New nomenclature of allergic diseases and hypersensitivity reactions
Nataliya V. Bychkova
Cytokines and inflammation ›› 2024, Vol. 21 ›› Issue (1) : 5 -21.
New nomenclature of allergic diseases and hypersensitivity reactions
The review presents the current understanding of the mechanisms of initiation and development of hypersensitivity reactions triggered by external factors, based on the new 2023 nomenclature of allergic diseases proposed by the European Academy of Allergy and Clinical Immunology. It details the new concept of hypersensitivity, which systematizes previous classifications and summarizes the new data on the etiology and mechanisms of inflammatory reactions in comparison with diverse immune response variants, based on the concept of disease phenotypes and endotypes. The today’s concept of allergic reactions covers several types: those associated with antibody formation (I–III), cell-mediated reactions (IVa–c) and the Pichler concept, tissue-dependent ones caused by the epithelial barrier defects and metabolism-induced immune dysregulation (V–VI), and direct immunoinflammatory reactions to chemicals (VII). In the updated classification, both adaptive and innate immune responses actively participate in initiation and effector phases of the hypersensitivity reactions. The review highlights the role of regulatory and effector lymphocyte subpopulations and innate lymphoid cells in various types of hypersensitivity. It also reports a pivotal role of epithelial barrier dysfunction in many allergic diseases and the effect of viral infections on their courses. The significance of the metabolic dysregulation and its impact on the immune response is emphasized. According to the nomenclature of allergic reactions, several pathophysiological mechanisms may underlie the development of a same disease. Notably, various hypersensitivity mechanisms involve most cellular and humoral factors, reaffirming the universal biological nature of immune response. As awareness of the new concept grows and clinical and experimental data accumulate, the updated classification of the hypersensitivity types will contribute to a theoretically substantiated and practically effective framework for the prevention, accurate diagnosing, and improved treatment of allergic diseases.
allergy / inflammation / hypersensitivity / immune response
| [1] |
Jutel M, Agache I, Zemelka-Wiacek M, et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy. 2023;78(11):2851–2874. doi: 10.1111/all.15889 Erratum in: Allergy. 2024;79(1):269–273. doi: 10.1111/all.15983 |
| [2] |
Jutel M., Agache I., Zemelka-Wiacek M., et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper // Allergy. 2023. Vol. 78, N 11. P. 2851–2874. doi: 10.1111/all.15889 Erratum in: Allergy. 2024. Vol. 79, N 1. P. 269–273. doi: 10.1111/all.15983 |
| [3] |
Coombs PR, Gell PG. Classification of allergic reactions responsible for clinical hypersensitivity and disease. In: Gell RR., editor. Clinical Aspects of Immunology. Oxford: Oxford University Press; 1968. P. 575–596. |
| [4] |
Coombs P.R., Gell P.G. Classification of allergic reactions responsible for clinical hypersensitivity and disease. In: Gell R.R., editor. Clinical Aspects of Immunology. Oxford: Oxford University Press, 1968. P. 575–596. |
| [5] |
Muraro A, Lemanske RF Jr., Castells M, et al. Precision medicine in allergic disease-food allergy, drug allergy, and anaphylaxis — PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology. Allergy. 2017;72(7):1006–1021. doi: 10.1111/all.13132 |
| [6] |
Muraro A., Lemanske R.F. Jr., Castells M., et al. Precision medicine in allergic disease-food allergy, drug allergy, and anaphylaxis — PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology // Allergy. 2017. Vol. 72, N 7. P. 1006–1021. doi: 10.1111/all.13132 |
| [7] |
Boonpiyathad T, Sözener ZC, Akdis M, Akdis CA. The role of Treg cell subsets in allergic disease. Asian Pac J Allergy Immunol. 2020;38(3):139–149. doi: 10.12932/AP-030220-0754 |
| [8] |
Boonpiyathad T., Sözener Z.C., Akdis M., Akdis C.A. The role of Treg cell subsets in allergic disease // Asian Pac J Allergy Immunol. 2020. Vol. 38, N 3. P. 139–149. doi: 10.12932/AP-030220-0754 |
| [9] |
Yao Y, Chen CL, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy. 2021;76(2):456–470. doi: 10.1111/all.14639 |
| [10] |
Yao Y., Chen C.-L, Yu D., Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy // Allergy. 2021. Vol. 76, N 2. P. 456–470. doi: 10.1111/all.14639 |
| [11] |
Bellinghausen I, Khatri R, Saloga J. Current strategies to modulate regulatory T cell activity in allergic inflammation. Front Immunol. 2022;13:912529. doi: 10.3389/fimmu.2022.912529 |
| [12] |
Bellinghausen I., Khatri R., Saloga J. Current strategies to modulate regulatory T cell activity in allergic inflammation // Front Immunol. 2022. Vol. 13. P. 912529. doi: 10.3389/fimmu.2022.912529 |
| [13] |
Pilette C, Nouri-Aria KT, Jacobson MR, et al. Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J Immunol. 2007;178(7):4658–4666. doi: 10.4049/jimmunol.178.7.4658 |
| [14] |
Pilette C., Nouri-Aria K.T., Jacobson M.R., et al. Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression // J Immunol. 2007. Vol. 178, N 7. P. 4658–4666. doi: 10.4049/jimmunol.178.7.4658 |
| [15] |
Trautmann A, Schmid-Grendelmeier P, Krüger K, et al. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J Allergy Clin Immunol. 2002;109(2):329–337. doi: 10.1067/mai.2002.121460 |
| [16] |
Trautmann A., Schmid-Grendelmeier P., Krüger K., et al. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma // J Allergy Clin Immunol. 2002. Vol. 109, N 2. P. 329–337. doi: 10.1067/mai.2002.121460 |
| [17] |
Hinks TSC, Hoyle RD, Gelfand EW. CD8+ Tc2 cells: underappreciated contributors to severe asthma. Eur Respir Rev. 2019;28(154):190092. doi: 10.1183/16000617.0092-2019 |
| [18] |
Hinks T.S.C., Hoyle R.D., Gelfand E.W. CD8+ Tc2 cells: underappreciated contributors to severe asthma // Eur Respir Rev. 2019. Vol. 28, N 154. P. 190092. doi: 10.1183/16000617.0092-2019 |
| [19] |
Emmanuel T, Mistegård J, Bregnhøj A, et al. Tissue-resident memory T cells in skin diseases: A systematic review. Int J Mol Sci. 2021;22(16):9004. doi: 10.3390/ijms22169004 |
| [20] |
Emmanuel T., Mistegård J., Bregnhøj A., et al. Tissue-resident memory T cells in skin diseases: A systematic review // Int J Mol Sci. 2021. Vol. 22, N 16. P. 9004. doi: 10.3390/ijms22169004 |
| [21] |
Bychkova NV. CD3+CD294+T cells of the type 2 immune response: their role in allergic inflammation. Medical Immunology (Russia). 2022;24(5):955–966. doi: 10.15789/1563-0625-CCO-2543 |
| [22] |
Бычкова Н.В. CD3+CD294+Т-лимфоциты 2-го типа иммунного ответа и их роль в развитии аллергического воспаления // Медицинская иммунология. 2022. Т. 24, № 5. С. 955–966. doi: 10.15789/1563-0625-CCO-2543 |
| [23] |
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: focus on DNA extracellular traps. Life Sci. 2022;311(Pt B):121191. doi: 10.1016/j.lfs.2022.121191 |
| [24] |
Thompson-Souza G.A., Vasconcelos C.R.I., Neves J.S. Eosinophils: focus on DNA extracellular traps // Life Sci. 2022. Vol. 311(Pt B). P. 121191. doi: 10.1016/j.lfs.2022.121191 |
| [25] |
Datsi A, Steinhoff M, Ahmad F, et al. Interleukin-31: The “itchy” cytokine in inflammation and therapy. Allergy. 2021;76(10):2982–2997. doi: 10.1111/all.14791 |
| [26] |
Datsi A., Steinhoff M., Ahmad F., et al. Interleukin-31: The “itchy” cytokine in inflammation and therapy // Allergy. 2021. Vol. 76, N 10. P. 2982–2997. doi: 10.1111/all.14791 |
| [27] |
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev. 2022;31(163):210241. doi: 10.1183/16000617.0241-2021 |
| [28] |
Keir H.R., Chalmers J.D. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy // Eur Respir. Rev. 2022. Vol. 31, N 163. P. 210241. doi: 10.1183/16000617.0241-2021 |
| [29] |
Pichler WJ, Beeler A, Keller M, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int. 2006;55(1):17–25. doi: 10.2332/allergolint.55.17 |
| [30] |
Pichler W.J., Beeler A., Keller M., et al. Pharmacological interaction of drugs with immune receptors: the p-i concept // Allergol Int. 2006. Vol. 55, N 1. P. 17–25. doi: 10.2332/allergolint.55.17 |
| [31] |
Watkins S, Pichler WJ. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVβ20-1, altering pHLA recognition. PLoS One. 2013;8(10):e76211. doi: 10.1371/journal.pone.0076211 |
| [32] |
Watkins S., Pichler W.J. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVβ20-1, altering pHLA recognition // PLoS One. 2013. Vol. 8, N 10. P. e76211. doi: 10.1371/journal.pone.0076211 |
| [33] |
Norcross MA, Luo S, Lu L, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 2012;26(11):F21–F29. doi: 10.1097/QAD.0b013e328355fe8f |
| [34] |
Norcross M.A., Luo S., Lu L., et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity // AIDS. 2012. Vol. 26, N 11. P. F21–F29. doi: 10.1097/QAD.0b013e328355fe8f |
| [35] |
Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. doi: 10.1038/428486a |
| [36] |
Chung W.-H., Hung S.-I., Hong H.-S., et al. Medical genetics: a marker for Stevens-Johnson syndrome // Nature. 2004. Vol. 428, N 6982. P. 486. doi: 10.1038/428486a |
| [37] |
Yun J, Marcaida MJ, Eriksson KK, et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J Immunol. 2014;192(7):2984–2993. doi: 10.4049/jimmunol.1302306 |
| [38] |
Yun J., Marcaida M.J., Eriksson K.K., et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01 // J Immunol. 2014. Vol. 192, N 7. P. 2984–2993. doi: 10.4049/jimmunol.1302306 |
| [39] |
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739–751. doi: 10.1038/s41577-021-00538-7 |
| [40] |
Akdis C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? // Nat Rev Immunol. 2021. Vol. 21. P. 739–751. doi: 10.1038/s41577-021-00538-7 |
| [41] |
Doyle AD, Masuda MY, Pyon GC, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2023;78(1):192–201. doi: 10.1111/all.15457 |
| [42] |
Doyle A.D., Masuda M.Y., Pyon G.C., et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus // Allergy. 2023. Vol. 78, N 1. P. 192–201. doi: 10.1111/all.15457 |
| [43] |
Forno E, Han YY, Mullen J, Celedón JC. Overweight, obesity, and lung function in children and adults-a meta-analysis. J Allergy Clin Immunol. Pract. 2018;6(2):570–581.e10. doi: 10.1016/j.jaip.2017.07.010 |
| [44] |
Forno E., Han Y.Y., Mullen J., Celedón J.C. Overweight, obesity, and lung function in children and adults-a meta-analysis // J Allergy Clin Immunol. Pract. 2018. Vol. 6, N 2. P. 570–581.e10. doi: 10.1016/j.jaip.2017.07.010 |
| [45] |
Forde B, Yao L, Shaha R, et al. Immunomodulation by foods and microbes: unravelling the molecular tango. Allergy. 2022;77(12):3513–3526. doi: 10.1111/all.15455 |
| [46] |
Forde B., Yao L., Shaha R., et al. Immunomodulation by foods and microbes: unravelling the molecular tango // Allergy. 2022. Vol. 77, N 12. P. 3513–3526. doi: 10.1111/all.15455 |
| [47] |
Venter C, Palumbo MP, Sauder KA, et al. Associations between child filaggrin mutations and maternal diet with the development of allergic diseases in children. Pediatr Allergy Immunol. 2022;33(3):e13753. doi: 10.1111/pai.13753 |
| [48] |
Venter C., Palumbo M.P., Sauder K.A., et al. Associations between child filaggrin mutations and maternal diet with the development of allergic diseases in children // Pediatr Allergy Immunol. 2022. Vol. 33, N 3. P. e13753. doi: 10.1111/pai.13753 |
| [49] |
Zheng H, Wu D, Wu X, et al. Leptin promotes allergic airway inflammation through targeting the unfolded protein response pathway. Sci. Rep. 2018;8(1):8905. doi: 10.1038/s41598-018-27278-4 |
| [50] |
Zheng H., Wu D., Wu X., et al. Leptin promotes allergic airway inflammation through targeting the unfolded protein response pathway // Sci Rep. 2018. Vol. 8, N 1. P. 8905. doi: 10.1038/s41598-018-27278-4 |
| [51] |
Crestani E, Harb H, Charbonnier LM, et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J Allergy Clin Immunol. 2020;145(3):897–906. doi: 10.1016/j.jaci.2019.10.014 |
| [52] |
Crestani E., Harb H., Charbonnier L.-M., et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma // J Allergy Clin Immunol. 2020. Vol. 145, N 3. P. 897–906. doi: 10.1016/j.jaci.2019.10.014 |
| [53] |
Choi JH, Kim MA, Park HS. An update on the pathogenesis of the upper airways in aspirin-exacerbated respiratory disease. Curr Opin Allergy Clin Immunol. 2014;14(1):1–6. doi: 10.1097/ACI.0000000000000021 |
| [54] |
Choi J.-H., Kim M.-A., Park H.-S. An update on the pathogenesis of the upper airways in aspirin-exacerbated respiratory disease // Curr Opin Allergy Clin Immunol. 2014. Vol. 14, N 1. P. 1–6. doi: 10.1097/ACI.0000000000000021 |
| [55] |
Szebeni J, Alving CR, Savay S, et al. Formation of complement-activating particles in aqueous solutions of Taxol: possible role in hypersensitivity reactions. Int Immunopharmacol. 2001;1(4):721–735. doi: 10.1016/s1567-5769(01)00006-6 |
| [56] |
Szebeni J., Alving C.R., Savay S., et al. Formation of complement-activating particles in aqueous solutions of Taxol: possible role in hypersensitivity reactions // Int Immunopharmacol. 2001. Vol. 1, N 4. P. 721–735. doi: 10.1016/s1567-5769(01)00006-6 |
| [57] |
Sheen CH, Schleimer RP, Kulka M. Codeine induces human mast cell chemokine and cytokine production: involvement of G-protein activation. Allergy. 2007;62(5):532–538. doi: 10.1111/j.1398-9995.2007.01345.x |
| [58] |
Sheen C.H., Schleimer R.P., Kulka M. Codeine induces human mast cell chemokine and cytokine production: involvement of G-protein activation // Allergy. 2007. Vol. 62, N 5. P. 532–538. doi: 10.1111/j.1398-9995.2007.01345.x |
| [59] |
Wedi B, Gehring M, Kapp A. The pseudoallergen receptor MRGPRX2 on peripheral blood basophils and eosinophils: Expression and function. Allergy. 2020;75(9):2229–2242. doi: 10.1111/all.14213 |
| [60] |
Wedi B., Gehring M., Kapp A. The pseudoallergen receptor MRGPRX2 on peripheral blood basophils and eosinophils: Expression and function // Allergy. 2020. Vol. 75, N 9. P. 2229–2242. doi: 10.1111/all.14213 |
Bychkova N.V.
/
| 〈 |
|
〉 |