The predicting value of circular DNA particles of T- and B-cell receptors for the dismal acute period outcomes and the disease severity of COVID-19 infection
Tatiana A. Elistratova , Elena P. Tikhonova , Andrey A. Savchenko , Alexander G. Borisov
Cytokines and inflammation ›› 2023, Vol. 20 ›› Issue (1) : 5 -12.
The predicting value of circular DNA particles of T- and B-cell receptors for the dismal acute period outcomes and the disease severity of COVID-19 infection
The pandemic of the new coronavirus infection COVID-19, caused by the SARS-CoV-2 virus, continues to be a serious problem for the entire global community. Currently, most patients experience mild COVID-19, with only about 20% of those infected requiring hospitalization. The severe course of COVID-19 is most often associated with damage to the patient’s bronchopulmonary system by the virus and serious abnormalities, including damage to the air-hematological barrier, systemic inflammation, dysfunction of the immune system and the addition of secondary infections. Severe disease and poor outcome in hospitalized patients with COVID-19 may be associated with lymphopenia in combination with neutrophilia. Restoring the number of lymphocytes is important to improve the prognosis of the patient’s outcome. Patients with COVID-19 experience an immune imbalance where systemic inflammation and dysfunction of circulating T and B cells lead to more severe disease. TREC/KREC analysis can characterize the function of the central organs of the immune system and its relationship with clinical and laboratory data. Decreased TREC/KREC levels were observed in patients with unfavorable disease outcomes compared to patients with favorable disease outcomes. Additionally, a higher neutrophil to lymphocyte ratio was found. Levels of TREC and KREC in the blood negatively correlate with the neutrophil-lymphocyte ratio. Thus, the TREC/KREC assay is a potential prognostic marker for assessing the severity and outcome of COVID-19.
TREС / KREC / COVID-19 / acute respiratory distress syndrome / neutrophil-lymphocyte ratio
| [1] |
Щелканов М.Ю., Попова А.Ю., Дедков В.Г. и др. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae). Инфекция и иммунитет. 2020; 10(2):221-246. doi: 10.15789/2220-7619-HOI-1412. |
| [2] |
Leao J.C., Gusmao T.P.L., Zarzar A.M. et al. Coronaviridae-Old friends, new enemy! Oral Dis. 2022; 28(Suppl. 1):858-866. doi: 10.1111/odi.13447. |
| [3] |
Львов Д.К., Альховский С.В., Колобухина Л.В. и др. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020; 65(1):6-15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15. |
| [4] |
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: a systematic review of invitro studies. J. Virus Erad. 2023; 9(2):100327. doi: 10.1016/j.jve.2023.100327. |
| [5] |
Tang G., Liu Z., Chen D. Human coronaviruses: Origin, host and receptor. J. Clin. Virol. 2022; 155:105246. doi: 10.1016/j.jcv.2022.105246. |
| [6] |
Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019; 17(3):181-192. doi: 10.1038/s41579-018-0118-9. |
| [7] |
Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798):265-269. doi: 10.1038/s41586-020-2008-3. |
| [8] |
Habibzadeh S., Hashemzadeh N., Baradaran H. et al. COVID-19: From the Molecular Mechanisms to Treatment. Tanaffos. 2022; 21(2):113-131. PMID: 36879738. |
| [9] |
Tay M.Z., Poh C.M., Rénia L. et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev Immunol. 2020 Jun;20(6):363-374. doi: 10.1038/s41577-020-0311-8. |
| [10] |
Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239-1242. doi: 10.1001/jama.2020.2648. |
| [11] |
Liu Y., Ye Q. The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines (Basel). 2023; 11(9):1472. doi: 10.3390/vaccines11091472. |
| [12] |
Mazzoni A., Salvati L., Maggi L. et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest. 2020; 130(9):4694-4703. doi: 10.1172/JCI138554. |
| [13] |
Ruiz-Aravena M., McKee C., Gamble A. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 2022; 20(5):299-314. doi: 10.1038/s41579-021-00652-2. |
| [14] |
Костинов М.П., Маркелова Е.В., Свитич О.А., Полищук В.Б. Иммунные механизмы SARS-CoV-2 и потенциальные препараты для профилактики и лечения COVID-19. Пульмонология. 2020;30(5):700-708. https://doi.org/10.18093/0869-0189-2020-30-5-700-708. |
| [15] |
Liu Q., Xu K., Wang X., Wang W. From SARS to COVID-19: What lessons have we learned? J. Infect. Public Health. 2020; 13(11):1611-1618. doi: 10.1016/j.jiph.2020.08.001. |
| [16] |
Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239-1242. doi: 10.1001/jama.2020.2648. |
| [17] |
Andrews H.S., Herman J.D., Gandhi R.T. Treatments for COVID-19. Annu. Rev. Med. 2023; Sep 18. doi: 10.1146/annurev-med-052422-020316. |
| [18] |
Chang L., Yan Y., Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus. Med. Rev. 2020; 34(2):75-80. doi: 10.1016/j.tmrv.2020.02.003. |
| [19] |
Kratzer B., Schlax L.C., Gattinger P. et al. Combined assessment of S- and N-specific IL-2 and IL-13 secretion and CD69 neo-expression for discrimination of post-infection and post-vaccination cellular SARS-CoV-2-specific immune response. Allergy. 2022; 77(11):3408-3425. doi: 10.1111/all.15406. |
| [20] |
Niu Z., Li X., Gao Y et al. Evaluation of Immunogenicity and Clinical Protection of SARS-CoV-2 S1 and N Antigens in Syrian Golden Hamster. Vaccines (Basel). 2022; 10(12):1996. doi: 10.3390/vaccines10121996. |
| [21] |
Kandeel M., Yamamoto M., Tani H. et al. Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit. Biomol Ther (Seoul). 2021; 29(3):282-289. doi: 10.4062/biomolther.2020.201. |
| [22] |
Khairkhah N., Bolhassani A., Agi E. et al. Immunological investigation of a multiepitope peptide vaccine candidate based on main proteins of SARS-CoV-2 pathogen. PLoS One. 2022; 17(6):e0268251. doi: 10.1371/journal.pone.0268251. |
| [23] |
Khadzhieva M.B., Kalinina E.V., Larin S.S. et al. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics (Basel). 2021; 11(8):1486. doi: 10.3390/diagnostics11081486. |
| [24] |
Lim K.H., Wang L., Eunice D. et al. TLR4 sensitizes plasmacytoid dendritic cells for antiviral response against SARS-CoV-2 coronavirus. J. Leukoc. Biol. 2023; Sep 25:qiad111. doi: 10.1093/jleuko/qiad111. |
| [25] |
Zhu Q., Xu Y., Wang T., Xie F. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Front Immunol. 2022; 13:1053437. doi: 10.3389/fimmu.2022.1053437. |
| [26] |
Brown B., Ojha V., Fricke I. et al. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel). 2023; 11(2):408. doi: 10.3390/vaccines11020408. |
| [27] |
Petrone L., Sette A., de Vries R.D., Goletti D. The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic. Pathogens. 2023; 12(7):862. doi: 10.3390/pathogens12070862. |
| [28] |
Liatsos G.D. SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World J. Gastroenterol. 2023; 29(16):2397-2432. doi: 10.3748/wjg.v29.i16.2397. |
| [29] |
Yuan C., Ma Z., Xie J. et al. The role of cell death in SARS-CoV-2 infection. Signal Transduct. Target Ther. 2023; 8(1):357. doi: 10.1038/s41392-023-01580-8. |
| [30] |
Frank M.G., Fleshner M., Maier S.F. Exploring the immunogenic properties of SARS-CoV-2 structural proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-19. Brain Behav. Immun. 2023; 111:259-269. doi: 10.1016/j.bbi.2023.04.009. |
| [31] |
Frank M.G., Nguyen K.H., Ball J.B. et al. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav. Immun. 2022; 100:267-277. doi: 10.1016/j.bbi.2021.12.007. |
| [32] |
Gu W., Gan H., Ma Y. et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity. Virol. J. 2022; 19(1):49. doi: 10.1186/s12985-022-01783-5. |
| [33] |
Wei W.C., Tsai K.C., Liaw C.C. et al. NRICM101 ameliorates SARS-CoV-2-S1-induced pulmonary injury in K18-hACE2 mice model. Front. Pharmacol. 2023; 14:1125414. doi: 10.3389/fphar.2023.1125414. |
| [34] |
Борисов А.Г., Савченко А.А., Кудрявцев И.В. Особенности иммунного реагирования при вирусных инфекциях. Инфекция и иммунитет. 2015; 5(2):148-156. http://dx.doi.org/10.15789/2220-7619-2015-2-148-156. |
| [35] |
Борисов А.Г., Савченко А.А., Тихонова Е.П. Современные методы лечения вирусного гепатита C. Красноярск: Версона, 2017. 74 с. http://agborisov.com/knigi/Sovremennye%20metody%20lecheniya%20virusnogo%20gepatita%20s.pdf. |
| [36] |
Козлов В.А., Тихонова Е.П., Савченко А.А. и др. Клиническая имунология. Практическое пособие для инфекционистов. |
| [37] |
Филатов О.Ю., Назаров В.А. Образраспознающие рецепторы врожденного иммунитета и их роль в иммунотерапии (обзор). Патогенез. 2020; 18(4):4-15. https://doi.org/https://doi.org/10.25557/2310-0435.2020.04.4-15. |
| [38] |
Vanderbeke L., Van Mol P., Van Herck Y et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat. Commun. 2021; 12(1):4117. doi: 10.1038/s41467-021-24360-w. |
| [39] |
Wang T., Hu Y., Dusi S. et al. “Open Sesame” to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front. Immunol. 2023; 14:1130060. doi: 10.3389/fimmu.2023.1130060. |
| [40] |
Di Vito C., Calcaterra F., Coianiz N. et al. Natural Killer Cells in SARS-CoV-2: Pathophysiology and Therapeutic Implications. Front. Immunol. 2022; 13:888248. doi: 10.3389/fimmu.2022.888248. |
| [41] |
Su S., Chen R., Zhang S. et al. Immune system changes in those with hypertension when infected with SARS-CoV-2. Cell Immunol. 2022; 378:104562. doi: 10.1016/j.cellimm.2022.104562. |
| [42] |
Liapis I., Baritaki S. COVID-19 vs. Cancer Immunosurveillance: A Game of Thrones within an Inflamed Microenviroment. Cancers (Basel). 2022; 14(17):4330. doi: 10.3390/cancers14174330. |
| [43] |
Wang J., Li D., Tang B. et al. The clinical and immunological characteristics of COVID-19 patients with delayed SARS-CoV-2 virus clearance. Immun. Inflamm. Dis. 2023; 11(9):e999. doi: 10.1002/iid3.999. |
| [44] |
Tarique M., Suhail M., Naz H. et al. Where do T cell subsets stand in SARS-CoV-2 infection: an update. Front. Cell. Infect. Microbiol. 2022; 12:964265. doi: 10.3389/fcimb.2022.964265. |
| [45] |
Wang Y., Gao T., Li W. et al. Engineered clinical-grade mesenchymal stromal cells combating SARS-CoV-2 omicron variants by secreting effective neutralizing antibodies. Cell. Biosci. 2023; 13(1):160. doi: 10.1186/s13578-023-01099-z. |
| [46] |
Rotulo G.A., Ceglie G., Candino A. et al. The Clinical Course of SARS-CoV-2 Infection in Patients With Autoimmune Neutropenia: A Retrospective Case Series Study. Pediatr. Infect. Dis. J. 2023; Sep 22. doi: 10.1097/INF.0000000000004093. |
| [47] |
Weissert R. Nervous system-related tropism of SARS-CoV-2 and autoimmunity in COVID-19 infection. Eur. J. Immunol. 2023; Sep 21:e2250230. doi: 10.1002/eji.202250230. |
| [48] |
Mosavat A., Mirhosseini A., Shariati A. et al. SARS-CoV-2 infection and increasing autoimmune disorders among ICU-hospitalized COVID-19 patients. Int. J. Rheum. Dis. 2023; Aug 14. doi: 10.1111/1756-185X.14875. |
| [49] |
Rosazza C., Alagna L., Bandera A. et al. Severity of SARS-CoV-2 infection in a hospital population: a clinical comparison across age groups. Ital. J. Pediatr. 2023; 49(1):135. doi: 10.1186/s13052-023-01485-w. |
| [50] |
Sperotto F., Gutiérrez-Sacristán A., Makwana S. et al. Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortium. EClinicalMedicine. 2023; 64:102212. doi: 10.1016/j.eclinm.2023.102212. |
| [51] |
Augustin M., Stecher M., Wüstenberg H. et al. 15-month post-COVID syndrome in outpatients: Attributes, risk factors, outcomes, and vaccination status - longitudinal, observational, case-control study. Front. Immunol. 2023; 14:1226622. doi: 10.3389/fimmu.2023.1226622. |
| [52] |
Savchenko A.A., Kudryavtsev I.V., Isakov D.V. et al. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals (Basel). 2023; 16(4):537. doi: 10.3390/ph16040537. |
| [53] |
Froňková E., Klocperk A., Svatoň M. et al. The TREC/KREC assay for the diagnosis and monitoring of patients with DiGeorge syndrome. PLoS One. 2014; 9(12):e114514. doi: 10.1371/journal.pone.0114514. |
| [54] |
Khadzhieva M.B., Kalinina E.V., Larin S.S. et al. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics (Basel). 2021; 11(8):1486. doi: 10.3390/diagnostics11081486. |
| [55] |
Savchenko A.A., Tikhonova E., Kudryavtsev I. et al. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses. 2022; 14(3):646. doi: 10.3390/v14030646. |
| [56] |
Korsunskiy I., Blyuss O., Gordukova M. et al. TREC and KREC Levels as a Predictors of Lymphocyte Subpopulations Measured by Flow Cytometry. Front. Physiol. 2019; 1877. doi: 10.3389/fphys.2018.01877. |
Elistratova T.A., Tikhonova E.P., Savchenko A.A., Borisov A.G.
/
| 〈 |
|
〉 |