Cellular and humoral mechanisms of immune aging

Irina V. Nesterova , Svetlana V. Kovaleva , Galina A. Chudilova , Elisey A. Poezzhaev , Anna I. Pirogova , Valeria N. Chapurina , Lyudmila V. Lomtatidze , Yuriy V. Teterin , Svetlana N. Pikturno , Anastasia D. Safontseva

Cytokines and inflammation ›› 2024, Vol. 21 ›› Issue (2) : 82 -91.

PDF
Cytokines and inflammation ›› 2024, Vol. 21 ›› Issue (2) : 82 -91. DOI: 10.17816/CI642739
Reviews
research-article

Cellular and humoral mechanisms of immune aging

Author information +
History +
PDF

Abstract

Despite significant advancements in extending average life expectancy, challenges persist in enhancing the quality of life for elderly and senile individuals, preventing and treating age-associated diseases and managing geriatric syndromes. The immune system plays a crucial role in aging, undergoing extensive functional changes collectively referred to as immunosenescence. Cellular aging within the immune system is associated with telomere shortening, proteostasis loss, mitochondrial dysfunction, DNA damage, and oxidative stress. Senescent cells are characterized by resistance to apoptosis, cell cycle arrest, and abnormal production of pro-inflammatory cytokines, leading to chronic low-grade inflammation. Concurrently, the effector mechanisms of the immune response become depleted, resulting in a reduced ability of the immune system to adequately respond to antigenic stimuli. Thymic atrophy, depletion of bone marrow niches, a shift in hematopoiesis toward the myeloid lineage, and alterations in lymphocyte subpopulation ratios occur. Additionally, the effector functions of neutrophil granulocytes are impaired. However, the nature of these functional changes in immunosenescence remains insufficiently studied, requiring further research to determine the specific dysfunctions of neutrophil granulocytes in aging.

Keywords

immunosenescence / aging / innate immunity / neutrophil granulocytes / adaptive immunity

Cite this article

Download citation ▾
Irina V. Nesterova, Svetlana V. Kovaleva, Galina A. Chudilova, Elisey A. Poezzhaev, Anna I. Pirogova, Valeria N. Chapurina, Lyudmila V. Lomtatidze, Yuriy V. Teterin, Svetlana N. Pikturno, Anastasia D. Safontseva. Cellular and humoral mechanisms of immune aging. Cytokines and inflammation, 2024, 21(2): 82-91 DOI:10.17816/CI642739

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rajado AT, Silva N, Esteves F, et al. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging. 2023;15(8):3191–3217. doi: 10.18632/aging.204668 EDN: NJSNXB

[2]

Barbé-Tuana F, Funchal G, Schmitz CRR, et al. The interplay between immunosenescence and age-related diseases. Seminars in Immunopathology. 2020;(42):545–557. doi: 10.1007/s00281-020-00806-z EDN: WJUAOD

[3]

Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immunity & Ageing. 2018;15(11):1–4. doi: 10.1186/s12979-018-0117-8 EDN: OEWTMY

[4]

Saavedra D, Añé-Kourí AL, Barzilai N, et al. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immunity & Ageing. 2023;20(25):1–10. doi: 10.1186/s12979-023-00352-w EDN: DIAIZJ

[5]

Gao X, Yu X, Zhang C, et al. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Reviews and Reports. 2022;18(7):2315–2327. doi: 10.1007/s12015-022-10370-8 EDN: QLLVQM

[6]

Aging Biomarker Consortium; Bao H, Cao J, Chen M, et al. Biomarkers of aging. Science China. Life Sciences. 2023;66(5):893–1066. doi: 10.1007/s11427-023-2305-0

[7]

Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell. 2021;20(2):e13316. doi: 10.1111/acel.13316 EDN: QYQNEX

[8]

Bharath LP, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metabolism. 2020;32(1):44–55. doi: 10.1016/j.cmet.2020.04.015 EDN: BFVVEN

[9]

Klaips CL, Jayaraj GG, Hart FU. Pathways of cellular proteostasis in aging and disease. The Journal of Cell Biology. 2018;217(1):51–63. doi: 10.1083/jcb.201709072 EDN: VDWSJD

[10]

Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer’s disease. Molecular Neurodegeneration. 2023;18(27):1-34. doi: 10.1186/s13024-023-00617-4 EDN: XXOGWD

[11]

Kong M, Guo L, Xu W, et al. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. Life Medicine. 2022;1:149–167. doi: 10.1093/lifemedi/lnac014 EDN: YEZDRM

[12]

López-OtÍn C, Kroemer G. Hallmarks of health. Cell. 2021;184(1):33–63. doi: 10.1016/j.cell.2020.11.034 EDN: KHGXSM

[13]

Lee K-A, Robbins PD, Camell CD. Intersection of immunometabolism and immunosenescence during aging. Current Opinion in Pharmacology. 2021;57:107–116. doi: 10.1016/j.coph.2021.01.003 EDN: MONRTZ

[14]

Patel J, Baptiste BA, Kim E, et al. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–1634. doi: 10.1093/carcin/bgaa114 EDN: IDFSEO

[15]

Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. Blood. 2018;131(5):488–495. doi: 10.1182/blood-2017-07-746396 EDN: SKVOHC

[16]

Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005 EDN: PGJUED

[17]

Mijit M, Caracciolo V, Melillo A, et al. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10(420):1–16. doi: 10.3390/biom10030420 EDN: JIVQBF

[18]

Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology. 2021;9:645593. doi: 10.3389/fcell.2021.645593 EDN: OTSQHR

[19]

Franceschi C, Salvioli S, Garagnani P, et al. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Frontiers in Immunology. 2017;8:982. doi: 10.3389/fimmu.2017.00982

[20]

Sun Y, Coppé JP, Lam EWF. Cellular senescence: the sought or the unwanted? Trends in Molecular Medicine. 2018;24(10):871–885. doi: 10.1016/j.molmed.2018.08.002

[21]

López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001 EDN: JTXISH

[22]

Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. Journal of Molecular Medicine (Berlin, Germany). 2021;99(11):1553–1569. doi: 10.1007/s00109-021-02123-w EDN: GMNRGE

[23]

Kroemer G, Zitvogel L. CD4+ T Cells at the Center of Inflammaging. Cell Metabolism. 2020;32(1):4–5. doi: 10.1016/j.cmet.2020.04.016 EDN: QTOCFE

[24]

Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular & Molecular Immunology. 2020;17(1):27–35. doi: 10.1038/s41423-019-0344-8 EDN: AUQBNN

[25]

Hammond CA, Wu SW, Wang F, et al. Aging alters the cell cycle control and mitogenic signaling responses of human hematopoietic stem cells. Blood. 2023;141(16):1990–2002. doi: 10.1182/blood.2022017174 EDN: DRMOUY

[26]

Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. International Journal of Molecular Sciences. 2023;24:5862. doi: 10.3390/ijms24065862 EDN: UFZKPX

[27]

Pangrazzi L, Meryk A, Naismith A, et al. “Inflamm-aging” influences immune cell survival factors in human bone marrow. European Journal of Immunology. 2017;47:481–492. doi: 10.1002/eji.201646570

[28]

Liang Z, Dong X, Zhang Z, et al. Age-related thymic involution: Mechanisms and functional impact. Aging Cell. 2022;21:e13671. doi: 10.1111/acel.13671 EDN: OHCFEL

[29]

Shirakawa K, Sano M. T Cell immunosenescence in aging, obesity, and cardiovascular disease. Cells. 2021;10(9):1-16. doi: 10.3390/cells10092435 EDN: FNGXIM

[30]

Srinivasan J, Lancaster JN, Singarapu N, et al. Age-Related Changes in Thymic Central Tolerance. Frontiers in Immunology. 2021;12:676236. doi: 10.3389/fimmu.2021.676236 EDN: BPBTRH

[31]

Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Research Reviews. 2021;71:101422. doi: 10.1016/j.arr.2021.101422 EDN: KTCOXD

[32]

Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Seminars in Immunology. 2023;70:101835. doi: 10.1016/j.smim.2023.101835 EDN: GXIHRS

[33]

Wang Y, Dong C, Han Y, et al. Immunosenescence, aging and successful aging. Frontiers in Immunology. 2022;13:942796. doi: 10.3389/fimmu.2022.942796 EDN: NIXPTQ

[34]

Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging. 2021;13(15):19920–19941. doi: 10.18632/aging.203405 EDN: JVYLON

[35]

Li M, Yao D, Zeng X, et al. Age related human T cell subset evolution and senescence. Immunity & Ageing. 2019;16(24):1–7. doi: 10.1186/s12979-019-0165-8 EDN: XUMZKM

[36]

Shin MS, Yim K, Moon K, et al. Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry. Clinical Immunology. 2019;200:24–30. doi: 10.1016/j.clim.2019.01.005

[37]

Pereira BI, De Maeyer RPH, Covre LP, et al. Sestrins Induce Natural Killer Function in Senescent-like CD8+ T Cells. Nature Immunology. 2020;21(6):684–694. doi: 10.1038/s41590-020-0643-3 EDN: SYFMXO

[38]

Martínez-Zamudio RI, Dewald HK, Vasilopoulos T, et al. Senescence-Associated β-Galactosidase Reveals the Abundance of Senescent CD8+ T Cells in Aging Humans. Aging Cell. 2021;20:e13344. doi: 10.1111/acel.13344 EDN: DMSVOQ

[39]

Lefebvre JS, Lorenzo EC, Masters AR, et al. Vaccine efficacy and T helper cell differentiation change with aging. Oncotarget. 2016;7(23):33581–33594. doi: 10.18632/oncotarget.9254

[40]

Zeng J, Zhang L, Ma S, et al. Dysregulation of peripheral and intratumoral KLRG1+ CD8+ T cells is associated with immune evasion in patients with non-small-cell lung cancer. Translational Oncology. 2024;45:101968. doi: 10.1016/j.tranon.2024.101968 EDN: CBNAQP

[41]

Frasca D, Diaz A, Romero M, et al. B Cell Immunosenescence. Annual Review of Cell and Developmental Biology. 2020;36:551–574. doi: 10.1146/annurev-cellbio-011620-034148 EDN: SPTTCA

[42]

Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cellular and Molecular Life Scences. 2022;79:402. doi: 10.1007/s00018-022-04433-9 EDN: HBAQDW

[43]

Zhang Y, Huang B. The Development and Diversity of ILCs, NK Cells and Their Relevance in Health and Diseases. Advances in Experimental Medicine and Biology. 2017;1024:225–244. doi: 10.1007/978-981-10-5987-2_11

[44]

Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Frontiers in Immunology. 2017;8:1124. doi: 10.3389/fimmu.2017.01124 EDN: YIAEBD

[45]

Fulop T, Larbi A, Pawelec G, et al. Immunology of Aging: the Birth of Inflammaging. Clinical Reviews in Allergy & Immunology. 2023;64:109–122. doi: 10.1007/s12016-021-08899-6 EDN: ZGEEES

[46]

Brauning A, Rae M, Zhu G, et al. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells. 2022;11:1017. doi: 10.3390/cells11061017 EDN: XGBFTI

[47]

Kobyzeva PA, Streltsova MA, Erokhina SA, et al. CD56dimCD57−NKG2C+ NK cells retaining proliferative potential are possible precursors of CD57+NKG2C+ memory-like NK cells. Journal of Leukocyte Biology. 2020;108(4):1379–1395. doi: 10.1002/JLB.1MA0720-654RR EDN: LNBEBQ

[48]

Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160(2):116–125. doi: 10.1111/imm.13152

[49]

Malik JA, Zafar MA, Lamba T, et al. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes. 2023;15(2):1–23. doi: 10.1080/19490976.2023.2290643 EDN: PFBCOJ

[50]

Wu Y, Yi M, Niu M, et al. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Molecular Cancer. 2022;21(184):1–19. doi: 10.1186/s12943-022-01657-y EDN: VIBCRO

[51]

Shao L, Pan S, Zhang QP, et al. Emerging Role of Myeloid-Derived Suppressor Cells in the Biology of Transplantation Tolerance. Transplantation. 2020;104(3):467–475. doi: 10.1097/TP.0000000000002996 EDN: AGULAT

[52]

Heigl T, Singh A, Saez-Gimenez B, et al. Myeloid-Derived Suppressor Cells in Lung Transplantation. Frontiers in Immunology. 2019;10(900):1–7. doi: 10.3389/fimmu.2019.00900

[53]

Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. Journal of Molecular Medicine. 2019;97(8):1049–1064. doi: 10.1007/s00109-019-01795-9 EDN: NYFZBY

[54]

Sapey E, Greenwood H, Walton G, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 2014;123(2):239–248. doi: 10.1182/blood-2013-08-519520

[55]

Block H, Zarbock A. A fragile balance: does neutrophil extracellular trap formation drive pulmonary disease progression? Cells. 2021;10(8):1–23. doi: 10.3390/cells10081932 EDN: AIALKV

[56]

Liu Y, Xiang C, Que Z, et al. Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing. Frontiers in Immunology. 2023;14:1201651. doi: 10.3389/fimmu.2023.1201651 EDN: HZNYWP

[57]

Sauce D, Dong Y, Campillo-Gimenez L, et al. Reduced oxidative burst by primed neutrophils in the elderly individuals is associated with increased levels of the CD16bright/CD62Ldim immunosuppressive subset. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2017;72(2):163–172. doi: 10.1093/gerona/glw062

[58]

Gasparoto TH, Dalboni TM, Amôr NG, et al. Fcγ receptors on aging neutrophils. Journal of Applied Oral Science. 2021;29:e20200770. doi: 10.1590/1678-7757-2020-0770 EDN: WHFKNK

[59]

Qian F, Guo X, Wang X, et al. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging. Aging. 2014;6(2):131–139. doi: 10.18632/aging.100642 EDN: SOZCKF

RIGHTS & PERMISSIONS

Nesterova I.V., Kovaleva S.V., Chudilova G.A., Poezzhaev E.A., Pirogova A.I., Chapurina V.N., Lomtatidze L.V., Teterin Y.V., Pikturno S.N., Safontseva A.D.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/