Inflammation in the pathogenesis of neurodegenerative diseases

Andrey G. Goncharov , Igor V. Reverchuk , Valeria Vl. Shupletsova

Cytokines and inflammation ›› 2023, Vol. 20 ›› Issue (2) : 5 -11.

PDF
Cytokines and inflammation ›› 2023, Vol. 20 ›› Issue (2) : 5 -11. DOI: 10.17816/CI627304
Reviews
review-article

Inflammation in the pathogenesis of neurodegenerative diseases

Author information +
History +
PDF

Abstract

INTRODUCTION: Neurodegenerative diseases are common chronic disorders that are associated with progressive damage to the nervous system. The role of the immune system in the development of neurodegenerative diseases was confirmed by data on the activation of microglia, the presence of an imbalance in the composition and phenotype of peripheral immune cells, and the presence of humoral immunity disorders and intestinal microbiota dysbiosis in patients with this pathology.

DISCUSSION: Inflammation has been observed to play a key role in the pathogenesis of diseases associated with progressive damage to the nervous system. The article analyzes the mechanisms in the development of “subclinical” chronic inflammation that leads to development of old-age-related diseases, including neurodegenerative pathology. At least three groups of factors associated with old age play a role in the formation of a proinflammatory status: mitochondrial dysfunction, development of an age-related proinflammatory status of the immune system, and chronic stress. Mitochondrial dysfunction is primarily associated with disruption of mitophagy processes: failure of quality control mechanisms as a result of disruption of mitophagy processes leads to the accumulation of terminally damaged mitochondria, which become a threat to cell survival. Inadequate removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and the development of inflammatory diseases. A high level of deletions in the mitochondrial genetic apparatus that accumulates with age inevitably leads to increased formation of reactive oxygen species, which in turn are assumed as one of the leading activators of the cytosolic NLRP3 protein, the primary component of inflammasomes. Increased inflammasome formation eventually leads to caspase-1-dependent production of proinflammatory interleukins. Age-related inflammatory imbalance is associated with the fact that the immune system, the main protective mechanism characterized by the inflammatory response, copes with constant antigenic attacks. However, over time, upon reaching a certain threshold, the reaction of the immune system becomes excessive, characterized by increased production of coagulation factors, proinflammatory cytokines, acute phase proteins of inflammation, prostaglandins, and leukotrienes.

CONCLUSIONS: Immunological changes that develop during chronic (long-term) stress are the result of a disruption of the homeostatic connection between the neuroendocrine and immune systems, leading to the formation of an inflammatory background that complements the “proinflammatory status” that develops as a result of age-related changes in the immune system and disruption of mitophagy mechanisms.

Keywords

inflammation / cytokines / Parkinson’s disease / Alzheimer’s disease

Cite this article

Download citation ▾
Andrey G. Goncharov, Igor V. Reverchuk, Valeria Vl. Shupletsova. Inflammation in the pathogenesis of neurodegenerative diseases. Cytokines and inflammation, 2023, 20(2): 5-11 DOI:10.17816/CI627304

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pezone A, Olivieri F, Napoli MV, et al. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol. 2023;19(4):200–211. doi: 10.1038/s41584-022-00905-1

[2]

Pezone A., Olivieri F., Napoli M.V., et al. Inflammation and DNA damage: cause, effect or both // Nat Rev Rheumatol. 2023. Vol. 19, N 4. P. 200–211. doi: 10.1038/s41584-022-00905-1

[3]

Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson’s disease. Handb Clin Neurol. 2023;193:67–93. doi: 10.1016/B978-0-323-85555-6.00008-4

[4]

Contaldi E., Magistrelli L., Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson’s disease // Handb Clin Neurol. 2023. Vol. 193. P. 67–93. doi: 10.1016/B978-0-323-85555-6.00008-4

[5]

Intili G, Paladino L, Rappa F, et al. From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview. Biology (Basel). 2023;12(2):195. doi: 10.3390/biology12020195

[6]

Intili G., Paladino L., Rappa F., et al. From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview // Biology (Basel). 2023. Vol. 12, N 2. P. 195. doi: 10.3390/biology12020195

[7]

Zhang L, Wang Y, Liu T, Mao Y, Peng B. Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders. Neurosci Bull. 2023;39(3):491–502. doi: 10.1007/s12264-022-01013-6 Erratum in: Neurosci Bull. 2023;39(3):557. doi: 10.1007/s12264-023-01026-9

[8]

Zhang L., Wang Y., Liu T., Mao Y., Peng B. Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders // Neurosci Bull. 2023. Vol. 39, N 3. P. 491–502. doi: 10.1007/s12264-022-01013-6 Erratum in: Neurosci Bull. 2023. Vol. 39, N 3. P. 557. doi: 10.1007/s12264-023-01026-9

[9]

Gankovskaya LV, Artem’eva OV, Namazova-Baranova LS, et al. Immunological aspects of aging and age-associated pathology. Moscow: Pediatr; 2021. 156 p. (In Russ). EDN: SYHTBM

[10]

Ганковская Л.В., Артемьева О.В., Намазова-Баранова Л.С., и др. Иммунологические аспекты старения и возраст-ассоциированная патология. Москва : Педиатръ, 2021. 156 с. EDN: SYHTBM

[11]

Zhang H, Wang Z, Wang G, et al. Understanding the Connection Between Gut Homeostasis and Psychological Stress. J Nutr. 2023;153(4):924–939. doi: 10.1016/j.tjnut.2023.01.026

[12]

Zhang H., Wang Z., Wang G., et al. Understanding the Connection Between Gut Homeostasis and Psychological Stress // J Nutr. 2023. Vol. 153, N 4. P. 924–939. doi: 10.1016/j.tjnut.2023.01.026

[13]

Franceschi C., Bonafè M., Valensin S., et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x

[14]

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence // Ann N Y Acad Sci. 2000. Vol. 908. P. 244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x

[15]

Brookes PS. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005;38(1):12–23. doi: 10.1016/j.freeradbiomed.2004.10.016

[16]

Brookes P.S. Mitochondrial H(+) leak and ROS generation: an odd couple // Free Radic Biol Med. 2005. Vol. 38, N 1. P. 12–23. doi: 10.1016/j.freeradbiomed.2004.10.016

[17]

Choubey V, Zeb A, Kaasik A. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells. 2021;11(1):38. doi: 10.3390/cells11010038

[18]

Choubey V., Zeb A., Kaasik A. Molecular Mechanisms and Regulation of Mammalian Mitophagy // Cells. 2021. Vol. 11, N 1. P. 38. doi: 10.3390/cells11010038

[19]

Dabravolski SA, Nikiforov NG, Zhuravlev AD, et al. Role of the mtDNA Mutations and Mitophagy in Inflammaging. Int J Mol Sci. 2022;23(3):1323. doi: 10.3390/ijms23031323

[20]

Dabravolski S.A., Nikiforov N.G., Zhuravlev A.D., et al. Role of the mtDNA Mutations and Mitophagy in Inflammaging // Int J Mol Sci. 2022. Vol. 23, N 3. P. 1323. doi: 10.3390/ijms23031323

[21]

Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. doi: 10.1016/j.bbadis.2020.165838

[22]

Prasun P. Mitochondrial dysfunction in metabolic syndrome // Biochim Biophys Acta Mol Basis Dis. 2020. Vol. 1866, N 10. P. 165838. doi: 10.1016/j.bbadis.2020.165838

[23]

Casanova A., Wevers A., Navarro-Ledesma S., Pruimboom L. Mitochondria: It is all about energy. Front Physiol. 2023;14:1114231. doi: 10.3389/fphys.2023.1114231

[24]

Casanova A., Wevers A., Navarro-Ledesma S., Pruimboom L. Mitochondria: It is all about energy // Front Physiol. 2023. Vol. 14. P. 1114231. doi: 10.3389/fphys.2023.1114231

[25]

Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res. 2023;252:21–33. doi: 10.1016/j.trsl.2022.08.006

[26]

Anderson F.L., Biggs K.E., Rankin B.E., Havrda M.C. NLRP3 inflammasome in neurodegenerative disease // Transl Res. 2023. Vol. 252. P. 21–33. doi: 10.1016/j.trsl.2022.08.006

[27]

Soraci L, Gambuzza ME, Biscetti L, et al. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: mechanisms and therapeutic implications. J Neurol. 2023;270(3):1346–1360. doi: 10.1007/s00415-022-11491-3

[28]

Soraci L., Gambuzza M.E., Biscetti L., et al. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: mechanisms and therapeutic implications // J Neurol. 2023. Vol. 270, N 3. P. 1346–1360. doi: 10.1007/s00415-022-11491-3

[29]

Fard MT, Savage KM, Stough CK. Peripheral inflammation marker relationships to cognition in healthy older adults — A systematic review. Psychoneuroendocrinology. 2022. Vol. 144. P. 105870. doi: 10.1016/j.psyneuen.2022.105870

[30]

Fard M.T., Savage K.M., Stough C.K. Peripheral inflammation marker relationships to cognition in healthy older adults — A systematic review // Psychoneuroendocrinology. 2022. Vol. 144. P. 105870. doi: 10.1016/j.psyneuen.2022.105870

[31]

Sanchez-Roman I, Ferrando B, Holst CM, et al. Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians. Geroscience. 2022;44(1):103–125. doi: 10.1007/s11357-021-00502-2

[32]

Sanchez-Roman I., Ferrando B., Holst C.M., et al. Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians // Geroscience. 2022. Vol. 44, N 1. P. 103–125. doi: 10.1007/s11357-021-00502-2

[33]

Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends Neurosci. 2017;40(3):151–166. doi: 10.1016/j.tins.2017.01.002

[34]

Kerr J.S., Adriaanse B.A., Greig N.H., et al. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms // Trends Neurosci. 2017. Vol. 40, N 3. P. 151–166. doi: 10.1016/j.tins.2017.01.002

[35]

Swerdlow RH. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J Alzheimers Dis. 2018;62(3):1403–1416. doi: 10.3233/JAD-170585

[36]

Swerdlow R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease // J Alzheimers Dis. 2018. Vol. 62, N 3. P. 1403–1416. doi: 10.3233/JAD-170585

[37]

Wang S, Deng Z, Ma Y, et al. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci. 2020;16(14):2675–2691. doi: 10.7150/ijbs.46627

[38]

Wang S., Deng Z., Ma Y., et al. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders // Int J Biol Sci. 2020. Vol. 16, N 14. P. 2675–2691. doi: 10.7150/ijbs.46627

[39]

Mary A, Eysert F, Checler F, Chami M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches. Mol Psychiatry. 2023;28(1):202–216. doi: 10.1038/s41380-022-01631-6

[40]

Mary A., Eysert F., Checler F., Chami M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches // Mol Psychiatry. 2023. Vol. 28, N 1. P. 202–216. doi: 10.1038/s41380-022-01631-6

[41]

Zeng K, Yu X, Mahaman YAR, et al. Defective mitophagy and the etiopathogenesis of Alzheimer’s disease. Transl Neurodegener. 2022;11(1):32. doi: 10.1186/s40035-022-00305-1

[42]

Zeng K., Yu X., Mahaman Y.A.R., et al. Defective mitophagy and the etiopathogenesis of Alzheimer’s disease // Transl Neurodegener. 2022. Vol. 11, N 1. P. 32. doi: 10.1186/s40035-022-00305-1

[43]

Castillo-Rangel C, Marin G, Hernández-Contreras KA, et al. Neuroinflammation in Parkinson’s Disease: From Gene to Clinic: A Systematic Review. Int J Mol Sci. 2023;24(6):5792. doi: 10.3390/ijms24065792

[44]

Castillo-Rangel C., Marin G., Hernández-Contreras K.A., et al. Neuroinflammation in Parkinson’s Disease: From Gene to Clinic: A Systematic Review // Int J Mol Sci. 2023. Vol. 24, N 6. P. 5792. doi: 10.3390/ijms24065792

[45]

Kouli A, Torsney KM, Kuan WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications; 2018. Chapter 1. doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1

[46]

Kouli A., Torsney K.M., Kuan W.L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker T.B., Greenland J.C., editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU) : Codon Publications, 2018. Chapter 1. doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1

[47]

Vignjević Petrinović S, Milošević MS, Marković D, Momčilović S. Interplay between stress and cancer-A focus on inflammation. Front Physiol. 2023;14:1119095. doi: 10.3389/fphys.2023.1119095

[48]

Vignjević Petrinović S., Milošević M.S., Marković D., Momčilović S. Interplay between stress and cancer — A focus on inflammation // Front Physiol. 2023. Vol. 14. P. 1119095. doi: 10.3389/fphys.2023.1119095

[49]

Black PH. The inflammatory response is an integral part of the stress response: Implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behav Immun. 2003;17(5):350–364. doi: 10.1016/s0889-1591(03)00048-5

[50]

Black P.H. The inflammatory response is an integral part of the stress response: Implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X // Brain Behav Immun. 2003. Vol. 17, N 5. P. 350–364. doi: 10.1016/s0889-1591(03)00048-5

[51]

Prokhorenko IO, Germanova VN, Sergeev OS. Stress and state of the immune system in norm and pathology. Brief review of literature. Vestnik meditsinskogo instituta «REAVIZ». Reabilitatsiya, Vrach i Zdorov’ye. 2017;(1(25)):82–90. (In Russ). EDN: YLFZHH

[52]

Прохоренко И.О., Германова В.Н., Сергеев О.С. Стресс и состояние иммунной системы в норме и патологии. Краткий обзор литературы // Вестник медицинского института «РЕАВИЗ». Реабилитация, врач и здоровье. 2017. № 1 (25). С. 82–90. EDN: YLFZHH

[53]

Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–5999. doi: 10.1073/pnas.1118355109

[54]

Cohen S., Janicki-Deverts D., Doyle W.J., et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk // Proc Natl Acad Sci U S A. 2012. Vol. 109, N 16. P. 5995–5999. doi: 10.1073/pnas.1118355109

[55]

Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry. 2023;14:1130989. doi: 10.3389/fpsyt.2023.1130989

[56]

Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories // Front Psychiatry. 2023. Vol. 14. P. 1130989. doi: 10.3389/fpsyt.2023.1130989

[57]

Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci. 2023;17:1105247. doi: 10.3389/fncel.2023.1105247

[58]

Karvandi M.S., Sheikhzadeh Hesari F., Aref A.R., Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation // Front Cell Neurosci. 2023. Vol. 17. P. 1105247. doi: 10.3389/fncel.2023.1105247

[59]

Bartolomucci A, Palanza P, Sacerdote P, et al. Social factors and individual vulnerability to chronic stress exposure. Neurosci Biobehav Rev. 2005;29(1):67–81. doi: 10.1016/j.neubiorev.2004.06.009

[60]

Bartolomucci A., Palanza P., Sacerdote P., et al. Social factors and individual vulnerability to chronic stress exposure // Neurosci Biobehav Rev. 2005. Vol. 29, N 1. P. 67–81. doi: 10.1016/j.neubiorev.2004.06.009

[61]

Masafi S, Saadat SH, Tehranchi K, et al. Effect of Stress, Depression and Type D Personality on Immune System in the Incidence of Coronary Artery Disease. Open Access Maced J Med Sci. 2018;6(8):1533–1544. doi: 10.3889/oamjms.2018.217

[62]

Masafi S., Saadat S.H., Tehranchi K., et al. Effect of Stress, Depression and Type D Personality on Immune System in the Incidence of Coronary Artery Disease // Open Access Maced J Med Sci. 2018. Vol. 6, N 8. P. 1533–1544. doi: 10.3889/oamjms.2018.217

Funding

Российский научный фондRussian Science Foundation(№ 21-75-20145)

RIGHTS & PERMISSIONS

Goncharov A.G., Reverchuk I.V., Shupletsova V.V.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/