Biochemical factors of hypoxia and their role in assessing the functional state of the fetus

Olga V. Rozhdestvenskaya , Anna A. Kokaya , Vitaly F. Bezhenar

Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (6) : 117 -126.

PDF (257KB)
Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (6) : 117 -126. DOI: 10.17816/JOWD71300
Reviews
review-article

Biochemical factors of hypoxia and their role in assessing the functional state of the fetus

Author information +
History +
PDF (257KB)

Abstract

The constant frequent incidents of fetal hypoxia during pregnancy and childbirth remain the leading unsolved problem in modern practical obstetrics. In some cases, the onset of a pathological process can be diagnosed earlier due to the on-time monitoring of functional disorders of the fetus. However, the existing diagnostic methods do not show the compensatory and adaptive capabilities of the fetus; do not lead to an in-depth understanding of the pathophysiology of this condition and do not contribute to the implementation of evidence-based therapy. This review summarizes current knowledge about the diagnosis of functional disorders of the fetus and discusses possible ways of assessing adaptive mechanisms in response to stress during pregnancy and childbirth. The article shows the development of biochemical methods for diagnosing functional disorders of the fetus. The putative biochemical markers for assessing the compensatory capabilities of the fetus during pregnancy and childbirth are presented.

Keywords

fetal hypoxia / fetal distress / brain-derived neurotrophic factor / glial cell-derived neurotrophic factor

Cite this article

Download citation ▾
Olga V. Rozhdestvenskaya, Anna A. Kokaya, Vitaly F. Bezhenar. Biochemical factors of hypoxia and their role in assessing the functional state of the fetus. Journal of obstetrics and women's diseases, 2021, 70(6): 117-126 DOI:10.17816/JOWD71300

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Perepelica SA, Golubev AM, Moroz VV, et al. Causes of acute intranatal and postnatal hypoxia in neonatal infants. Obshchaya reanimatologiya. 2012;VIII(6):17–22. (In Russ.)

[2]

Перепелица С.А., Голубев А.М., Мороз В.В. и др. Причины острой интранатальной и постнатальной гипоксии у новорожденных // Общая реаниматология. 2012. T. VIII. № 6. C. 17–22.

[3]

Gunin AG, Milovanov MM, Denisova TG. Methods of fetal assessment in labors. Zdravoohranenie Chuvashii. 2014;3(3):9–48. (In Russ.)

[4]

Гунин А.Г., Милованов М.М., Денисова Т.Г. Методы оценки состояния плода в родах // Здравоохранение Чувашии. 2014. Т. 3. № 3. C. 39–48.

[5]

Kuznetsov PA, Kozlov PV. Fetal hypoxia and neonatal asphyxia. Lechebnoe delo. 2017;(4):9–15. (In Russ.)

[6]

Кузнецов П.А., Козлов П.В. Гипоксия плода и асфиксия новорожденного // Лечебное дело. 2017. № 4. С. 9–15.

[7]

Malin GL, Morris RK, Khan KS. Strength of association between umbilical cord pH and perinatal and long term outcomes: Systematic review and meta-analysis. BMJ. 2010;340(7756):1121. DOI: 10.1136/bmj.c1471

[8]

Malin G.L., Morris R.K., Khan K.S. Strength of association between umbilical cord pH and perinatal and long term outcomes: Systematic review and meta-analysis // BMJ. 2010. Vol. 340 (7756). P. 1121. DOI: 10.1136/bmj.c1471

[9]

Goodwin TM, Belai I, Hernandez P, et al. Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol. 1992;167(6):1506−1512. DOI: 10.1016/0002-9378(92)91728-s

[10]

Goodwin T.M., Belai I., Hernandez P. et al. Asphyxial complications in the term newborn with severe umbilical acidemia // Am. J. Obstet. Gynecol. 1992. Vol. 167. No. 6. P. 1506−1512. DOI: 10.1016/0002-9378(92)91728-s

[11]

Rubak SL. Lactate measurement in umbilical cord blood in neonates. Ugeskr Laeger. 2010;172(1):364–368.

[12]

Rubak S.L. Lactate measurement in umbilical cord blood in neonates // Ugeskr Laeger. 2010. Vol. 172. No. 1. P. 364–368.

[13]

East CE, Leader LR, Sheehan P, et al. Intrapartum fetal scalp lactate sampling for fetal assessment in the presence of a non-reassuring fetal heart rate trace. Cochrane Database Syst Rev. 2015;(5):CD006174. DOI: 10.1002/14651858.CD006174.pub3

[14]

East C.E., Leader L.R., Sheehan P. et al. Intrapartum fetal scalp lactate sampling for fetal assessment in the presence of a non-reassuring fetal heart rate trace // Cochrane Database Syst. Rev. 2015. No. 5. P. CD006174. DOI: 10.1002/14651858.CD006174.pub3

[15]

Wiberg-Itzel E. Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicenter trial. Br Med J. 2008;336:1284–1287. DOI: 10.1136/bmj.39553.406991.25

[16]

Wiberg-Itzel E. Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicenter trial // Br. Med. J. 2008. Vol. 336. P. 1284–1287. DOI: 10.1136/bmj.39553.406991.25

[17]

Nordström L, Achanna S, Naka K, Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour. BJOG. 2001;108(3):263–268. DOI: 10.1136/10.1111/j.1471-0528.2001.00034.x

[18]

Nordström L., Achanna S., Naka K., Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour // BJOG. 2001. Vol. 108. No. 3. P. 263–268. DOI: 10.1136/10.1111/j.1471-0528.2001.00034.x

[19]

Wiberg N, Källén K. Fetal scalp blood lactate during second stage of labor: determination of reference values and impact of obstetrical interventions. J Matern Fetal Neonatal Med. 2017;30(5):612–617. DOI: 10.1080/14767058.2016.1181167

[20]

Wiberg N., Källén K. Fetal scalp blood lactate during second stage of labor: determination of reference values and impact of obstetrical interventions // J. Matern. Fetal. Neonatal. Med. 2017. Vol. 30. No. 5. P. 612−617. DOI: 10.1080/14767058.2016.1181167

[21]

Orsonneau J-L, Fraissinet F, Sébille-Rivain V, et al. Suitability of POC lactate methods for fetal and perinatal lactate testing: considerations for accuracy, specificity and decision making criteria. Clin Chem Lab Med. 2013;51(2):397–404. DOI: 10.1515/cclm-2012-0201

[22]

Orsonneau J.-L., Fraissinet F., Sébille-Rivain V. et al. Suitability of POC lactate methods for fetal and perinatal lactate testing: considerations for accuracy, specificity and decision making criteria // Clin. Chem. Lab. Med. 2013. Vol. 51. No. 2. P. 397–404. DOI: 10.1515/cclm-2012-0201

[23]

Wiberg N, Klausen TW, Tyrberg T, et al. Infant outcome at four years of age after intrapartum sampling of scalp blood lactate for fetal assessment. A cohort study. PLoS One. 2018;13(3):e0193887. DOI: 10.1371/journal.pone.0193887

[24]

Wiberg N., Klausen T.W., Tyrberg T. et al. Infant outcome at four years of age after intrapartum sampling of scalp blood lactate for fetal assessment. A cohort study // PLoS One. 2018. Vol. 13. No. 3. P. e0193887. DOI: 10.1371/journal.pone.0193887

[25]

Remneva OV, Fadeeva NI, Fil’chakova ON, et al. Intranatal fetal hypoxia: diagnostic possibilities, reserves reducing the incidence of cerebral disorders in full-term newborns. Rossijskij vestnik pediatrii. 2015;5(5):61–66. (In Russ.)

[26]

Ремнева О.В., Фадеева Н.И., Фильчакова О.Н. и др. Интранатальная гипоксия плода: возможности диагностики, резервы снижения частоты церебральных расстройств у доношенных новорожденных // Российский вестник педиатрии. 2015. Т. 5. № 5. С. 61–66.

[27]

Pogorelova TM, Gun’ko VO, Drukker NA, Linde VA. Proteins-markers of placental insufficiency. Biomedicinskaya himiya. 2010;56(5):616–620. (In Russ.)

[28]

Погорелова Т.М., Гунько В.О., Друккер Н.А., Линде В.А. Белки-маркеры плацентарной недостаточности // Биомедицинская химия. 2010. Т. 56. № 5. С. 616–620.

[29]

Loukovaara M, Teramo K, Alfthan H, et al. Amniotic fluid S100B protein and erythropoietin in pregnancies at risk for fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 2009;142(2):115–118. DOI: 10.1016/j.ejogrb.2008.10.008

[30]

Loukovaara M., Teramo K., Alfthan H. et al. Amniotic fluid S100B protein and erythropoietin in pregnancies at risk for fetal hypoxia // Eur. J. Obstet. Gynecol. Reprod. Biol. 2009. Vol. 142. No. 2. P. 115−118. DOI: 10.1016/j.ejogrb.2008.10.008

[31]

Summanen M, Seikku L, Rahkonen P, et al. Comparison of umbilical serum copeptin relative to erythropoietin and S100B as asphyxia biomarkers at birth. Neonatology. 2017;112(1):60−66. DOI: 10.1159/000456063

[32]

Summanen M., Seikku L., Rahkonen P. et al. Comparison of umbilical serum copeptin relative to erythropoietin and S100B as asphyxia biomarkers at birth // Neonatology. 2017. Vol. 112. No. 1. P. 60−66. DOI: 10.1159/000456063

[33]

Irmak K, Tüten N, Karaoglu G, et al. Evaluation of cord blood creatine kinase (CK), cardiac troponin T (cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), and s100B levels in nonreassuring foetal heart rate. J Matern Fetal Neonatal Med. 2021;34(8):1249−1254. DOI: 10.1080/14767058.2019.1632285

[34]

Irmak K., Tüten N., Karaoglu G. et al. Evaluation of cord blood creatine kinase (CK), cardiac troponin T (cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), and s100B levels in nonreassuring foetal heart rate // J. Matern. Fetal Neonatal. Med. 2021. Vol. 34. No. 8. P. 1249−1254. DOI: 10.1080/14767058.2019.1632285

[35]

Trevisanuto D, Picco G, Golin R, et al. Cardiac troponin I in asphyxiated neonates. Biol Neonate. 2006;89(3):190–193. DOI: 10.1159/000089795

[36]

Trevisanuto D., Picco G., Golin R. et al. Cardiac troponin I in asphyxiated neonates // Biol. Neonate. 2006. Vol. 89. No. 3. P. 190–193. DOI: 10.1159/000089795

[37]

Stefanović V, Loukovaara M. Amniotic fluid cardiac troponin T in pathological pregnancies with evidence of chronic fetal hypoxia. Croat Med J. 2005;46(5):801–807.

[38]

Stefanović V., Loukovaara M. Amniotic fluid cardiac troponin T in pathological pregnancies with evidence of chronic fetal hypoxia // Croat. Med. J. 2005. Vol. 46. No. 5. P. 801–807.

[39]

Joseph S, Kumar S, Ahamed MZ, Lakshmi S. Cardiac troponin-T as a marker of myocardial dysfunction in term neonates with perinatal asphyxia. Indian J Pediatr. 2018;85(10):877–84. DOI: 10.1007/s12098-018-2667-3

[40]

Joseph S., Kumar S., Ahamed M.Z., Lakshmi S. Cardiac troponin-T as a marker of myocardial dysfunction in term neonates with perinatal asphyxia // Indian J. Pediatr. 2018. Vol. 85. No. 10. P. 877–884. DOI: 10.1007/s12098-018-2667-3

[41]

Asrani P, Aly AM, Jiwani AK, et al. High-sensitivity troponin T in preterm infants with a hemodynamically significant patent ductus arteriosus. J Perinatol. 2018;38(11):1483−1489. DOI: 10.1038/s41372-018-0192-x

[42]

Asrani P., Aly A.M., Jiwani A.K. et al. High-sensitivity troponin T in preterm infants with a hemodynamically significant patent ductus arteriosus // J. Perinatol. 2018. Vol. 38. No. 11. P. 1483−1489. DOI: 10.1038/s41372-018-0192-x

[43]

Whitehead C, Teh WT, Walker SP, et al. Quantifying circulating hypoxia-induced RNA transcripts in maternal blood to determine in utero fetal hypoxic status. BMC Med. 2013;11(1):1–12. DOI: 10.1186/1741-7015-11-256

[44]

Whitehead C., Teh W.T., Walker S.P. et al. Quantifying circulating hypoxia-induced RNA transcripts in maternal blood to determine in utero fetal hypoxic status // BMC Med. 2013. Vol. 11. No. 1. P. 1–12. DOI: 10.1186/1741-7015-11-25

[45]

Turrini I, Sorbi F, Ghizzoni V, et al. Severe fetal distress and placental damage might be associated with high troponin i (cTnI) levels in mothers. Am J Case Rep. 2018;19:194–198. DOI: 10.12659/AJCR.906617

[46]

Turrini I., Sorbi F., Ghizzoni V. et al. Severe fetal distress and placental damage might be associated with high troponin i (cTnI) levels in mothers // Am. J. Case Rep. 2018. Vol. 19. P. 194–198. DOI: 10.12659/AJCR.906617

[47]

Fleming SM, O’Gorman T, Finn J, et al. Cardiac troponin I in pre-eclampsia and gestational hypertension. BJOG. 2000;107(11):1417–1420. DOI: 10.1111/j.1471-0528.2000.tb11658.x

[48]

Fleming S.M., O’Gorman T., Finn J. et al. Cardiac troponin I in pre-eclampsia and gestational hypertension // BJOG. 2000. Vol. 107. No. 11. P. 1417–1420. DOI: 10.1111/j.1471-0528.2000.tb11658.x

[49]

Joyal D, Leya F, Koh M, et al. Troponin I levels in patients with preeclampsia. Am J Med. 2007;120(9):819.e13−14. DOI: 10.1016/j.amjmed.2006.05.068

[50]

Joyal D., Leya F., Koh M. et al. Troponin I levels in patients with preeclampsia // Am. J. Med. 2007. Vol. 120. No. 9. P. 819. DOI: 10.1016/j.amjmed.2006.05.068

[51]

Whitehead CL, Teh WT, Walker SP, et al. Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS One. 2013;8(11):e78487. DOI: 10.1371/journal.pone.0078487

[52]

Whitehead C.L., Teh W.T., Walker S.P. et al. Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero // PLoS One. 2013. Vol. 8. No. 11. P. e78487. DOI: 10.1371/journal.pone.0078487

[53]

Human reproductive and prenatal genetics. Ed. by P.C.K. Leung, J. Qiao. London: Academic Press; 2019.

[54]

Looney AM, Walsh BH, Moloney G, et al. Downregulation of umbilical cord blood levels of mir-374a in neonatal hypoxic ischemic encephalopathy. J Pediatr. 2015;167(2):269–273. DOI: 10.1016/j.jpeds.2015.04.060

[55]

Looney A.M., Walsh B.H., Moloney G. et al. Downregulation of umbilical cord blood levels of mir-374a in neonatal hypoxic ischemic encephalopathy // J. Pediatr. 2015. Vol. 167. No. 2. P. 269–273. DOI: 10.1016/j.jpeds.2015.04.060

[56]

Shi J-P, Li Y-W, Sang G-M, et al. Expression and significance of serum miRNA-21 expression in neonates with HIE. Pr Prev Med. 2018;25:655–658. DOI: 10.3969/j.issn.1006-3110.2018.06.005

[57]

Shi J.-P., Li Y.-W., Sang G.-M. et al. Expression and significance of serum miRNA-21 expression in neonates with HIE // Pr. Prev. Med. 2018. Vol. 25. P. 655–658. DOI: 10.3969/j.issn.1006-3110.2018.06.005

[58]

Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology. 2019;149:55–65. DOI: 10.1016/j.neuropharm.2018.11.041

[59]

Ponnusamy V., Yip P.K. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy // Neuropharmacology. 2019. Vol. 149. P. 55–65. DOI: 10.1016/j.neuropharm.2018.11.041

[60]

Tissot van Patot MC, Murray AJ, Beckey V, et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R166−172. DOI: 10.1152/ajpregu.00383.2009

[61]

Tissot van Patot M.C., Murray A.J., Beckey V. et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010. Vol. 298. No. 1. P. R166−172. DOI: 10.1152/ajpregu.00383.2009

[62]

Nuñez A, Benavente I, Blanco D, et al. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy. An Pediatr (Barc). 2018;88(4):228.e1−228.e9. DOI: 10.1016/j.anpedi.2017.05.005

[63]

Nuñez A., Benavente I., Blanco D. et al. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy // An. Pediatr. (Barc). 2018. Vol. 88. No. 4. P. 228.e1−228.e9. DOI: 10.1016/j.anpedi.2017.05.005

[64]

Mitroshina EV, Abogessimengane BZH, Urazov MD, et al. Adaptive role of glial cell line-derived neurotrophic factorin cerebral ischemia. Sovremennye Tekhnologii V Medicine. 2017;9(1):68–76. (In Russ.)

[65]

Митрошина Е.В., Абогессименгане Б.Ж., Уразов М.Д. и др. Адаптационная роль глиального нейротрофического фактора при ишемии головного мозга // Современные технологии в медицине. 2017. Т. 9. № 1. С. 68–76.

[66]

Turovsky EA, Zinchenko VP, Gaidin SG, Turovskaya MV. Calcium-binding proteins protect gabaergic neurons of the hippocampus from hypoxia and ischemia in vitro. Biol Membr. 2017;34(5):68–80. DOI: 10.1134/S1990747818010105

[67]

Turovsky E.A., Zinchenko V.P., Gaidin S.G., Turovskaya M.V. Calcium-binding proteins protect gabaergic neurons of the hippocampus from hypoxia and ischemia in vitro // Biol. Membr. 2017. Vol. 34. No. 5. P. 68–80. DOI: 10.1134/S1990747818010105

[68]

Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol. 2017;12:216–25. DOI: 10.1016/j.redox.2017.02.014

[69]

Coimbra-Costa D., Alva N., Duran M. et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain // Redox. Biol. 2017. Vol. 12. P. 216–225. DOI: 10.1016/j.redox.2017.02.014

[70]

Grow J, Barks JD. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. Clin Perinatol. 2002;29(4):585–602. DOI: 10.1016/s0095-5108(02)00059-3

[71]

Grow J., Barks J.D. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts // Clin. Perinatol. 2002. Vol. 29. No. 4. P. 585–602. DOI: 10.1016/s0095-5108(02)00059-3

[72]

Ostrova IV, Avrushchenko MS. Expression of brain-derived neurotrophic factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. General Reanimatology. 2015;11(3):45−53. (In Russ.). DOI: 10.15360/1813-9779-2015-3-45-53

[73]

Острова И.В., Аврущенко М.Ш. Экспрессия мозгового нейротрофического фактора (BDNF) повышает устойчивость нейронов к гибели в постреанимационном периоде // Общая реаниматология. 2015. Т. 11. № 3. С. 45−53. DOI: 10.15360/1813-9779-2015-3-45-53

[74]

Ikeda T, Xia XY, Xia YX, et al. Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat. Acta Neuropathol. 2000;100(2):161–7. DOI: 10.1007/s004019900162

[75]

Ikeda T., Xia X.Y., Xia Y.X. et al. Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat // Acta Neuropathol. 2000. Vol. 100. No. 2. P. 161–167. DOI: 10.1007/s004019900162

[76]

Morozova AYu, Arutyunyan AV, Milyutina YuP, et al. The dynamics of the contents of neurotrophic factors in early ontogenyin the brain structures of rats subjected to prenatal hypoxia. Neurochemistry. 2018;35(3):256–263. (In Russ.). DOI: 10.1134/S1027813318030081

[77]

Морозова А.Ю., Арутюнян А.В., Милютина Ю.П. и др. Динамика изменения содержания нейротрофических факторов в структурах головного мозга крыс в раннем онтогенезе после пренатальной гипоксии // Нейрохимия. 2018. Т. 35. № 3. С. 256–263. DOI: 10.1134/S1027813318030081

[78]

Morozova AYu, Arutyunyan AV, Milyutina Yu P, et al. Influence of prenatal hypoxia on the content of neuron specific enolasein the structures of the brain and blood serum of rats in early ontogeny. Neurochemistry. 2020;37(3):233–239. (In Russ.). DOI: 10.31857/S1027813320030085

[79]

Морозова А.Ю., Арутюнян, А.В., Милютина, Ю.П. и др. Влияние пренатальной гипоксии на содержание нейронспецифической енолазы в структурах головного мозга и сыворотке крови крыс в раннем онтогенезе // Нейрохимия. 2020. Т. 37. № 3. С. 233–239. DOI: 10.31857/S1027813320030085

[80]

Shchelchkova NA, Kokaya AA, Bezhenar’ VF, et al. The role of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in chronic fetal oxygen deprivation. Sovremennye Tekhnologii V Medicine. 2020;12(1):25–33. (In Russ.). DOI: 10.17691/stm2020.12.1.03+

[81]

Щелчкова Н.А., Кокая А.А., Беженарь В.Ф. и др. Роль мозгового и глиального нейротрофических факторов при хронической внутриутробной кислородной депривации плода // Современные технологии в медицине. 2020. Т. 12. № 1. С. 25–33. DOI: 10.17691/stm2020.12.1.03

[82]

Cheng H, Fu Y-S, Guo J-W. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus. 2004;14(1):77–86. DOI: 10.1002/hipo.10145

[83]

Cheng H., Fu Y.-S., Guo J.-W. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus // Hippocampus. 2004. Vol. 14. No. 1. P. 77–86. DOI: 10.1002/hipo.10145

[84]

Shang J, Deguchi K, Yamashita T, et al. Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res. 2010;88(10):2197–2206. DOI: 10.1002/jnr.22373

[85]

Shang J., Deguchi K., Yamashita T. et al. Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats // J. Neurosci. Res. 2010. Vol. 88. No. 10. P. 2197–206. DOI: 10.1002/jnr.22373

[86]

Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122–129. DOI: 10.1016/j.ceca.2010.01.003

[87]

Szydlowska K., Tymianski M. Calcium, ischemia and excitotoxicity // Cell Calcium. 2010. Vol. 47. No. 2. P. 122–129. DOI: 10.1016/j.ceca.2010.01.003

[88]

Ahn SY, Chang YS, Sung DK, et al. Pivotal role of brain-derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in newborn rats. Cell Transplant. 2017;26(1):145–156. DOI: 10.3727/096368916X692861

[89]

Ahn S.Y., Chang Y.S., Sung D.K. et al. Pivotal role of brain-derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in newborn rats // Cell. Transplant. 2017. Vol. 26. No. 1. P. 145–56. DOI: 10.3727/096368916X692861

[90]

Feng N, Hao G, Yang F, et al. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis. Exp Ther Med. 2016;11(5):1595–600. DOI: 10.3892/etm.2016.3089

[91]

Feng N., Hao G., Yang F. et al. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis // Exp. Ther. Med. 2016. Vol. 11. No. 5. P. 1595–1600. DOI: 10.3892/etm.2016.3089

[92]

Mitkari B, Nitzsche F, Kerkelä E, et al. Human bone marrow mesenchymal stem/stromal cells produce efficient localization in the brain and enhanced angiogenesis after intra-arterial delivery in rats with cerebral ischemia, but this is not translated to behavioral recovery. Behav Brain Res. 2014;259:50–59. DOI: 10.1016/j.bbr.2013.10.030

[93]

Mitkari B., Nitzsche F., Kerkelä E. et al. Human bone marrow mesenchymal stem/stromal cells produce efficient localization in the brain and enhanced angiogenesis after intra-arterial delivery in rats with cerebral ischemia, but this is not translated to behavioral recovery // Behav. Brain Res. 2014. Vol. 259. P. 50–59. DOI: 10.1016/j.bbr.2013.10.030

[94]

Zhang R, Liu Y, Yan K, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation. 2013;10:106. DOI: 10.1186/1742-2094-10-106

[95]

Zhang R., Liu Y., Yan K. et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury // J. Neuroinflammation. 2013. Vol. 10. P. 106. DOI: 10.1186/1742-2094-10-106

[96]

Lee NM, Chae SA, Lee HJ. Effects of neural stem cell media on hypoxic injury in rat hippocampal slice cultures. Brain Res. 2017;1677:20–25. DOI: 10.1016/j.brainres.2017.09.018

[97]

Lee N.M., Chae S.A., Lee H.J. Effects of neural stem cell media on hypoxic injury in rat hippocampal slice cultures // Brain Res. 2017. Vol. 1677. P. 20–25. DOI: 10.1016/j.brainres.2017.09.018

[98]

Liu X, Wang X, Li A, Jiao X. Effect of mesenchymal stem cell transplantation on brain-derived neurotrophic factor expression in rats with Tourette syndrome. Exp Ther Med. 2016;11(4):1211–1216. DOI: 10.3892/etm.2016.3059

[99]

Liu X., Wang X., Li A., Jiao X. Effect of mesenchymal stem cell transplantation on brain-derived neurotrophic factor expression in rats with Tourette syndrome // Exp. Ther. Med. 2016. Vol. 11. No. 4. P. 1211–1216. DOI: 10.3892/etm.2016.3059

[100]

Zheng Z, Zhang L, Qu Y, et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway. Stem Cells. 2018;36(7):1109–1121. DOI: 10.1002/stem.2808

[101]

Zheng Z., Zhang L., Qu Y. et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway // Stem. Cells. 2018. Vol. 36. No. 7. P. 1109–1121. DOI: 10.1002/stem.2808

[102]

Sheng S, Huang J, Ren Y, et al. Neuroprotection against hypoxic/ischemic injury: δ-opioid receptors and BDNF-TrkB pathway. Cell Physiol Biochem. 2018;47(1):302−315. DOI: 10.1159/000489808

[103]

Sheng S., Huang J., Ren Y. et al. Neuroprotection against hypoxic/ischemic injury: δ-opioid receptors and BDNF-TrkB pathway // Cell. Physiol. Biochem. 2018. Vol. 47. No. 1. P. 302–315.

[104]

Vedunova МV, Sakharnova ТА, Mitroshina EV, et al. Antihypoxic and neuroprotective properties of BDNF and GDNF in vitro and in vivo under hypoxic conditions. Sovremennye Tehnologii v Medicine. 2014;6(4):38–47. (In Russ.)

[105]

Ведунова М.В., Сахарнова Т.А., Митрошина Е.В. и др. Антигипоксические и нейропротективные свойства нейротрофических факторов BDNF и GDNF при гипоксии in vitro и in vivo // Современные технологии в медицине. 2014. Т. 6. № 4. С. 48−47.

[106]

Duarte EP, Curcio M, Canzoniero LM, Duarte CB. Neuroprotection by GDNF in the ischemic brain. Growth Factors. 2012;30(4):242–257. DOI: 10.3109/08977194.2012.691478

[107]

Duarte E.P., Curcio M., Canzoniero L.M., Duarte C.B. Neuroprotection by GDNF in the ischemic brain // Growth Factors. 2012. Vol. 30. No. 4. P. 242–257. DOI: 10.3109/08977194.2012.691478

[108]

Shishkina TV. Antigipoksicheskoe i nejroprotektornoe dejstvie glial’nogo nejrotroficheskogo faktora pri modelirovanii faktorov ishemii [dissertation abstract]. Saint Petersburg; 2017 [cited 23 Aug 2021]. Available from: http://www.dslib.net/fiziologia/antigipoksicheskoe-i-nejroprotektornoe-dejstvie-glialnogo-nejrotroficheskogo.html. (In Russ.)

[109]

Шишкина Т.В. Антигипоксическое и нейропротекторное действие глиального нейротрофического фактора при моделировании факторов ишемии: автореф. … дис. канд. биол. наук. Санкт-Петербург, 2017 [дата обращения: 22.08.2021]. Доступ по ссылке: http://www.dslib.net/fiziologia/antigipoksicheskoe-i-nejroprotektornoe-dejstvie-glialnogo-nejrotroficheskogo.html

[110]

Shishkina TV, Mishchenko TA, Mitroshina EV, et al. Glial cell line-derived neurotrophic factor (GDNF) counteracts hypoxic damage to hippocampal neural network function in vitro. Brain Res. 2018;1678:310–321. DOI: 10.1016/j.brainres.2017.10.023

[111]

Shishkina T.V., Mishchenko T.A., Mitroshina E.V. et al. Glial cell line-derived neurotrophic factor (GDNF) counteracts hypoxic damage to hippocampal neural network function in vitro // Brain Res. 2018. Vol. 1678. P. 310–321. DOI: 10.1016/j.brainres.2017.10.023

[112]

Shhelchkova NA, Kokaja AA, Vedunova MV. Rol’ nejrotroficheskih faktorov pri gipoksii novorozhdennyh. In: VI Baltijskij kongress po detskoj nevrologii: sbornik tezisov. Ed. by V.I. Guzeva. Saint Petersburg; 2016. P. 409–410. (In Russ.)

[113]

Щелчкова Н.А., Кокая А.А., Ведунова М.В. Роль нейротрофических факторов при гипоксии новорожденных // VI Балтийский конгресс по детской неврологии: сборник тезисов / под ред. В.И. Гузева. Санкт-Петербург, 2016. С. 409–410.

[114]

Golosnaya GS, Kotij SA. Vaskuloendotelial’nyj faktor rosta (VEGF) i nejrotroficheskij faktor golovnogo mozga (BDNF) u novorozhdennyh s perinatal’nymi gipoksicheskimi porazheniyami CNS. Questions of modern pediatrics. 2006;5(1):149. (In Russ.)

[115]

Голосная Г.С., Котий С.А. Васкулоэндотелиальный фактор роста (VEGF) и нейротрофический фактор головного мозга (BDNF) у новорожденных с перинатальными гипоксическими поражениями ЦНС // Вопросы современной педиатрии. 2006. Т. 5. № 1. С. 149.

[116]

Morozova AY, Milyutina YP, Kovalchuk-Kovalevskaya OV, et al. Neuron-specific enolase and brain-derived neurotrophic factor levels in umbilical cord blood in full-term newborns with intrauterine growth retardation. Journal of obstetrics and women’s diseases. 2019;68(1):29−36. (In Russ.). DOI: 10.17816/JOWD68129-36

[117]

Морозова А.Ю., Милютина Ю.П., Ковальчук-Ковалевская О.В. и др. Содержание нейронспецифической енолазы и мозгового нейротрофического фактора в пуповинной крови доношенных новорожденных с задержкой внутриутробного развития // Журнал акушерства и женских болезней. 2019. Т. 68. № 1. C. 29−36. DOI: 10.17816/JOWD68129-36

[118]

Vedunova MV, Mishchenko TA, Mitroshina EV, Mukhina IV. TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor. Oxid Med Cell Longev. 2015;2015:453901. DOI: 10.1155/2015/453901

[119]

Vedunova M.V., Mishchenko T.A., Mitroshina E.V., Mukhina I.V. TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor // Oxid. Med. Cell Longev. 2015. Vol. 2015. P. 453901. DOI: 10.1155/2015/453901

RIGHTS & PERMISSIONS

Rozhdestvenskaya O.V., Kokaya A.A., Bezhenar V.F.

AI Summary AI Mindmap
PDF (257KB)

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/