424. doi: 10.1006/bbrc.1997.7672 |
| [37] |
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328 |
| [38] |
Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell. 1998;1(2):319–325. doi: 10.1016/s1097-2765(00)80032-5 |
| [39] |
Lee GS, Subramanian N, Kim AI, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012;492(7427):123–127. doi: 10.1038/nature11588 |
| [40] |
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663 |
| [41] |
Baker PJ, Boucher D, Bierschenk D, et al. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur J Immunol. 2015;45(10):2918–2926. doi: 10.1002/eji.201545655 |
| [42] |
Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44(4):833–846. doi: 10.1016/j.immuni.2016.01.012 |
| [43] |
Fusco R, Siracusa R, Genovese T, et al. Focus on the role of NLRP3 inflammasome in diseases. Int J Mol Sci. 2020;21(12):4223. doi: 10.3390/ijms21124223 EDN: QGTQPV |
| [44] |
Balci CN, Acar N. NLRP3 inflammasome pathway, the hidden balance in pregnancy: a comprehensive review. J Reprod Immunol. 2024;161:104173. doi: 10.1016/j.jri.2023.104173 EDN: YCOBME |
| [45] |
Gomez-Lopez N, Motomura K, Miller D, et al. Inflammasomes: their role in normal and complicated pregnancies. J Immunol. 2019;203(11):2757–2769. doi: 10.4049/jimmunol.1900901 |
| [46] |
Paulesu L, Jantra S, Ietta F, et al. Interleukin-1 in reproductive strategies. Evol Dev. 2008;10(6):778–788. doi: 10.1111/j.1525-142X.2008.00292.x |
| [47] |
Saji F, Samejima Y, Kamiura S, et al. Cytokine production in chorioamnionitis. J Reprod Immunol. 2000;47(2):185–196. doi: 10.1016/s0165-0378(00)00064-4 |
| [48] |
Terzidou V, Blanks AM, Kim SH, et al. Labor and inflammation increase the expression of oxytocin receptor in human amnion. Biol Reprod. 2011;84(3):546–552. doi: 10.1095/biolreprod.110.086785 |
| [49] |
Chen Y, Miao C, Zhao Y, et al. Inflammasomes in human reproductive diseases. Mol Hum Reprod. 2023;29(10):gaad035. doi: 10.1093/molehr/gaad035 EDN: DIXITX |
| [50] |
Zhou F, Li C, Zhang SY. NLRP3 inflammasome: a new therapeutic target for high-risk reproductive disorders? Chin Med J. 2020;134(1):20–27. doi: 10.1097/CM9.0000000000001214 EDN: LYKVYS |
| [51] |
Lu M, Ma F, Xiao J, et al. NLRP3 inflammasome as the potential target mechanism and therapy in recurrent spontaneous abortions. Mol Med Rep. 2019;19(3):1935–1941. doi: 10.3892/mmr.2019.9829 |
| [52] |
Gao P, Zha Y, Gong X, et al. The role of maternal-foetal interface inflammation mediated by NLRP3 inflammasome in the pathogenesis of recurrent spontaneous abortion. Placenta. 2020;101:221–229. doi: 10.1016/j.placenta.2020.09.067 EDN: EJDPNT |
| [53] |
D'Ippolito S, Tersigni C, Marana R, et al. Inflammosome in the human endometrium: further step in the evaluation of the "maternal side". Fertil Steril. 2016;105(1):111-8.e1–4. doi: 10.1016/j.fertnstert.2015.09.027 |
| [54] |
Belousova VS, Svitich OA, Timokhina EV, et al. Polymorphism of the IL-1β, TNF, IL-1Ra and IL-4 cytokine genes significantly increases the risk of preterm birth. Biochemistry. 2019;84(9):1040–1046. doi: 10.1134/S0006297919090062 EDN: XPVATM |
| [55] |
Lim R, Lappas M. NOD-like receptor pyrin domain-containing-3 (NLRP3) regulates inflammation-induced pro-labor mediators in human myometrial cells. Am J Reprod Immunol. 2018;79(4):e12825. doi: 10.1111/aji.12825 |
| [56] |
Gomez-Lopez N, Romero R, Xu Y, et al. A Role for the Inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017;24(10):1382–1401. doi: 10.1177/1933719116687656 EDN: YYFSLC |
| [57] |
Gomez-Lopez N, Romero R, Panaitescu B, et al. Inflammasome activation during spontaneous preterm labor with intra-amniotic infection or sterile intra-amniotic inflammation. Am J Reprod Immunol. 2018;80(5):e13049. doi: 10.1111/aji.13049 |
| [58] |
Motomura K, Romero R, Garcia-Flores V, et al. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Mol Hum Reprod. 2020;26(9):712–726. doi: 10.1093/molehr/gaaa054 EDN: NRLGGB |
| [59] |
Seno K, Sase S, Ozeki A, et al. Advanced glycation end products regulate interleukin-1β production in human placenta. J Reprod Dev. 2017;63(4):401–408. doi: 10.1262/jrd.2017-032 |
| [60] |
Lai Q, Zhang X. Predictive value of early pregnancy uric acid levels for adverse pregnancy outcomes. Afr J Reprod Health. 2024;28(12):52–60. doi: 10.29063/ajrh2024/v28i12.6 |
| [61] |
Mulla MJ, Weel IC, Potter JA, et al. Antiphospholipid antibodies inhibit trophoblast toll-like receptor and inflammasome negative regulators. Arthritis Rheumatol. 2018;70(6):891–902. doi: 10.1002/art.40416 |
| [62] |
Zhu D, Zou H, Liu J, et al. Inhibition of HMGB1 ameliorates the maternal-fetal interface destruction in unexplained recurrent spontaneous abortion by suppressing pyroptosis activation. Front Immunol. 2021;12:782792. doi: 10.3389/fimmu.2021.782792 EDN: AAXJTF |
| [63] |
Conforti-Andreoni C, Ricciardi-Castagnoli P, Mortellaro A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cell Mol Immunol. 2011;8(2):135–145. doi: 10.1038/cmi.2010.81 EDN: YDDXVF |
| [64] |
Xu L, Li S, Liu Z, et al. The NLRP3 rs10754558 polymorphism is a risk factor for preeclampsia in a Chinese Han population. J Matern Fetal Neonatal Med. 2019;32(11):1792–1799. doi: 10.1080/14767058.2017.1418313 |
| [65] |
Pontillo A, Reis EC, Bricher PN, et al. NLRP1 L155H polymorphism is a risk factor for preeclampsia development. Am J Reprod Immunol. 2015;73(6):577–581. doi: 10.1111/aji.12353 |
Dobrokhotova Y.E., Markova E.A., Kukina P.I., Makhortova K.A., Svitich O.A.
/
| 〈 |
|
〉 |