The effect of streptococcal arginine deiminase on Th17 lymphocyte differentiation in vitro

Eleonora A. Starikova , Jennet T. Mammedova , Alexey V. Sokolov , Artem A. Rubinstein , Elena Yu. Egidarova , Arslan M. Yakupov , Nazkhanum Sh. Abdulkadyrova , Igor V. Kudryavtsev

Cytokines and inflammation ›› 2024, Vol. 21 ›› Issue (2) : 111 -120.

PDF
Cytokines and inflammation ›› 2024, Vol. 21 ›› Issue (2) : 111 -120. DOI: 10.17816/CI646331
Original Study Articles
research-article

The effect of streptococcal arginine deiminase on Th17 lymphocyte differentiation in vitro

Author information +
History +
PDF

Abstract

BACKGROUND: The mTOR/S6K metabolic intracellular signaling cascade plays a key role in regulating the activation and differentiation of Th17/Treg lymphocyte populations. Pathogens can disrupt T-lymphocyte differentiation programs and weaken immune responses through arginine depletion mechanisms.

AIM: To evaluate the effect of bacterial arginine-hydrolyzing enzyme arginine deiminase on the balance of Th17/Treg helper T-cell polarization in vitro.

MATERIALS AND METHODS: Experiments were conducted using mononuclear leukocytes from healthy donors. Lymphocyte activation and differentiation were induced with activating antibodies and a cytokine cocktail. Recombinant Streptococcus pyogenes arginine deiminase was used. The enzyme’s arginine-hydrolyzing activity was confirmed by a modified Sakaguchi method. Mitochondrial oxidative phosphorylation activity was analyzed via MTT assay. The proportion of Th17, Treg, and IL-17A+/Foxp3+ transitional lymphocyte populations was assessed using monoclonal antibodies and flow cytometry.

RESULTS: The enzyme caused a significant sevenfold decrease in arginine concentration in mononuclear leukocyte cultures. The arginine deficiency induced by arginine deiminase activity could not be compensated even by supplementing supraphysiological concentrations of the amino acid. Differentiation was accompanied by a significant reduction in oxidative phosphorylation (p <0.001). Arginine deiminase inhibited mitochondrial respiration in both intact (p <0.001) and differentiated cells (p <0.05). The enzyme’s activity suppressed Th17 cell differentiation (p <0.05) but did not affect IL-17A+/Foxp3+ transitional cells, Treg lymphocytes, or the Th17/Treg ratio.

CONCLUSIONS: Arginine deiminase may disrupt adaptive immune development and diminish the effectiveness of protective immune responses.

Keywords

arginine / arginine deiminase / Streptococcus pyogenes / T-lymphocytes / differentiation / Th17 cells / Treg cells

Cite this article

Download citation ▾
Eleonora A. Starikova, Jennet T. Mammedova, Alexey V. Sokolov, Artem A. Rubinstein, Elena Yu. Egidarova, Arslan M. Yakupov, Nazkhanum Sh. Abdulkadyrova, Igor V. Kudryavtsev. The effect of streptococcal arginine deiminase on Th17 lymphocyte differentiation in vitro. Cytokines and inflammation, 2024, 21(2): 111-120 DOI:10.17816/CI646331

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci. 2020;21(21):8011. doi: 10.3390/ijms21218011 EDN: YQPJQJ

[2]

Shao S, Yu X, Shen L. Autoimmune thyroid diseases and Th17/Treg lymphocytes. Life Sci. 2018;192:160–165. doi: 10.1016/j.lfs.2017.11.026

[3]

Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci. 2018;19(3):730. doi: 10.3390/ijms19030730

[4]

Yan JB, Luo MM, Chen ZY, He BH. The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. J Immunol Res. 2020;2020:8813558. doi: 10.1155/2020/8813558 EDN: NHXBRD

[5]

Zhang Y, Liu Z, Tian M, et al. The altered PD-1/PD-L1 pathway delivers the “one-two punch” effects to promote the Treg/Th17 imbalance in pre-eclampsia. Cell Mol Immunol. 2018;15(7):710–723. doi: 10.1038/cmi.2017.70

[6]

Moaaz M, Youssry S, Elfatatry A, El Rahman MA. Th17/Treg cells imbalance and their related cytokines (IL-17, IL-10 and TGF-β) in children with autism spectrum disorder. J Neuroimmunol. 2019;337:577071. doi: 10.1016/j.jneuroim.2019.577071

[7]

Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458–469. doi: 10.1038/s41423-018-0004-4 EDN: MDURLV

[8]

Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368–370. doi: 10.1016/j.jmii.2020.03.005 EDN: LUZFBS

[9]

Cluxton D, Petrasca A, Moran B, Fletcher JM. Differential Regulation of Human Treg and Th17 Cells by Fatty Acid Synthesis and Glycolysis. Front Immunol. 2019;10:115. doi: 10.3389/fimmu.2019.00115

[10]

Sun L, Fu J, Zhou Y. Metabolism Controls the Balance of Th17/T-Regulatory Cells. Front Immunol. 2017;8:1632. doi: 10.3389/fimmu.2017.01632

[11]

Werner A, Koschke M, Leuchtner N, et al. Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression. Front Immunol. 2017;8:864. doi: 10.3389/fimmu.2017.00864

[12]

García-Navas R, Munder M, Mollinedo F. Depletion of L-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy. 2012;8(11):1557–1576. doi: 10.4161/auto.21315

[13]

Shyer JA, Flavell RA, Bailis W. Metabolic signaling in T cells. Cell Res. 2020;30(8):649–659. doi: 10.1038/s41422-020-0379-5 EDN: HJHBGQ

[14]

Dunsmore G, Koleva P, Ghobakhloo N, et al. Lower Abundance and Impaired Function of CD71+ Erythroid Cells in Inflammatory Bowel Disease Patients During Pregnancy. J Crohns Colitis. 2019;13(2):230–244. doi: 10.1093/ecco-jcc/jjy147

[15]

Wu G, Jaeger LA, Bazer FW, Rhoads JM. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem. 2004;15(8):442–451. doi: 10.1016/j.jnutbio.2003.11.010

[16]

Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res. 2015;77(2):290–297. doi: 10.1038/pr.2014.177

[17]

Elahi S, Ertelt JM, Kinder JM, et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature. 2013;504(7478):158–162. doi: 10.1038/nature12675

[18]

Chapman NM, Chi H. mTOR Links Environmental Signals to T Cell Fate Decisions. Front Immunol. 2014;5:686. doi: 10.3389/fimmu.2014.00686 EDN: XQCXZZ

[19]

Coquillard C, Vilchez V, Marti F, Gedaly R. mTOR Signaling in Regulatory T Cell Differentiation and Expansion. SOJ Immunol. 2015;3(1). doi: 10.15226/soji/3/1/00122

[20]

Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci. 2021;78(13):5303–5324. doi: 10.1007/s00018-021-03828-4

[21]

Takahara T, Amemiya Y, Sugiyama R, et al. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci. 2020;27(1):87. doi: 10.1186/s12929-020-00679-2 EDN: MUXJRB

[22]

Das P, Lahiri A, Lahiri A, Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6(6):e1000899. doi: 10.1371/journal.ppat.1000899

[23]

Egidarova EYu, Grudinina NA, Karaseva AB, et al. Purification of Recombinant Arginine Deiminase of Streptococcus pyogenes M22 and Its Enzymatic Activity Assay. In: SYMBIOSIS-RUSSIA 2022. Collection of Articles from the XIII International Conference of Biologists. Perm, 2023. Perm, Permskii gosudarstvennyi natsional’nyi issledovatel’skii universitet; 2023. P. 258–261. (In Russ.) doi: 10.17072/simbioz-2022-263-267 EDN: RMFGZU

[24]

Egidarova EYu, Filatenkova TA, Grudinina NA, et al. Recombinant Arginine Deiminase of Streptococcus pyogenes Inhibits Tumor Cell Growth. In: Human Biochemistry: Proceedings of the All-Russian Conference with International Participation, Moscow, October 17–19, 2024. Moscow: E-noto; 2024. P. 243. (In Russ.) EDN: GIYRLQ

[25]

Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol. 2024;21(5):419–435. doi: 10.1038/s41423-024-01148-8 EDN: FPRSFK

[26]

Vilas-Boas W, Cerqueira BAV, Zanette AMD, et al. Arginase levels and their association with Th17-related cytokines, soluble adhesion molecules (sICAM-1 and sVCAM-1) and hemolysis markers among steady-state sickle cell anemia patients. Ann Hematol. 2010;89(9):877–882. doi: 10.1007/s00277-010-0954-9

[27]

Starickova EA, Leveshko TA, Churakina DV, Kudryavtsev IV, Burova LA, Freidlin IS. S. pyogenes M49-16 arginine deiminase inhibits proliferative activity of human peripheral blood lymphocytes. Russ J Infect Immun. 2021;11(2):349–356. doi: 10.15789/2220-7619-ADF-1363 EDN: DCQBCY

[28]

Starikova EA, Mammedova JT, Ozhiganova A, et al. Streptococcal arginine deiminase inhibits T lymphocyte differentiation in vitro. Microorganisms. 2023;11(10):2585. doi: 10.3390/microorganisms11102585 EDN: SVDCPI

[29]

Starikova EA, Mammedova JT, Ozhiganova A, et al. Effect of streptococcal arginine deiminase on the function of CD4+ and CD8+ T lymphocytes. Med Immunol (Russ). 2024;26(3):503–512. (In Russ.) doi: 10.15789/1563-0625-EOS-2910 EDN: MIIATG

[30]

Rodriguez PC, Zea AH, Culotta KS, et al. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem. 2002;277(24):21123–21129. doi: 10.1074/jbc.M110675200

[31]

Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109(4):1568–1573. doi: 10.1182/blood-2006-06-031856

[32]

Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158(3):638–651. doi: 10.1111/j.1476-5381.2009.00291.x

[33]

Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev. 2013;252(1):52–77. doi: 10.1111/imr.12029 EDN: RIMFCZ

[34]

Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39–68. doi: 10.1146/annurev-immunol-020711-075024

[35]

Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol. 2008;83(5):1230–1239. doi: 10.1189/jlb.1207851

[36]

Brandler WM, Antaki D, Gujral M, et al. Frequency and Complexity of De Novo Structural Mutation in Autism. Am J Hum Genet. 2016;98(4):667–679. doi: 10.1016/j.ajhg.2016.02.018

[37]

Kim KW, Chung BH, Kim BM, et al. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology. 2015;144(1):68–78. doi: 10.1111/imm.12351

[38]

Abbas AK. The Surprising Story of IL-2: From Experimental Models to Clinical Application. Am J Pathol. 2020;190(9):1776–1781. doi: 10.1016/j.ajpath.2020.05.007 EDN: JOHBKG

[39]

Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol. 2023;211(2):149–163. doi: 10.1093/cei/uxac105 EDN: GROYTQ

Funding

Российский научный фондRussian Science Foundation(22-24-20013)

Грант Санкт-Петербургского научного фондаGrant of St. Petersburg Science Foundation in accordance with the agreement(45/2022)

RIGHTS & PERMISSIONS

Starikova E.A., Mammedova J.T., Sokolov A.V., Rubinstein A.A., Egidarova E.Y., Yakupov A.M., Abdulkadyrova N.S., Kudryavtsev I.V.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/