Recombinant human interleukin-2 corrects NK cell phenotype and functional activity in patients with post-COVID syndrome
Andrei A. Savchenko , Igor V. Kudryavtsev , Dmitry V. Isakov , Ivan S. Sadowski , Vasily D. Beleyuk , Alexandr G. Borisov
Cytokines and inflammation ›› 2023, Vol. 20 ›› Issue (4) : 49 -66.
Recombinant human interleukin-2 corrects NK cell phenotype and functional activity in patients with post-COVID syndrome
Post-COVID syndrome develops in 10–20% of people who have recovered from COVID-19 and it is characterized by impaired function of the nervous, cardiovascular, and immune systems. Previously, it was found that patients who recovered from infection with the SARS-CoV-2 virus had a decrease in the number and functional activity of NK cells. The aim of the study was to assess the effectiveness of recombinant human interleukin-2 administered to correct NK cell phenotype and functional activity in patients with post-COVID syndrome. Patients were examined after 3 months for acute COVID-19 of varying severity. The phenotype of the peripheral blood NK cells was studied by flow cytometry. It was found that disturbances in the cell subset composition in patients with post-COVID syndrome were characterized by low levels of mature (p=0.001) and cytotoxic NK cells (p=0.013), with increased release of immature NK cells (p=0.023). Functional deficiency of NK cells in post-COVID syndrome was characterized by lowered cytotoxic activity due to the decreased count of CD57+ (p=0.001) and CD8+ (p <0.001) NK cells. In the treatment of patients with post-COVID syndrome with recombinant human interleukin-2, peripheral blood NK cell count and functional potential were restored. In general, the effectiveness of using recombinant human interleukin in treatment of post-COVID syndrome has been proven in patients with low levels of NK cells.
This article is a translation of the article by Savchenko AA, Kudryavtsev IV, Isakov DV, Sadowski IS, Belenyuk VD, Borisov AG. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals. 2023;16(4):537. DOI: 10.3390/ph16040537
Published with the permission of the copyright holder.
post-COVID syndrome / NK cell / recombinant human interleukin-2 / immunorehabilitation / subset composition / functional activity
| [1] |
Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm Res. 2020;69(12):1181–1189. doi: 10.1007/s00011-020-01401-6 |
| [2] |
Iba T., Connors J.M., Levy J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19 // Inflamm Res. 2020. Vol. 69, N 12. P. 1181–1189. doi: 10.1007/s00011-020-01401-6 |
| [3] |
WHO Working Group on the Clinical Characterisation and Management of COVID-19 Infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020;20(8):e192–e197. doi: 10.1016/S1473-3099(20)30483-7 Erratum in: Lancet Infect Dis. 2020;20(10):e250. doi: 10.1016/S1473-3099(20)30637-X |
| [4] |
WHO Working Group on the Clinical Characterisation and Management of COVID-19 Infection. A minimal common outcome measure set for COVID-19 clinical research // Lancet Infect Dis. 2020. Vol. 20, N 8. P. e192–e197. doi: 10.1016/S1473-3099(20)30483-7 Erratum in: Lancet Infect Dis. 2020. Vol. 20, N 10. P. e250. doi: 10.1016/S1473-3099(20)30637-X |
| [5] |
Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi: 10.1038/s41586-020-2521-4 |
| [6] |
Williamson E.J., Walker A.J., Bhaskaran K., et al. Factors associated with COVID-19-related death using OpenSAFELY // Nature. 2020. Vol. 584, N 7821. P. 430–436. doi: 10.1038/s41586-020-2521-4 |
| [7] |
Ahmed H, Patel K, Greenwood DC, et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med. 2020;52(5):jrm00063. doi: 10.2340/16501977-2694 |
| [8] |
Ahmed H., Patel K., Greenwood D.C., et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis // J. Rehabil Med. 2020. Vol. 52, N 5. P. jrm00063. doi: 10.2340/16501977-2694 |
| [9] |
Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/S0140-6736(20)32656-8 |
| [10] |
Huang C., Huang L., Wang Y., et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study // Lancet. 2021. Vol. 397, N 10270. P. 220–232. doi: 10.1016/S0140-6736(20)32656-8 |
| [11] |
Patel K, Straudi S, Yee Sien N, et al. Applying the WHO ICF Framework to the Outcome Measures Used in the Evaluation of Long-Term Clinical Outcomes in Coronavirus Outbreaks. Int J Environ Res Public Health. 2020;17(18):6476. doi: 10.3390/ijerph17186476 |
| [12] |
Patel K., Straudi S., Yee Sien N., et al. Applying the WHO ICF Framework to the Outcome Measures Used in the Evaluation of Long-Term Clinical Outcomes in Coronavirus Outbreaks // Int J Environ Res Public Health. 2020. Vol. 17, N 18. P. 6476. doi: 10.3390/ijerph17186476 |
| [13] |
Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384–396. doi: 10.33588/rn.7211.2021230 |
| [14] |
Carod-Artal F.J. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved // Rev Neurol. 2021. Vol. 72, N 11. P. 384–396. doi: 10.33588/rn.7211.2021230 |
| [15] |
Ganesh R, Grach SL, Ghosh AK, et al. The Female-Predominant Persistent Immune Dysregulation of the Post-COVID Syndrome. Mayo Clin Proc. 2022;97(3):454–464. doi: 10.1016/j.mayocp.2021.11.033 |
| [16] |
Ganesh R., Grach S.L., Ghosh A.K., et al. The Female-Predominant Persistent Immune Dysregulation of the Post-COVID Syndrome // Mayo Clin Proc. 2022. Vol. 97, N 3. P. 454–464. doi: 10.1016/j.mayocp.2021.11.033 |
| [17] |
Orendáčová M, Kvašňák E, Vránová J. Effect of neurofeedback therapy on neurological post-COVID-19 complications (A pilot study). PLoS One. 2022;17(7):e0271350. doi: 10.1371/journal.pone.0271350 |
| [18] |
Orendáčová M., Kvašňák E., Vránová J. Effect of neurofeedback therapy on neurological post-COVID-19 complications (A pilot study) // PLoS One. 2022. Vol. 17, N 7. P. e0271350. doi: 10.1371/journal.pone.0271350 |
| [19] |
Malkova A, Kudryavtsev I, Starshinova A, et al. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens. 2021;10(11):1408. doi: 10.3390/pathogens10111408 |
| [20] |
Malkova A., Kudryavtsev I., Starshinova A., et al. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form // Pathogens. 2021. Vol. 10, N 11. P. 1408. doi: 10.3390/pathogens10111408 |
| [21] |
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z |
| [22] |
Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. P. 601–615. doi: 10.1038/s41591-021-01283-z |
| [23] |
Klok FA, Boon GJAM, Barco S, et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020;56(1):2001494. doi: 10.1183/13993003.01494-2020 |
| [24] |
Klok F.A., Boon G.J.A.M., Barco S., et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19 // Eur Respir J. 2020. Vol. 56, N 1. P. 2001494. doi: 10.1183/13993003.01494-2020 |
| [25] |
O’Connor RJ, Preston N, Parkin A, et al. The COVID-19 Yorkshire Rehabilitation Scale (C19-YRS): Application and psychometric analysis in a post-COVID-19 syndrome cohort. J Med Virol. 2022;94(3):1027–1034. doi: 10.1002/jmv.27415 |
| [26] |
O’Connor R.J., Preston N., Parkin A., et al. The COVID-19 Yorkshire Rehabilitation Scale (C19-YRS): Application and psychometric analysis in a post-COVID-19 syndrome cohort // J Med Virol. 2022. Vol. 94, N 3.P. 1027–1034. doi: 10.1002/jmv.27415 |
| [27] |
Sivan M, Parkin A, Makower S, Greenwood DC. Post-COVID syndrome symptoms, functional disability, and clinical severity phenotypes in hospitalized and nonhospitalized individuals: A cross-sectional evaluation from a community COVID rehabilitation service. J Med Virol. 2022;94(4):1419–1427. doi: 10.1002/jmv.27456 |
| [28] |
Sivan M., Parkin A., Makower S., Greenwood D.C. Post-COVID syndrome symptoms, functional disability, and clinical severity phenotypes in hospitalized and nonhospitalized individuals: A cross-sectional evaluation from a community COVID rehabilitation service // J Med Virol. 2022. Vol. 94, N 4. P. 1419–1427. doi: 10.1002/jmv.27456 |
| [29] |
Kudryavtsev I, Rubinstein A, Golovkin A, et al. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses. 2022;14(5):1082. doi: 10.3390/v14051082 |
| [30] |
Kudryavtsev I., Rubinstein A., Golovkin A., et al. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview // Viruses. 2022. Vol. 14, N 5. P. 1082. doi: 10.3390/v14051082 |
| [31] |
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol. 2022;13:904686. doi: 10.3389/fimmu.2022.904686 |
| [32] |
Moga E., Lynton-Pons E., Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection // Front Immunol. 2022. Vol. 13. P. 904686. doi: 10.3389/fimmu.2022.904686 |
| [33] |
Lim J, Puan KJ, Wang LW, et al. Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals. Front Immunol. 2021;12:710217. doi: 10.3389/fimmu.2021.710217 |
| [34] |
Lim J., Puan K.J., Wang L.W., et al. Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals // Front Immunol. 2021. Vol. 12. P. 710217. doi: 10.3389/fimmu.2021.710217 |
| [35] |
Savchenko AA, Tikhonova E, Kudryavtsev I, et al. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses. 2022;14(3):646. doi: 10.3390/v14030646 |
| [36] |
Savchenko A.A., Tikhonova E., Kudryavtsev I., et al. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease // Viruses. 2022. Vol. 14, N 3. P. 646. doi: 10.3390/v14030646 |
| [37] |
Townsend L, Dyer AH, Naughton A, et al. Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health. Front Immunol. 2021;12:676932. doi: 10.3389/fimmu.2021.676932 |
| [38] |
Townsend L., Dyer A.H., Naughton A., et al. Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health // Front Immunol. 2021. Vol. 12. P. 676932. doi: 10.3389/fimmu.2021.676932 |
| [39] |
Bernard NF, Alsulami K, Pavey E, Dupuy FP. NK Cells in Protection from HIV Infection. Viruses. 2022;14(6):1143. doi: 10.3390/v14061143 |
| [40] |
Bernard N.F., Alsulami K., Pavey E., Dupuy F.P. NK Cells in Protection from HIV Infection // Viruses. 2022. Vol. 14, N 6. P. 1143. doi: 10.3390/v14061143 |
| [41] |
Fionda C, Scarno G, Stabile H, et al. NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. Int J Mol Sci. 2022;23(14):7859. doi: 10.3390/ijms23147859 |
| [42] |
Fionda C., Scarno G., Stabile H., et al. NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis // Int J Mol Sci. 2022. Vol. 23, N 14. P. 7859. doi: 10.3390/ijms23147859 |
| [43] |
Deng X, Terunuma H, Nieda M. Exploring the Utility of NK Cells in COVID-19. Biomedicines. 2022;10(5):1002. doi: 10.3390/biomedicines10051002 |
| [44] |
Deng X., Terunuma H., Nieda M. Exploring the Utility of NK Cells in COVID-19 // Biomedicines. 2022. Vol. 10, N 5. P. 1002. doi: 10.3390/biomedicines10051002 |
| [45] |
Pituch-Noworolska AM. NK cells in SARS-CoV-2 infection. Cent Eur J Immunol. 2022;47(1):95–101. doi: 10.5114/ceji.2022.113078 |
| [46] |
Pituch-Noworolska A.M. NK cells in SARS-CoV-2 infection // Cent Eur J Immunol. 2022. Vol. 47, N 1. P. 95–101. doi: 10.5114/ceji.2022.113078 |
| [47] |
Di Vito C, Calcaterra F, Coianiz N, et al. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol. 2022;13:888248. doi: 10.3389/fimmu.2022.888248 |
| [48] |
Di Vito C., Calcaterra F., Coianiz N., et al. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications // Front Immunol. 2022. Vol. 13. P. 888248. doi: 10.3389/fimmu.2022.888248 |
| [49] |
Herrera L, Martin-Inaraja M, Santos S, et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology. 2022;165(2):234–249. doi: 10.1111/imm.13432 |
| [50] |
Herrera L., Martin-Inaraja M., Santos S., et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy // Immunology. 2022. Vol. 165, N 2. P. 234–249. doi: 10.1111/imm.13432 |
| [51] |
Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535. doi: 10.1038/s41423-020-0402-2 |
| [52] |
Zheng M., Gao Y., Wang G., et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients // Cell Mol Immunol. 2020. Vol. 17, N 5. P. 533–535. doi: 10.1038/s41423-020-0402-2 |
| [53] |
Hasichaolu, Zhang X, Li X, Li X, Li D. Circulating Cytokines and Lymphocyte Subsets in Patients Who Have Recovered from COVID-19. Biomed Res Int. 2020;2020:7570981. doi: 10.1155/2020/7570981 |
| [54] |
Hasichaolu, Zhang X., Li X., Li X., Li D. Circulating Cytokines and Lymphocyte Subsets in Patients Who Have Recovered from COVID-19 // Biomed Res Int. 2020. Vol. 2020. P. 7570981. doi: 10.1155/2020/7570981 |
| [55] |
Van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci. 2020. Vol. 21, N 17. P. 6351. doi: 10.3390/ijms21176351 |
| [56] |
Van Eeden C., Khan L., Osman M.S., Cohen Tervaert J.W. Natural Killer Cell Dysfunction and Its Role in COVID-19 // Int J Mol Sci. 2020. Vol. 21, N 17. P. 6351. doi: 10.3390/ijms21176351 |
| [57] |
Prinz D, Klein K, List J, et al. Loss of NKG2D in murine NK cells leads to increased perforin production upon long-term stimulation with IL-2. Eur J Immunol. 2020;50(6):880–890. doi: 10.1002/eji.201948222 |
| [58] |
Prinz D., Klein K., List J., et al. Loss of NKG2D in murine NK cells leads to increased perforin production upon long-term stimulation with IL-2 // Eur J Immunol. 2020. Vol. 50, N 6. P. 880–890. doi: 10.1002/eji.201948222 |
| [59] |
Rosenstock P, Bork K, Massa C, et al. Sialylation of Human Natural Killer (NK) Cells is Regulated by IL-2. J Clin Med. 2020;9(6):1816. doi: 10.3390/jcm9061816 |
| [60] |
Rosenstock P., Bork K., Massa C., et al. Sialylation of Human Natural Killer (NK) Cells is Regulated by IL-2 // J Clin Med. 2020. Vol. 9, N 6. P. 1816. doi: 10.3390/jcm9061816 |
| [61] |
Sönmez C, Wölfer J, Holling M, et al. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci Rep. 2022;12(1):6769. doi: 10.1038/s41598-022-10680-4 |
| [62] |
Sönmez C., Wölfer J., Holling M., et al. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas // Sci Rep. 2022. Vol. 12, N 1. P. 6769. doi: 10.1038/s41598-022-10680-4 |
| [63] |
Eller MA, Currier JR. OMIP-007: phenotypic analysis of human natural killer cells. Cytometry A. 2012;81(6):447–449. doi: 10.1002/cyto.a.22033 |
| [64] |
Eller M.A., Currier J.R. OMIP-007: phenotypic analysis of human natural killer cells // Cytometry A. 2012. Vol. 81, N 6. P. 447–449. doi: 10.1002/cyto.a.22033 |
| [65] |
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci. 2020;21(22):8864. doi: 10.3390/ijms21228864 |
| [66] |
Barnes S., Schilizzi O., Audsley K.M., Newnes H.V., Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV) // Int J Mol Sci. 2020. Vol. 21, N 22. P. 8864. doi: 10.3390/ijms21228864 |
| [67] |
Gonzalez JC, Chakraborty S, Thulin NK, Wang TT. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes. Immunol Rev. 2022;309(1):64–74. doi: 10.1111/imr.13109 |
| [68] |
Gonzalez J.C., Chakraborty S., Thulin N.K., Wang T.T. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes // Immunol Rev. 2022. Vol. 309, N 1. P. 64–74. doi: 10.1111/imr.13109 |
| [69] |
Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front Immunol. 2017;8:892. doi: 10.3389/fimmu.2017.00892 |
| [70] |
Van Acker H.H., Capsomidis A., Smits E.L., Van Tendeloo V.F. CD56 in the Immune System: More Than a Marker for Cytotoxicity? // Front Immunol. 2017. Vol. 8. P. 892. doi: 10.3389/fimmu.2017.00892 |
| [71] |
Van Acker HH, Van Acker ZP, Versteven M, et al. CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for Interleukin-15. Cancers (Basel). 2019;11(7):1029. doi: 10.3390/cancers11071029 |
| [72] |
Van Acker H.H., Van Acker Z.P., Versteven M., et al. CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for Interleukin-15 // Cancers (Basel). 2019. Vol. 11, N 7. P. 1029. doi: 10.3390/cancers11071029 |
| [73] |
Adib Rad H, Basirat Z, Mostafazadeh A, et al. Evaluation of peripheral blood NK cell subsets and cytokines in unexplained recurrent miscarriage. J Chin Med Assoc. 2018;81(12):1065–1070. doi: 10.1016/j.jcma.2018.05.005 |
| [74] |
Adib Rad H., Basirat Z., Mostafazadeh A., et al. Evaluation of peripheral blood NK cell subsets and cytokines in unexplained recurrent miscarriage // J Chin Med Assoc. 2018. Vol. 81, N 12. P. 1065–1070. doi: 10.1016/j.jcma.2018.05.005 |
| [75] |
Papak I, Chruściel E, Dziubek K, et al. What Inhibits Natural Killers’ Performance in Tumour. Int J Mol Sci. 2022;23(13):7030. doi: 10.3390/ijms23137030 |
| [76] |
Papak I., Chruściel E., Dziubek K., et al. What Inhibits Natural Killers’ Performance in Tumour // Int J Mol Sci. 2022. Vol. 23, N 13. P. 7030. doi: 10.3390/ijms23137030 |
| [77] |
Vujanovic L, Chuckran C, Lin Y, et al. CD56dim CD16- Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front Immunol. 2019;10:14. doi: 10.3389/fimmu.2019.00014 |
| [78] |
Vujanovic L., Chuckran C., Lin Y., et al. CD56dim CD16- Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α // Front Immunol. 2019. Vol. 10. P. 14. doi: 10.3389/fimmu.2019.00014 |
| [79] |
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol. 2022;13:888313. doi: 10.3389/fimmu.2022.888313 |
| [80] |
Corvino D., Kumar A., Bald T. Plasticity of NK cells in Cancer // Front Immunol. 2022. Vol. 13. P. 888313. doi: 10.3389/fimmu.2022.888313 |
| [81] |
Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–452. doi: 10.1007/s00262-016-1803-z |
| [82] |
Kared H., Martelli S., Ng T.P., Pender S.L., Larbi A. CD57 in human natural killer cells and T-lymphocytes // Cancer Immunol Immunother. 2016. Vol. 65, N 4. P. 441–452. doi: 10.1007/s00262-016-1803-z |
| [83] |
Liu B, Yang GX, Sun Y, et al. Decreased CD57 expression of natural killer cells enhanced cytotoxicity in patients with primary sclerosing cholangitis. Front Immunol. 2022;13:912961. doi: 10.3389/fimmu.2022.912961 |
| [84] |
Liu B., Yang G.X., Sun Y., et al. Decreased CD57 expression of natural killer cells enhanced cytotoxicity in patients with primary sclerosing cholangitis // Front Immunol. 2022. Vol. 13. P. 912961. doi: 10.3389/fimmu.2022.912961 |
| [85] |
Kudryavtsev IV, Arsentieva NA, Korobova ZR, et al. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients. Viruses. 2022;14(9):1906. doi: 10.3390/v14091906 |
| [86] |
Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., et al. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients // Viruses. 2022. Vol. 14, N 9. P. 1906. doi: 10.3390/v14091906 |
| [87] |
Rajamanickam A, Pavan Kumar N, Pandiaraj AN, et al. Characterization of memory T cell subsets and common γ-chain cytokines in convalescent COVID-19 individuals. J Leukoc Biol. 2022;112(1):201–212. doi: 10.1002/JLB.5COVA0721-392RR |
| [88] |
Rajamanickam A., Pavan Kumar N., Pandiaraj A.N., et al. Characterization of memory T cell subsets and common γ-chain cytokines in convalescent COVID-19 individuals // J Leukoc Biol. 2022. Vol. 112. N 1. P. 201–212. doi: 10.1002/JLB.5COVA0721-392RR |
| [89] |
Gosain R, Abdou Y, Singh A, et al. COVID-19 and Cancer: a Comprehensive Review. Curr Oncol Rep. 2020;22(5):53. doi: 10.1007/s11912-020-00934-7 |
| [90] |
Gosain R., Abdou Y., Singh A., et al. COVID-19 and Cancer: a Comprehensive Review // Curr Oncol Rep. 2020. Vol. 22, N 5. P. 53. doi: 10.1007/s11912-020-00934-7 |
| [91] |
Gelmez MY, Oktelik FB, Tahrali I, et al. Immune modulation as a consequence of SARS-CoV-2 infection. Front Immunol. 2022;13:954391. doi: 10.3389/fimmu.2022.954391 |
| [92] |
Gelmez, Gelmez M.Y., Oktelik F.B., Tahrali I., et al. Immune modulation as a consequence of SARS-CoV-2 infection // Front Immunol. 2022. Vol. 13. P. 954391. doi: 10.3389/fimmu.2022.954391 |
| [93] |
Ito Y, Nakahara F, Kagoya Y, Kurokawa M. CD62L expression level determines the cell fate of myeloid progenitors. Stem Cell Reports. 2021;16(12):2871–2886. doi: 10.1016/j.stemcr.2021.10.012 |
| [94] |
Ito Y., Nakahara F., Kagoya Y., Kurokawa M. CD62L expression level determines the cell fate of myeloid progenitors // Stem Cell Reports. 2021. Vol. 16, N 12. P. 2871–2886. doi: 10.1016/j.stemcr.2021.10.012 |
| [95] |
Ran GH, Lin YQ, Tian L, et al. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther. 2022;7(1):205. doi: 10.1038/s41392-022-01058-z |
| [96] |
Ran G.H., Lin Y.Q., Tian L., et al. Natural killer cell homing and trafficking in tissues and tumors: from biology to application // Signal Transduct Target Ther. 2022. Vol. 7, N 1. P. 205. doi: 10.1038/s41392-022-01058-z |
| [97] |
Geng J, Raghavan M. CD8αα homodimers function as a coreceptor for KIR3DL1. Proc Natl Acad Sci U S A. 2019;116(36):17951–17956. doi: 10.1073/pnas.1905943116 |
| [98] |
Geng J., Raghavan M. CD8αα homodimers function as a coreceptor for KIR3DL1 // Proc Natl Acad Sci U S A. 2019. Vol. 116, N 36. P. 17951–17956. doi: 10.1073/pnas.1905943116 |
| [99] |
McKinney EF, Cuthbertson I, Harris KM, et al. A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nat Commun. 2021;12(1):635. doi: 10.1038/s41467-020-20594-2 |
| [100] |
McKinney E.F., Cuthbertson I., Harris K.M., et al. A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis // Nat Commun. 2021. Vol. 12, N 1. P. 635. doi: 10.1038/s41467-020-20594-2 |
| [101] |
Schulte-Wrede U, Sörensen T, Grün JR, et al. An explorative study on deep profiling of peripheral leukocytes to identify predictors for responsiveness to anti-tumour necrosis factor alpha therapies in ankylosing spondylitis: natural killer cells in focus. Arthritis Res Ther. 2018;20(1):191. doi: 10.1186/s13075-018-1692-y |
| [102] |
Schulte-Wrede U., Sörensen T., Grün J.R., et al. An explorative study on deep profiling of peripheral leukocytes to identify predictors for responsiveness to anti-tumour necrosis factor alpha therapies in ankylosing spondylitis: natural killer cells in focus // Arthritis Res Ther. 2018. Vol. 20, N 1. P. 191. doi: 10.1186/s13075-018-1692-y |
| [103] |
Halma J, Pierce S, McLennan R, Bradley T, Fischer R. Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance? Clin Transl Sci. 2022;15(5):1091–1103. doi: 10.1111/cts.13208 |
| [104] |
Halma J., Pierce S., McLennan R., Bradley T., Fischer R. Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance? // Clin Transl Sci. 2022. Vol. 15, N 5. P. 1091–1103. doi: 10.1111/cts.13208 |
| [105] |
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a ‘Third Signal’ in NK Cells. Cells. 2021;10(8):1955. doi: 10.3390/cells10081955 |
| [106] |
Khalil M., Wang D., Hashemi E., Terhune S.S., Malarkannan S. Implications of a ‘Third Signal’ in NK Cells // Cells. 2021. Vol. 10, N 8. P. 1955. doi: 10.3390/cells10081955 |
| [107] |
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol. 2018;9:1869. doi: 10.3389/fimmu.2018.01869 |
| [108] |
Abel A.M., Yang C., Thakar M.S., Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization // Front Immunol. 2018. Vol. 9. P. 1869. doi: 10.3389/fimmu.2018.01869 |
| [109] |
Sharma R, Das A. IL-2 mediates NK cell proliferation but not hyperactivity. Immunol Res. 2018;66(1):151–157. doi: 10.1007/s12026-017-8982-3 |
| [110] |
Sharma R., Das A. IL-2 mediates NK cell proliferation but not hyperactivity // Immunol Res. 2018. Vol. 66, N 1. P. 151–157. doi: 10.1007/s12026-017-8982-3 |
| [111] |
Dhawan M, Rabaan AA, Fawarah MMA, et al. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel). 2023;11(1):101. doi: 10.3390/vaccines11010101 |
| [112] |
Dhawan M., Rabaan A.A., Fawarah M.M.A., et al. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines // Vaccines (Basel). 2023. Vol. 11, N 1. P. 101. doi: 10.3390/vaccines11010101 |
| [113] |
Chattopadhyay PK, Betts MR, Price DA, et al. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol. 2009;85(1):88–97. doi: 10.1189/jlb.0208107 |
| [114] |
Chattopadhyay P.K., Betts M.R., Price D.A., et al. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression // J Leukoc Biol. 2009;85(1):88–97. doi: 10.1189/jlb.0208107 |
| [115] |
Fugazzaro S, Contri A, Esseroukh O, et al. Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review. Int J Environ Res Public Health. 2022;19(9):5185. doi: 10.3390/ijerph19095185 |
| [116] |
Fugazzaro S., Contri A., Esseroukh O., et al. Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review // Int J Environ Res Public Health. 2022. Vol. 19, N 9. P. 5185. doi: 10.3390/ijerph19095185 |
| [117] |
Maley JH, Alba GA, Barry JT, et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of breathing discomfort and respiratory sequelae in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM R. 2022;14(1):77–95. doi: 10.1002/pmrj.12744 |
| [118] |
Maley J.H., Alba G.A., Barry J.T., et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of breathing discomfort and respiratory sequelae in patients with post-acute sequelae of SARS-CoV-2 infection (PASC) // PM R. 2022. Vol. 14, N 1. P. 77–95. doi: 10.1002/pmrj.12744 |
Eco-Vector
/
| 〈 |
|
〉 |