Cytokine regulation disbalance: the basis for COVID-19 immunopathogenesis
Andrey S. Simbirtsev
Cytokines and inflammation ›› 2023, Vol. 20 ›› Issue (2) : 12 -23.
Cytokine regulation disbalance: the basis for COVID-19 immunopathogenesis
Coronavirus infection activates two main signaling pathways for type I and III IFN and the gene expression and synthesis of proinflammatory cytokines. These cytokines are required for antiviral defense and inflammatory reaction formation. SARS-CoV-2 coronavirus could inhibit the IFN system by depressing signaling pathways for IFN gene expression, synthesis, and secretion. IFN inhibition should be considered the primary reason for coronavirus escape from the immune system and a key factor for COVID-19 immunopathogenesis. Cytokine regulation disbalance in patients with severe COVID-19 is closely associated with low and delayed IFN synthesis, while proinflammatory cytokine production by macrophages and T-lymphocytes continues simultaneously with intensive virus replication. Thus, the reason for COVID-19 immunopathogenesis is the cytokine regulation disbalance where IFN inhibition and intensive proinflammatory cytokine synthesis lead to cytokine storm, inadequate inflammation, respiratory distress syndrome development, respiratory failure, systemic inflammatory complications, and polyorganic failure.
interferon / proinflammatory cytokine / COVID-19 immunopathogenesis
| [1] |
Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020;8(2):e000406. doi: 10.1136/fmch-2020-000406 Erratum in: Fam Med Community Health. 2020;8(2):e000406corr1. doi: 10.1136/fmch-2020-000406corr1 |
| [2] |
Zhu J., Zhong Z., Ji P., et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis // Fam Med Community Health. 2020. Vol. 8, N 2. P. e000406. doi: 10.1136/fmch-2020-000406 Erratum in: Fam Med Community Health. 2020. Vol. 8, N 2. P. e000406corr1. doi: 10.1136/fmch-2020-000406corr1 |
| [3] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5 Erratum in: Lancet. 2020;395(10223):496. doi: 10.1016/S0140-6736(20)30252-X |
| [4] |
Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395, N 10223. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5 Erratum in: Lancet. 2020. Vol. 395, N 10223. P. 496. doi: 10.1016/S0140-6736(20)30252-X |
| [5] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X Erratum in: Lancet Respir Med. 2020;8(4):e26. doi: 10.1016/S2213-2600(20)30085-0 |
| [6] |
Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir Med. 2020. Vol. 8, N 4. P. 420–422. doi: 10.1016/S2213-2600(20)30076-X Erratum in: Lancet Respir Med. 2020. Vol. 8, N 4. P. e26. doi: 10.1016/S2213-2600(20)30085-0 |
| [7] |
Vazquez C, Horner S. MAVS coordination of antiviral innate immunity. J Virol. 2015;89(14):6974–6977. doi: 10.1128/JVI.01918-14 |
| [8] |
Vazquez C., Horner S. MAVS coordination of antiviral innate immunity // J Virol. 2015. Vol. 89, N 14. P. 6974–6977. doi: 10.1128/JVI.01918-14 |
| [9] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022 |
| [10] |
Takeuchi O., Akira S. Pattern recognition receptors and inflammation // Cell. 2010. Vol. 140, N 6. P. 805–820. doi: 10.1016/j.cell.2010.01.022 |
| [11] |
Pestka S, Krause C, Walter M. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x |
| [12] |
Pestka S., Krause C., Walter M. Interferons, interferon-like cytokines, and their receptors // Immunol Rev. 2004. Vol. 202. P. 8–32. doi: 10.1111/j.0105-2896.2004.00204.x |
| [13] |
Prejean C, Colamonici O. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol. 2000;10(2):83–92. doi: 10.1006/scbi.2000.0311 |
| [14] |
Prejean C., Colamonici O. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling // Semin Cancer Biol. 2000. Vol. 10, N 2. P. 83–92. doi: 10.1006/scbi.2000.0311 |
| [15] |
Schoggins J, Wilson S, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485. doi: 10.1038/nature09907 Erratum in: Nature. 2015;525(7567):144. doi: 10.1038/nature14554 |
| [16] |
Schoggins J., Wilson S., Panis M., et al. A diverse range of gene products are effectors of the type I interferon antiviral response // Nature. 2011. Vol. 472, N 7344. P. 481–485. doi: 10.1038/nature09907 Erratum in: Nature. 2015. Vol. 525, N 7567. P. 144. doi: 10.1038/nature14554 |
| [17] |
Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol. 2019;19(10):614–625. doi: 10.1038/s41577-019-0182-z |
| [18] |
Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses // Nat Rev Immunol. 2019. Vol. 19, N 10. P. 614–625. doi: 10.1038/s41577-019-0182-z |
| [19] |
Ivashkiv L, Donlin L. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49. doi: 10.1038/nri3581 |
| [20] |
Ivashkiv L., Donlin L. Regulation of type I interferon responses // Nat Rev Immunol. 2014. Vol. 14, N 1. P. 36–49. doi: 10.1038/nri3581 |
| [21] |
Minkoff JM, tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol. 2023;21(3):178–194. doi: 10.1038/s41579-022-00839-1 |
| [22] |
Minkoff J.M., tenOever B. Innate immune evasion strategies of SARS-CoV-2 // Nat Rev Microbiol. 2023. Vol. 21, N 3. P. 178–194. doi: 10.1038/s41579-022-00839-1 |
| [23] |
Lei X, Dong X, Ma R, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020;11(1):3810. doi: 10.1038/s41467-020-17665-9 |
| [24] |
Lei X., Dong X., Ma R., et al. Activation and evasion of type I interferon responses by SARS-CoV-2 // Nat Commun. 2020. Vol. 11, N 1. P. 3810. doi: 10.1038/s41467-020-17665-9 |
| [25] |
Banerjee A, Blanco M, Bruce E, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 2020;183(5):1325–1339.e21. doi: 10.1016/j.cell.2020.10.004 |
| [26] |
Banerjee A., Blanco M., Bruce E., et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses // Cell. 2020. Vol. 183, N 5. P. 1325–1339.e21. doi: 10.1016/j.cell.2020.10.004 |
| [27] |
Xia H, Cao Z, Xie X, et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 2020;33(1):108234. doi: 10.1016/j.celrep.2020.108234 |
| [28] |
Xia H., Cao Z., Xie X., et al. Evasion of type I interferon by SARS-CoV-2 // Cell Rep. 2020;33(1):108234. doi: 10.1016/j.celrep.2020.108234 |
| [29] |
Miorin L, Kehrer T, Sanchez-Aparicio MT, et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A. 2020;117(45):28344–28354. doi: 10.1073/pnas.2016650117 |
| [30] |
Miorin L., Kehrer T., Sanchez-Aparicio M.T., et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling // Proc Natl Acad Sci U S A. 2020. Vol. 117, N 45. P. 28344–28354. doi: 10.1073/pnas.2016650117 |
| [31] |
Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027 |
| [32] |
Hadjadj J., Yatim N., Barnabei L., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients // Science. 2020. Vol. 369, N 6504. P. 718–724. doi: 10.1126/science.abc6027 |
| [33] |
Smith N, Goncalves P, Charbit B, et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat Immunol. 2021;22(11):1428–1439. doi: 10.1038/s41590-021-01028-7 |
| [34] |
Smith N., Goncalves P., Charbit B., et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection // Nat Immunol. 2021. Vol. 22, N 11. P. 1428–1439. doi: 10.1038/s41590-021-01028-7 |
| [35] |
Bastard P, Rosen L, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585 |
| [36] |
Bastard P., Rosen L., Zhang Q., et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19 // Science. 2020. Vol. 370, N 6515. P. eabd4585. doi: 10.1126/science.abd4585 |
| [37] |
Augusto DG, Murdolo LD, Chatzileontiadou DSM, et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature. 2023;620(7972):128–136. doi: 10.1038/s41586-023-06331-x |
| [38] |
Augusto D.G., Murdolo L.D., Chatzileontiadou D.S.M., et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection // Nature. 2023. Vol. 620, N 7972. P. 128–136. doi: 10.1038/s41586-023-06331-x |
| [39] |
Horowitz JE, Kosmicki JA, Damask A, et al. Genome-wide analysis provides genetic evidence that ACE2 infuences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022;54(4):382–392. doi: 10.1038/s41588-021-01006-7 |
| [40] |
Horowitz J.E., Kosmicki J.A., Damask A., et al. Genome-wide analysis provides genetic evidence that ACE2 infuences COVID-19 risk and yields risk scores associated with severe disease // Nat Genet. 2022. Vol. 54, N 4. P. 382–392. doi: 10.1038/s41588-021-01006-7 |
| [41] |
Miluzio A, Cuomo A, Cordiglieri C, et al. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2. EBioMedicine. 2023;87:104390. doi: 10.1016/j.ebiom.2022.104390 |
| [42] |
Miluzio A., Cuomo A., Cordiglieri C., et al. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2 // EBioMedicine. 2023. Vol. 87. P. 104390. doi: 10.1016/j.ebiom.2022.104390 |
| [43] |
Degenhardt F, Ellinghaus D, Juzenas S, et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum Mol Genet. 2022;31(23):3945–3966. doi: 10.1093/hmg/ddac158 |
| [44] |
Degenhardt F., Ellinghaus D., Juzenas S., et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations // Hum Mol Genet. 2022. Vol. 31, N 23. P. 3945–3966. doi: 10.1093/hmg/ddac158 |
| [45] |
COVID-19 Host Genetics Initiative. A second update on mapping the human genetic architecture of COVID-19. Nature. 2023;621(7977):E7–E26. doi: 10.1038/s41586-023-06355-3 |
| [46] |
COVID-19 Host Genetics Initiative. A second update on mapping the human genetic architecture of COVID-19 // Nature. 2023. Vol. 621, N 7977. P. E7–E26. doi: 10.1038/s41586-023-06355-3 |
| [47] |
Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570. doi: 10.1126/science.abd4570 |
| [48] |
Zhang Q., Bastard P., Liu Z., et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 // Science. 2020. Vol. 370. P. eabd4570. doi: 10.1126/science.abd4570 |
| [49] |
Asano T, Boisson B, Onodi F, et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6(62):eabl4348. doi: 10.1126/sciimmunol.abl4348 |
| [50] |
Asano T., Boisson B., Onodi F., et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19 // Sci Immunol. 2021. Vol. 6, N 62. P. eabl4348. doi: 10.1126/sciimmunol.abl4348 |
| [51] |
Van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–673. doi: 10.1001/jama.2020.13719 |
| [52] |
Van der Made C.I., Simons A., Schuurs-Hoeijmakers J., et al. Presence of genetic variants among young men with severe COVID-19 // JAMA. 2020. Vol. 324, N 7. P. 663–673. doi: 10.1001/jama.2020.13719 |
| [53] |
Levy R, Bastard P, Lanternier F, et al. IFN-α2a Therapy in Two Patients with Inborn Errors of TLR3 and IRF3 Infected with SARS-CoV-2. J Clin Immunol. 2021;41(1):26–27. doi: 10.1007/s10875-020-00933-0 |
| [54] |
Levy R., Bastard P., Lanternier F., et al. IFN-α2a Therapy in Two Patients with Inborn Errors of TLR3 and IRF3 Infected with SARS-CoV-2 // J Clin Immunol. 2021. Vol. 41, N 1. P. 26–27. doi: 10.1007/s10875-020-00933-0 |
| [55] |
Krieger EA, Samodova OV, Svitich OA, et al. The impact of polymorphic variants of interferon receptor genes on COVID-19 severity and antibiotic resistance. Russian Journal of Infection and Immunity. 2023;13(6):1027–1039. (In Russ). doi: 10.15789/2220-7619-TIO-17537 |
| [56] |
Кригер Е.А., Самодова О.В., Свитич О.А., и др. Влияние полиморфных вариантов генов интерфероновых рецепторов на тяжесть COVID-19 и антибиотикорезистентность // Инфекция и иммунитет. 2023. Т. 13, № 6. C. 1027–1039. doi: 10.15789/2220-7619-TIO-17537 |
| [57] |
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest. 2023;133(3):e166283. doi: 10.1172/JCI166283 |
| [58] |
Casanova J.L., Anderson M.S. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs // J Clin Invest. 2023. Vol. 133, N 3. P. e166283. doi: 10.1172/JCI166283 |
| [59] |
Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19–25. doi: 10.1016/j.immuni.2020.06.017 |
| [60] |
Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19 // Immunity. 2020. Vol. 53, N 1. P. 19–25. doi: 10.1016/j.immuni.2020.06.017 |
| [61] |
Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248 |
| [62] |
Qin C., Zhou L., Hu Z., et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China // Clin Infect Dis. 2020. Vol. 71, N 15. P. 762–768. doi: 10.1093/cid/ciaa248 |
| [63] |
Yang L, Xie X, Tu Z, et al. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther. 2021;6(1):255. doi: 10.1038/s41392-021-00679-0 |
| [64] |
Yang L., Xie X., Tu Z., et al. The signal pathways and treatment of cytokine storm in COVID-19 // Signal Transduct Target Ther. 2021. Vol. 6, N 1. P. 255. doi: 10.1038/s41392-021-00679-0 |
| [65] |
Mandel M., Harari G., Gurevich M., Achiron A. Cytokine prediction of mortality in COVID19 patients. Cytokine. 2020;134:155190. doi: 10.1016/j.cyto.2020.155190 |
| [66] |
Mandel M., Harari G., Gurevich M., Achiron A. Cytokine prediction of mortality in COVID19 patients // Cytokine. 2020. Vol. 134. P. 155190. doi: 10.1016/j.cyto.2020.155190 |
| [67] |
Morrell ED, Bhatraju PK, Sathe NA, et al. Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness. Am J Physiol Lung Cell Mol Physiol. 2022;323(1):L14–L26. doi: 10.1152/ajplung.00049.2022 |
| [68] |
Morrell E.D., Bhatraju P.K., Sathe N.A., et al. Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness // Am J Physiol Lung Cell Mol Physiol. 2022. Vol. 323, N 1. P. L14–L26. doi: 10.1152/ajplung.00049.2022 |
| [69] |
Silva MJA, Ribeiro LR, Gouveia MIM., et al. Hyperinflammatory Response in COVID-19: A Systematic Review. Viruses. 2023;15(2):553. doi: 10.3390/v15020553 |
| [70] |
Silva M.J.A., Ribeiro L.R., Gouveia M.I.M., et al. Hyperinflammatory Response in COVID-19: A Systematic Review // Viruses. 2023. Vol. 15, N 2. P. 553. doi: 10.3390/v15020553 |
| [71] |
Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–1643. doi: 10.1038/s41591-020-1051-9 |
| [72] |
Del Valle D.M., Kim-Schulze S., Huang H.H., et al. An inflammatory cytokine signature predicts COVID-19 severity and survival // Nat Med. 2020. Vol. 26, N 10. P. 1636–1643. doi: 10.1038/s41591-020-1051-9 |
| [73] |
Wong C, Lam C, Wu A, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. doi: 10.1111/j.1365-2249.2004.02415.x |
| [74] |
Wong C., Lam C., Wu A., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome // Clin Exp Immunol. 2004. Vol. 136, N 1. P. 95–103. doi: 10.1111/j.1365-2249.2004.02415.x |
| [75] |
Mahallawi W, Khabour O, Zhang Q, Makhdoum H, Suliman B. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13. doi: 10.1016/j.cyto.2018.01.025 |
| [76] |
Mahallawi W., Khabour O., Zhang Q., Makhdoum H., Suliman B. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile // Cytokine. 2018. Vol. 104. P. 8–13. doi: 10.1016/j.cyto.2018.01.025 |
| [77] |
Shirato K, Kizaki T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon. 2021;7(2):e06187. doi: 10.1016/j.heliyon.2021.e06187 |
| [78] |
Shirato K., Kizaki T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages // Heliyon. 2021. Vol. 7, N 2. P. e06187. doi: 10.1016/j.heliyon.2021.e06187 |
| [79] |
Laing A, Lorenc A, Del Molino Del Barrio I, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nature Medicine. 2020;26(10):1623–1635. doi: 10.1038/s41591-020-1038-6 |
| [80] |
Laing A., Lorenc A., Del Molino Del Barrio I., et al. A dynamic COVID-19 immune signature includes associations with poor prognosis // Nature Medicine. 2020. Vol. 26, N 10. P. 1623–1635. doi: 10.1038/s41591-020-1038-6 |
| [81] |
Manson J, Crooks C, Naja M, et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2(10):e594–e602. doi: 10.1016/S2665-9913(20)30275-7 |
| [82] |
Manson J., Crooks C., Naja M., et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study // Lancet Rheumatol. 2020. Vol. 2, N 10. P. e594–e602. doi: 10.1016/S2665-9913(20)30275-7 |
| [83] |
Ferrara J, Abhyankar S, Gilliland D. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25(1 Pt 2):1216–1217. |
| [84] |
Ferrara J., Abhyankar S., Gilliland D. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1 // Transplant Proc. 1993. Vol. 25, N 1 Pt 2. P. 1216–1217. |
| [85] |
Potapnev MP. Cytokine storm. Causes and consequences. Immunologiya. 2021;42(2):175–188. (In Russ). doi: 10.33029/0206-4952-2021-42-2-175-188 |
| [86] |
Потапнев М.П. Цитокиновый шторм: причины и последствия // Иммунология. 2021. Т. 42, № 2. С. 175–188. doi: 10.33029/0206-4952-2021-42-2-175-188 |
| [87] |
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. doi: 10.1002/jmv.25685 |
| [88] |
Li G., Fan Y., Lai Y., et al. Coronavirus infections and immune responses // J Med Virol. 2020. Vol. 92, N 4. P. 424–432. doi: 10.1002/jmv.25685 |
| [89] |
Batah S., Fabro A. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med. 2021;176:106239. doi: 10.1016/j.rmed.2020.106239 |
| [90] |
Batah S., Fabro A. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians // Respir Med. 2021. Vol. 176. P. 106239. doi: 10.1016/j.rmed.2020.106239 |
| [91] |
Banerjee A, El-Sayes N, Budylowski P, et al. Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. iScience. 2021;24(5):102477. doi: 10.1016/j.isci.2021.102477 |
| [92] |
Banerjee A., El-Sayes N., Budylowski P., et al. Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses // iScience. 2021. Vol. 24, N 5. P. 102477. doi: 10.1016/j.isci.2021.102477 |
| [93] |
Li C, Wu H, Yan H, et al. T cell responses to whole SARS coronavirus in humans. J Immunol. 2008;181(8):5490–5500. doi: 10.4049/jimmunol.181.8.5490 |
| [94] |
Li C., Wu H., Yan H., et al. T cell responses to whole SARS coronavirus in humans // J Immunol. 2008. Vol. 181, N 8. P. 5490–5500. doi: 10.4049/jimmunol.181.8.5490 |
| [95] |
Parackova Z, Bloomfield M, Klocperk A, Sediva A. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 2021;109(1):73–76. doi: 10.1002/JLB.4COVCRA0820-481RRR |
| [96] |
Parackova Z., Bloomfield M., Klocperk A., Sediva A. Neutrophils mediate Th17 promotion in COVID-19 patients // J Leukoc Biol. 2021. Vol. 109, N 1. P. 73–76. doi: 10.1002/JLB.4COVCRA0820-481RRR |
| [97] |
Aleebrahim-Dehkordi E, Molavi B, Mokhtari M, et al. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses. Transpl Immunol. 2022;70:101495. doi: 10.1016/j.trim.2021.101495 |
| [98] |
Aleebrahim-Dehkordi E., Molavi B., Mokhtari M., et al. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses // Transpl Immunol. 2022. Vol. 70. P. 101495. doi: 10.1016/j.trim.2021.101495 |
| [99] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3 |
| [100] |
Wu F., Zhao S., Yu B., et al. A new coronavirus associated with human respiratory disease in China // Nature. 2020. Vol. 579, N 7798. P. 265–269. doi: 10.1038/s41586-020-2008-3 |
Simbirtsev A.S.
/
| 〈 |
|
〉 |