Modern concepts about the mechanisms of initiation and regulation of labor activity
Victor A. Mudrov
Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (2) : 87 -100.
Modern concepts about the mechanisms of initiation and regulation of labor activity
BACKGROUND: The mechanisms of initiation and regulation of labor activity remain insufficiently studied. Currently, there are a significant number of theories that explain the mechanism of onset and regulation of labor, many of which are only of historical interest. Meanwhile, awareness of the true causes and mechanisms of regulation of labor activity will allow preventing not only premature or postmature birth, but also abnormal labor.
AIM: The aim of this study was to discover modern concepts about the mechanisms of initiation and regulation of labor activity.
MATERIALS AND METHODS: We carried out a detailed systematic analysis of modern domestic and foreign literature on the mechanisms of initiation and regulation of labor activity. The study used data hosted by such databases as e-LIBRARY, Scopus, PubMed, MEDLINE, ScienceDirect, and the Cochrane Library (from January 2015 to December 2021).
CONCLUSIONS: According to the literature, the most significant role in the initiation and regulation of labor activity is played by epigenetic mechanisms that reflect the transmission of genetically encoded information in response to a great number of exogenous and endogenous signals varying from patient to patient.
labor onset / initiation / regulation / labor / uterine contractile activity / abnormal labor / premature birth / postdate labor
| [1] |
OOO “Rossiyskoe obshchestvo akusherov-ginekologov” (ROAG), Assotsiatsiya anesteziologov-reanimatologov (AAR), Assotsiatsiya akusherskikh anesteziologov-reanimatologov (AAAR). Rody odnoplodnye, samoproizvol’noe rodorazreshenie v zatylochnom predlezhanii (normal’nye rody). Klinicheskie rekomendatsii. 2021. (In Russ.). [cited 2022 Jan 11]. Available from: http://www.consultant.ru/document/cons_doc_LAW_388617/ |
| [2] |
ООО «Российское общество акушеров-гинекологов» (РОАГ), Ассоциация анестезиологов-реаниматологов (ААР), Ассоциация акушерских анестезиологов-реаниматологов (АААР). Роды одноплодные, самопроизвольное родоразрешение в затылочном предлежании (нормальные роды). Клинические рекомендации. 2021. [дата обращения 11.01.2022]. Доступ по ссылке: http://www.consultant.ru/document/cons_doc_LAW_388617/ |
| [3] |
Obstetrics: tutorial. Ed. by V.E. Radzinsky, A.M. Fuks. Moscow: GEOTAR-Media; 2016. (In Russ.) |
| [4] |
Акушерство: учебник / под ред. В.Е. Радзинского, А.М. Фукса. М.: ГЭОТАР-Медиа, 2016. |
| [5] |
Zdravoohranenie v Rossii. 2019: Statisticheskiy sbornik. Moscow: Rosstat; 2019. (In Russ.). [cited 2022 Jan 11]. Available from: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf |
| [6] |
Здравоохранение в России. 2019: статистический сборник. Москва: Росстат, 2019. [дата обращения 11.01.2022]. Доступ по ссылке: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf |
| [7] |
Baskett TF, Kalder JeA, Sabaratnam Arulkumaran. Operativnoe akusherstvo Manro Kerra. Moscow: Rid Jelsiver; 2015. (In Russ.) |
| [8] |
Баскетт Т.Ф., Калдер Э.А., Сабаратнам Арулкумаран. Оперативное акушерство Манро Керра. М.: Рид Элсивер, 2015. |
| [9] |
Aylamazyan EK, Tarasova MA, Baranov VS, et al. Akusherstvo: uchebnik. 10th ed. Moscow: GEOTAR-Media; 2019. (In Russ.) |
| [10] |
Айламазян Э.К., Тарасова М.А., Баранов В.С. и др. Акушерство: учебник. 10-е изд. М.: ГЭОТАР-Медиа, 2019. |
| [11] |
Strizhakov AN, Ignatko IV, Davydov AI. Akusherstvo: uchebnik. Moscow: GEOTAR-Media; 2020. (In Russ.) |
| [12] |
Стрижаков А.Н., Игнатко И.В., Давыдов А.И. Акушерство: учебник. М.: ГЭОТАР-Медиа, 2020. |
| [13] |
Ushakova GA, Petrich LN. Modern views on the mechanisms of labor. Overview. Mat’ i Ditya v Kuzbasse. 2016;65(2):4–10. (In Russ.) |
| [14] |
Ушакова Г.А., Петрич Л.Н. Современные представления о механизмах развития родовой деятельности. Обзор // Мать и Дитя в Кузбассе. 2016. Т. 65. № 2. С. 4–10. |
| [15] |
Mendelson CR, Gao L, Montalbano AP. Multifactorial regulation of myometrial contractility during pregnancy and parturitio. Front Endocrinol (Lausanne). 2019;10:714. DOI: 10.3389/fendo.2019.00714 |
| [16] |
Mendelson C.R., Gao L., Montalbano A.P. Multifactorial regulation of myometrial contractility during pregnancy and parturitio // Front. Endocrinol. 2019. Vol. 10. P. 714. DOI: 10.3389/fendo.2019.00714 |
| [17] |
Renthal NE, Williams KC, Montalbano AP, et al. Molecular regulation of parturition: A myometrial perspective. Cold Spring Harb Perspect Med. 2015;11(5):a023069. DOI: 10.1101/cshperspect.a023069 |
| [18] |
Renthal N.E., Williams K.C., Montalbano A.P. et al. Molecular regulation of parturition: A myometrial perspective // Cold Spring Harb. Perspect. Med. 2015. Vol. 11. No. 5. P. a023069. DOI: 10.1101/cshperspect.a023069 |
| [19] |
Ilicic M, Zakar T, Paul J.W. The regulation of uterine function during parturition: an update and recent advances. Reprod Sci. 2020;27(1):3–28. DOI: 10.1007/s43032-019-00001-y |
| [20] |
Ilicic M., Zakar T., Paul J.W. The regulation of uterine function during parturition: an update and recent advances // Reprod. Sci. 2020. Vol. 27. No. 1. P. 3–28. DOI: 10.1007/s43032-019-00001-y |
| [21] |
Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. J Endocrinol. 2016;231(3):R101–R119. DOI: 10.1530/JOE-16-0157 |
| [22] |
Sivarajasingam S.P., Imami N., Johnson M.R. Myometrial cytokines and their role in the onset of labour // J. Endocrinol. 2016. Vol. 231. No. 3. P. R101–R119. DOI: 10.1530/JOE-16-0157 |
| [23] |
Ando K, Hedou JJ, Feyaerts D, et al. A peripheral immune signature of labor induction. Front Immunol. 2021;12:725989. DOI: 10.3389/fimmu.2021.725989 |
| [24] |
Ando K., Hedou J.J., Feyaerts D. et al. A peripheral immune signature of labor induction // Front. Immunol. 2021. Vol. 12. P. 725989. DOI: 10.3389/fimmu.2021.725989 |
| [25] |
Leimert KB, Xu W, Princ MM, et al. Inflammatory amplification: A central tenet of uterine transition for labor. Front Cell Infect Microbiol. 2021;11:660983. DOI: 10.3389/fcimb.2021.660983 |
| [26] |
Leimert K.B., Xu W., Princ M.M. et al. Inflammatory amplification: A central tenet of uterine transition for labor // Front. Cell Infect. Microbiol. 2021. Vol. 11. P. 660983. DOI: 10.3389/fcimb.2021.660983 |
| [27] |
Lim R, Lappas M. Role of IRG1 in regulating pro-inflammatory and pro-labor mediators in human myometrium. Reprod Sci. 2020;27(1):61–74. DOI: 10.1007/s43032-019-00133-1 |
| [28] |
Lim R., Lappas M. Role of IRG1 in regulating pro-inflammatory and pro-labor Mediators in human myometrium // Reprod. Sci. 2020. Vol. 27. No. 1. P. 61–74. DOI: 10.1007/s43032-019-00133-1 |
| [29] |
Reinl EL, Zhao P, Wu W, et al. Na+-Leak channel, non-selective (NALCN) regulates myometrial excitability and facilitates successful parturition. Cell Physiol Biochem. 2018;48(2):503–515. DOI: 10.1159/000491805 |
| [30] |
Reinl E.L., Zhao P., Wu W. et al. Na+-Leak channel, non-selective (NALCN) regulates myometrial excitability and facilitates successful parturition // Cell Physiol. Biochem. 2018. Vol. 48. No. 2. P. 503–515. DOI: 10.1159/000491805 |
| [31] |
Ferreira JJ, Amazu C, Puga-Molina LC, et al. SLO2.1/NALCN a sodium signaling complex that regulates uterine activity. iScience. 2021;24(11):103210. DOI: 10.1016/j.isci.2021.103210 |
| [32] |
Ferreira J.J., Amazu C., Puga-Molina L.C. et al. SLO2.1/NALCN a sodium signaling complex that regulates uterine activity // iScience. 2021. Vol. 24. No. 11. P. 103210. DOI: 10.1016/j.isci.2021.103210 |
| [33] |
Cappelletti M, Doll JR, Stankiewicz TE, et al. Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight. 2020;5(22):e138812. DOI: 10.1172/jci.insight.138812 |
| [34] |
Cappelletti M., Doll J.R., Stankiewicz T.E. et al. Maternal regulation of inflammatory cues is required for induction of preterm birth // JCI Insight. 2020. Vol. 5. No. 22. P. e138812. DOI: 10.1172/jci.insight.138812 |
| [35] |
Beck S, Buhimschi IA, Summerfield TL, et al. Toll-like receptor 9, maternal cell-free DNA and myometrial cell response to CpG oligodeoxynucleotide stimulation. Am J Reprod Immunol. 2019;81(4):e13100. DOI: 10.1111/aji.13100 |
| [36] |
Beck S., Buhimschi I.A., Summerfield T.L. et al. Toll-like receptor 9, maternal cell-free DNA and myometrial cell response to CpG oligodeoxynucleotide stimulation // Am. J. Reprod. Immunol. 2019. Vol. 81. No. 4. P. e13100. DOI: 10.1111/aji.13100 |
| [37] |
Gomez-Lopez N, Garcia-Flores V, Chin PY, et al. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight. 2021;6(19):e146089. DOI: 10.1172/jci.insight.146089 |
| [38] |
Gomez-Lopez N., Garcia-Flores V., Chin P.Y. et al. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury // JCI Insight. 2021. Vol. 6. No. 19. P. e146089. DOI: 10.1172/jci.insight.146089 |
| [39] |
Shynlova O, Nadeem L, Zhang J, et al. Myometrial activation: Novel concepts underlying labor. Placenta. 2020;92:28–36. DOI: 10.1016/j.placenta.2020.02.005 |
| [40] |
Shynlova O., Nadeem L., Zhang J. et al. Myometrial activation: Novel concepts underlying labor // Placenta. 2020. Vol. 92. P. 28–36. DOI: 10.1016/j.placenta.2020.02.005 |
| [41] |
Marinello W, Feng L, Allen TK. Progestins inhibit interleukin-1β-induced matrix metalloproteinase 1 and interleukin 8 expression via the glucocorticoid receptor in primary human amnion mesenchymal cells. Front Physiol. 2020;11:900. DOI: 10.3389/fphys.2020.00900 |
| [42] |
Marinello W., Feng L., Allen T.K. Progestins inhibit interleukin-1β-Induced matrix metalloproteinase 1 and interleukin 8 expression via the glucocorticoid receptor in primary human amnion mesenchymal cells // Front. Physiol. 2020. Vol. 11. P. 900. DOI: 10.3389/fphys.2020.00900 |
| [43] |
Lozovyy V, Richardson L, Saade G, Menon R. Progesterone receptor membrane components: key regulators of fetal membrane integrity. Biol Reprod. 2021;104(2):445–456. DOI: 10.1093/biolre/ioaa192 |
| [44] |
Lozovyy V., Richardson L., Saade G., Menon R. Progesterone receptor membrane components: key regulators of fetal membrane integrity // Biol. Reprod. 2021. Vol. 104. No. 2. P. 445–456. DOI: 10.1093/biolre/ioaa192 |
| [45] |
Nadeem L, Balendran R, Dorogin A, et al. Pro-inflammatory signals induce 20α-HSD expression in myometrial cells: A key mechanism for local progesterone withdrawal. J Cell Mol Med. 2021;25(14):6773–6785. DOI: 10.1111/jcmm.16681 |
| [46] |
Nadeem L., Balendran R., Dorogin A. et al. Pro-inflammatory signals induce 20α-HSD expression in myometrial cells: A key mechanism for local progesterone withdrawal // J. Cell Mol. Med. 2021. Vol. 25. No. 14. P. 6773–6785. DOI: 10.1111/jcmm.16681 |
| [47] |
Marshall SA, Senadheera SN, Parry LJ, Girling JE. The role of relaxin in normal and abnormal uterine function during the menstrual cycle and early pregnancy. Reprod Sci. 2017;24(3):342–354. DOI: 10.1177/1933719116657189 |
| [48] |
Marshall S.A., Senadheera S.N., Parry L.J., Girling J.E. The role of relaxin in normal and abnormal uterine function during the menstrual cycle and early pregnancy // Reprod. Sci. 2017. Vol. 24. No. 3. P. 342–354. DOI: 10.1177/1933719116657189 |
| [49] |
Nowak M, Gram A, Boos A, et al. Functional implications of the utero-placental relaxin (RLN) system in the dog throughout pregnancy and at term. Reproduction. 2017;154(4):415–431. DOI: 10.1530/REP-17-0135 |
| [50] |
Nowak M., Gram A., Boos A. et al. Functional implications of the utero-placental relaxin (RLN) system in the dog throughout pregnancy and at term // Reproduction. 2017. Vol. 154. No. 4. P. 415–431. DOI: 10.1530/REP-17-0135 |
| [51] |
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol. 2020;42(4):431–450. DOI: 10.1007/s00281-020-00808-x |
| [52] |
Menon R., Behnia F., Polettini J., Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes // Semin. Immunopathol. 2020. Vol. 42. No. 4. P. 431–450. DOI: 10.1007/s00281-020-00808-x |
| [53] |
Augustine RA, Seymour AJ, Campbell RE, et al. Integrative neuro-humoral regulation of oxytocin neuron activity in pregnancy and lactation. J Neuroendocrinol. 2018. DOI: 10.1111/jne.12569 |
| [54] |
Augustine R.A., Seymour A.J., Campbell R.E. et al. Integrative neuro-humoral regulation of oxytocin neuron activity in pregnancy and lactation // J. Neuroendocrinol. 2018. DOI: 10.1111/jne.12569 |
| [55] |
Seymour AJ, Scott V, Augustine RA, et al. Development of an excitatory kisspeptin projection to the oxytocin system in late pregnancy. J Physiol. 2017;595(3):825–838. DOI: 10.1113/JP273051 |
| [56] |
Seymour A.J., Scott V., Augustine R.A. et al. Development of an excitatory kisspeptin projection to the oxytocin system in late pregnancy // J. Physiol. 2017. Vol. 595. No. 3. P. 825–838. DOI: 10.1113/JP273051 |
| [57] |
Tsujimoto M, Aoki K, Goto Y, Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases. J Biochem. 2021;169(4):409–420. DOI: 10.1093/jb/mvab009 |
| [58] |
Tsujimoto M., Aoki K., Goto Y., Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases // J. Biochem. 2021. Vol. 169. No. 4. P. 409–420. DOI: 10.1093/jb/mvab009 |
| [59] |
Uvnas-Moberg K, Ekstrom-Bergstrom A, Berg M, et al. Maternal plasma levels of oxytocin during physiological childbirth – a systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childbirth. 2019;19(1):285. DOI: 10.1186/s12884-019-2365-9 |
| [60] |
Uvnas-Moberg K., Ekstrom-Bergstrom A., Berg M. et al. Maternal plasma levels of oxytocin during physiological childbirth – a systematic review with implications for uterine contractions and central actions of oxytocin // BMC Pregnancy Childbirth. 2019. Vol. 19. No. 1. P. 285. DOI: 10.1186/s12884-019-2365-9 |
| [61] |
Armstrong WE. Kisspeptin: a new peptidergic system regulating oxytocin neurons and their reproductive plasticity in the hypothalamo-neurohypophysial system. J Physiol. 2017;595(3):611–612. DOI: 10.1113/JP273364 |
| [62] |
Armstrong W.E. Kisspeptin: a new peptidergic system regulating oxytocin neurons and their reproductive plasticity in the hypothalamo-neurohypophysial system // J. Physiol. 2017. Vol. 595. No. 3. P. 611–612. DOI: 10.1113/JP273364 |
| [63] |
Wray S, Prendergast C. The myometrium: From excitation to contractions and labour. Adv Exp Med Biol. 2019;1124:233–263. DOI: 10.1007/978-981-13-5895-1_10 |
| [64] |
Wray S., Prendergast C. The myometrium: From excitation to contractions and labour // Adv. Exp. Med. Biol. 2019. Vol. 1124. P. 233–263. DOI: 10.1007/978-981-13-5895-1_10 |
| [65] |
Bologov MA, Penjhoyan GA. Effect of stress on development of abnormalities of labor. Kubanskii nauchnyi meditsinskii vestnik. 2018;25(1):46–53. (In Russ.). DOI: 10.25207/1608-6228-2018-25-1-46-53 |
| [66] |
Бологов М.А., Пенжоян Г.А. Влияние стресса на развитие аномалий родовой деятельности // Кубанский научный медицинский вестник. 2018. Т. 25. № 1. С. 46–53. DOI: 10.25207/1608-6228-2018-25-1-46-53 |
| [67] |
Michalik A, Wojcicka L, Zdun-Ryzewska A, et al. Polish adaptation of the pregnancy-related anxiety questionnaire-revised 2 for all pregnant women. Healthcare (Basel). 2021;9(7):917. DOI: 10.3390/healthcare9070917 |
| [68] |
Michalik A., Wojcicka L., Zdun-Ryzewska A. et al. Polish adaptation of the pregnancy-related anxiety questionnaire-revised 2 for all pregnant women // Healthcare (Basel). 2021. Vol. 9. No. 7. P. 917. DOI: 10.3390/healthcare9070917 |
| [69] |
Sheen K, Slade P. Examining the content and moderators of women’s fears for giving birth: A meta-synthesis. J Clin Nurs. 2018;27(13–14):2523–2535. DOI: 10.1111/jocn.14219 |
| [70] |
Sheen K., Slade P. Examining the content and moderators of women’s fears for giving birth: A meta-synthesis // J. Clin. Nurs. 2018. Vol. 27. No. 13–14. P. 2523–2535. DOI: 10.1111/jocn.14219 |
| [71] |
OOO “Rossiyskoe obshchestvo akusherov-ginekologov” (ROAG), Assotsiatsiya akusherskikh anesteziologov-reanimatologov (AAAR). Prezhdevremennye rody. Klinicheskie rekomendatsii. 2020. (In Russ.). [cited 2022 Jan 11]. Available from: https://www.dzhmao.ru/spez/klin_recom/akushGinekol/2020/prehd_rody.pdf |
| [72] |
ООО «Российское общество акушеров-гинекологов» (РОАГ), Ассоциация акушерских анестезиологов-реаниматологов (АААР). Преждевременные роды. Клинические рекомендации. 2020. [дата обращения 11.01.2022]. Доступ по ссылке: https://www.dzhmao.ru/spez/klin_recom/akushGinekol/2020/prehd_rody.pdf |
| [73] |
Goldsztejn U, Nehorai A. A myofibre model for the study of uterine excitation-contraction dynamics. Sci Rep. 2020;10(1):16221. DOI: 10.1038/s41598-020-72562-x |
| [74] |
Goldsztejn U., Nehorai A. A myofibre model for the study of uterine excitation-contraction dynamics // Sci. Rep. 2020. Vol. 10. No. 1. P. 16221. DOI: 10.1038/s41598-020-72562-x |
| [75] |
He L, Lee GT, Zhou H, et al. Expression, regulation, and function of the calmodulin accessory protein PCP4/PEP-19 in myometrium. Reprod Sci. 2019;26(12):1650–1660. DOI: 10.1177/1933719119828072 |
| [76] |
He L., Lee G.T., Zhou H. et al. Expression, regulation, and function of the calmodulin accessory protein PCP4/PEP-19 in myometrium // Reprod. Sci. 2019. Vol. 26. No. 12. P. 1650–1660. DOI: 10.1177/1933719119828072 |
| [77] |
Philip M, Snow RJ, Gatta PAD, et al. Creatine metabolism in the uterus: potential implications for reproductive biology. Amino Acids. 2020;52(9):1275–1283. DOI: 10.1007/s00726-020-02896-3 |
| [78] |
Philip M., Snow R.J., Gatta P.A.D. et al. Creatine metabolism in the uterus: potential implications for reproductive biology // Amino Acids. 2020. Vol. 52. No. 9. P. 1275–1283. DOI: 10.1007/s00726-020-02896-3 |
| [79] |
Madaan A, Nadeau-Vallee M, Rivera JC, et al. Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1). Am J Obstet Gynecol. 2017;216(1):60.e1–60.e17. DOI: 10.1016/j.ajog.2016.09.072 |
| [80] |
Madaan A., Nadeau-Vallee M., Rivera J.C. et al. Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1) // Am. J. Obstet. Gynecol. 2017. Vol. 216. No. 1. P. 60.e1–60.e17. DOI: 10.1016/j.ajog.2016.09.072 |
| [81] |
Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-dependent regulation of immune responses by dendritic cells and macrophages. Front Immunol. 2021;12:691134. DOI: 10.3389/fimmu.2021.691134 |
| [82] |
Manoharan I., Prasad P.D., Thangaraju M., Manicassamy S. Lactate-dependent regulation of immune responses by dendritic cells and macrophages // Front. Immunol. 2021. Vol. 12. P. 691134. DOI: 10.3389/fimmu.2021.691134 |
| [83] |
Chen L, Wang L, Luo Y, et al. Integrated proteotranscriptomics of human myometrium in labor landscape reveals the increased molecular associated with inflammation under hypoxia stress. Front Immunol. 2021;12:722816. DOI: 10.3389/fimmu.2021.722816 |
| [84] |
Chen L., Wang L., Luo Y. et al. Integrated proteotranscriptomics of human myometrium in labor landscape reveals the increased molecular associated with inflammation under hypoxia stress // Front. Immunol. 2021. Vol. 12. P. 722816. DOI: 10.3389/fimmu.2021.722816 |
| [85] |
Rabotti C, Mischi M. Propagation of electrical activity in uterine muscle during pregnancy: a review. Acta Physiol (Oxf). 2015;213(2):406–416. DOI: 10.1111/apha.12424 |
| [86] |
Rabotti C., Mischi M. Propagation of electrical activity in uterine muscle during pregnancy: a review // Acta Physiol. 2015. Vol. 213. No. 2. P. 406–416. DOI: 10.1111/apha.12424 |
| [87] |
Lutton EJ, Lammers WJEP, James S, et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat. J Physiol. 2018;596(14):2841–2852. DOI: 10.1113/JP275688 |
| [88] |
Lutton E.J., Lammers W.J.E.P., James S. et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat // J. Physiol. 2018. Vol. 596. No. 14. P. 2841–2852. DOI: 10.1113/JP275688 |
| [89] |
Kagami K, Ono M, Iizuka T, et al. A novel third mesh-like myometrial layer connects the longitudinal and circular muscle fibers-A potential stratum to coordinate uterine contractions. Sci Rep. 2020;10(1):8274. DOI: 10.1038/s41598-020-65299-0 |
| [90] |
Kagami K., Ono M., Iizuka T. et al. A novel third mesh-like myometrial layer connects the longitudinal and circular muscle fibers-A potential stratum to coordinate uterine contractions // Sci. Rep. 2020. Vol. 10. No. 1. P. 8274. DOI: 10.1038/s41598-020-65299-0 |
| [91] |
Kuijsters NPM, Sammali F, Ye X, et al. Propagation of spontaneous electrical activity in the ex vivo human uterus. Pflügers Arch. 2020;472(8):1065–1078. DOI: 10.1007/s00424-020-02426-w |
| [92] |
Kuijsters N.P.M., Sammali F., Ye X. et al. Propagation of spontaneous electrical activity in the ex vivo human uterus // Pflügers Arch. 2020. Vol. 472. No. 8. P. 1065–1078. DOI: 10.1007/s00424-020-02426-w |
| [93] |
Massenavette L, Paul W, Corriveau S, et al. Phorbol 12,13-dibutyrate-induced protein kinase C activation triggers sustained contracture in human myometrium in vitro. Am J Obstet Gynecol. 2017;217(3):358.e1–358.e9. DOI: 10.1016/j.ajog.2017.04.041 |
| [94] |
Massenavette L., Paul W., Corriveau S. et al. Phorbol 12,13-dibutyrate-induced protein kinase C activation triggers sustained contracture in human myometrium in vitro // Am. J. Obstet. Gynecol. 2017. Vol. 217. No. 3. P. 358.e1–358.e9. DOI: 10.1016/j.ajog.2017.04.041 |
| [95] |
Lavie A, Shinar S, Hiersch L, et al. Uterine electrical activity, oxytocin and labor: translating electrical into mechanical. Arch Gynecol Obstet. 2018;297(6):1405–1413. DOI: 10.1007/s00404-018-4721-9 |
| [96] |
Lavie A., Shinar S., Hiersch L. et al. Uterine electrical activity, oxytocin and labor: translating electrical into mechanical // Arch. Gynecol Obstet. 2018. Vol. 297. No. 6. P. 1405–1413. DOI: 10.1007/s00404-018-4721-9 |
| [97] |
Lim R, Lappas M. GIT2 deficiency attenuates inflammation-induced expression of pro-labor mediators in human amnion and myometrial cells. Biol Reprod. 2019;100(6):1617–1629. DOI: 10.1093/biolre/ioz041 |
| [98] |
Lim R., Lappas M. GIT2 deficiency attenuates inflammation-induced expression of pro-labor mediators in human amnion and myometrial cells // Biol. Reprod. 2019. Vol. 100. No. 6. P. 1617–1629. DOI: 10.1093/biolre/ioz041 |
| [99] |
Lappas M. Copper metabolism domain-containing 1 represses the mediators involved in the terminal effector pathways of human labour and delivery. Mol Hum Reprod. 2016;22(4):299–310. DOI: 10.1093/molehr/gav075 |
| [100] |
Lappas M. Copper metabolism domain-containing 1 represses the mediators involved in the terminal effector pathways of human labour and delivery // Mol. Hum. Reprod. 2016. Vol. 22. No. 4. P. 299–310. DOI: 10.1093/molehr/gav075 |
| [101] |
Gao L, Wang G, Liu WN, et al. Reciprocal feedback between miR-181a and E2/ERα in byometrium enhances inflammation leading to labor. J Clin Endocrinol Metab. 2016;101(10):3646–3656. DOI: 10.1210/jc.2016-2078 |
| [102] |
Gao L., Wang G., Liu W.N. et al. Reciprocal feedback between miR-181a and E2/ERα in byometrium enhances inflammation leading to labor // J. Clin. Endocrinol. Metab. 2016. Vol. 101. No. 10. P. 3646–3656. DOI: 10.1210/jc.2016-2078 |
Eсо-Vector
/
| 〈 |
|
〉 |