Premature newborns: Actual problems of raising and prevention of adverse consequences

Inna I. Evsyukova

Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (3) : 93 -102.

PDF (229KB)
Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (3) : 93 -102. DOI: 10.17816/JOWD65228
Reviews
review-article

Premature newborns: Actual problems of raising and prevention of adverse consequences

Author information +
History +
PDF (229KB)

Abstract

The review summarizes the literature data on the perinatal pathology of premature infants, the frequency of their development in the following months and years of life of neuropsychiatric and somatic diseases. The results of experimental and clinical studies are presented, revealing the general pathogenetic mechanism – oxidative stress, underlying bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, periventricular leukomalacia, open ductus arteriosus and persistent pulmonary hypertension. The interrelation of the processes of inflammation and oxidative stress, which play a leading role in the brain damage of the fetus and newborn, is considered. The literature data on the possibility of preventing severe complications in the antenatal period of development with the timely use of surfactant, magnesium sulfate and acetylcysteine are presented, It is emphasized that the first hours of a premature baby's life are a critical period for an individual approach to resuscitation, the beginning and effectiveness of drug therapy aimed at suppressing oxidative stress and systemic inflammation, which is confirmed by modern trends in optimizing the care of premature babies using pentoxifylline, erythropoietin, cortexin and melatonin.

Keywords

oxidative stress / prematurity / magnesium sulfate / acetylcysteine / cortexin / melatonin

Cite this article

Download citation ▾
Inna I. Evsyukova. Premature newborns: Actual problems of raising and prevention of adverse consequences. Journal of obstetrics and women's diseases, 2021, 70(3): 93-102 DOI:10.17816/JOWD65228

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vogel JP, Chawanpaiboon S, Moller AB, et al. The global epidemiology of preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:3–12. DOI: 10.1016/j.bpobgyn.2018.04.003

[2]

Vogel J.P., Chawanpaiboon S., Moller A.B. et al. The global epidemiology of preterm birth // Best Pract. Res. Clin. Obstet. Gynaecol. 2018. Vol. 52. P. 3–12. DOI: 10.1016/j.bpobgyn.2018.04.003

[3]

Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–38. DOI: 10.2471/BLT.08.062554

[4]

Beck S., Wojdyla D., Say L. et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity // Bull. World Health Organ. 2010. Vol. 88. No. 1. P. 31–38. DOI: 10.2471/BLT.08.062554

[5]

Lorenz JM. Survival and long-term neurodevelopmental outcome of the extremely preterm infant. A systematic review. Saudi Med J. 2011;32(9):885–894.

[6]

Lorenz J.M. Survival and long-term neurodevelopmental outcome of the extremely preterm infant. A systematic review // Saudi Med. J. 2011. Vol. 32. No. 9. P. 885–894.

[7]

American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Obstetric Care consensus No. 6: Periviable Birth. Obstet Gynecol. 2017;130(4):e187–e199. DOI: 10.1097/AOG.0000000000002352

[8]

American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Obstetric care consensus No. 6: Periviable birth // Obstet. Gynecol. 2017. Vol. 130. No. 4. P. e187–e199. DOI: 10.1097/AOG.0000000000002352

[9]

Dem’janova TG, Grigor’janc LJa, Avdeeva TG, Zumjancev AG. Nabljudenie za gluboko nedonoshennymi det’mi na pervom godu zhizni. Moscow: Medpraktika; 2006. (In Russ.)

[10]

Демьянова Т.Г., Григорьянц Л.Я., Авдеева Т.Г., Зумянцев А.Г. Наблюдение за глубоко недоношенными детьми на первом году жизни. Москва: Медпрактика, 2006.

[11]

Xiong T, Gonzalez F, Mu DZ. An overview of risk factors for poor neurodevelopmental outcome associated with prematurity. World J Pediatr. 2012;8(4):293–300. DOI: 10.1007/s12519-012-0372-2

[12]

Xiong T., Gonzalez F., Mu D.Z. An overview of risk factors for poor neurodevelopmental outcome associated with prematurity // World J. Pediatr. 2012. Vol. 8. No. 4. P. 293–300. DOI: 10.1007/s12519-012-0372-2

[13]

Linsell L, Johnson S, Wolke D, et al. Trajectories of behavior, attention, social and emotional problems from childhood to early adulthood following extremely preterm birth: a prospective cohort study. Eur Child Adolesc Psychiatry. 2019;28(4):531–542. DOI: 10.1007/s00787-018-1219-8

[14]

Linsell L., Johnson S., Wolke D. et al. Trajectories of behavior, attention, social and emotional problems from childhood to early adulthood following extremely preterm birth: a prospective cohort study // Eur. Child. Adolesc. Psychiatry. 2019. Vol. 28. No. 4. P. 531–542. DOI: 10.1007/s00787-018-1219-8

[15]

Younge N, Goldstein RF, Cotton CM; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Survival and neurodevelopment of periviable infants. N Engl J Med. 2017;376(19):1890–1891. DOI: 10.1056/NEJMc1703379

[16]

Younge N., Goldstein R.F., Cotton C.M.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Survival and neurodevelopment of periviable infants // N. Engl. J. Med. 2017. Vol. 376. No. 19. P. 1890–1891. DOI: 10.1056/NEJMc1703379

[17]

Pierrat V, Marchand-Martin L, Arnaud C, et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ. 2017;358:j3448. DOI: 10.1136/bmj.j3448

[18]

Pierrat V., Marchand-Martin L., Arnaud C. et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study // BMJ. 2017. Vol. 358. P. j3448. DOI: 10.1136/bmj.j3448

[19]

Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth Weight children. Pediatrics. 2009;124(2):717–728. DOI: 10.1542/peds.2008-2816

[20]

Aarnoudse-Moens C.S.H., Weisglas-Kuperus N., van Goudoever J.B., Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth Weight children // Pediatrics. 2009. Vol. 124. No. 2. P. 717–728. DOI: 10.1542/peds.2008-2816

[21]

Sakharova ES, Keshishyan ES Alyamovskaya GA. Mental and motor development of pre-term children with a birth body weight under 1000 g: Specific features of assessment. Rossijskiy vestnik perinatologii i pediatrii. 2002;47(4):20–24. (In Russ.)

[22]

Сахарова Е.С., Кешишян Е.С., Алямовская Г.А. Особенности психомоторного развития недоношенных детей, рожденных с массой тела <1000 г // Российский вестник перинатологии и педиатрии. 2002. Т. 47. № 4. С. 20–24.

[23]

van der Pal S, Steinhof M, Grevinga M, et al. Quality of life of adults born very preterm or very low birth weight: A systematic review. Acta Paediatr. 2020;109(10):1974–1988. DOI: 10.1111/apa.15249.

[24]

van der Pal S., Steinhof M., Grevinga M. et al. Quality of life of adults born very preterm or very low birth weight: A systematic review // Acta Paediatr. 2020. Vol. 109. No. 10. P. 1974–1988. DOI: 10.1111/apa.15249.

[25]

DuBow A, Mourot A, Tourjman SV. Chiari malformation and attention deficit hyperactivity disorder. Case Rep Med. 2020;2020:2694956. DOI: 10.1155/2020/2694956

[26]

DuBow A., Mourot A., Tourjman S.V. Chiari malformation and attention deficit hyperactivity disorder // Case Rep. Med. 2020. Vol. 2020. P. 2694956. DOI: 10.1155/2020/2694956

[27]

Aronskind EV, Kovtun OP, Kabdrahmanova OT, et al. Sravnitel’nye rezul’taty katamnesticheskogo nabljudenija detej, perenesshih kriticheskie sostojanija. Pediatria Journal named after GN Speransky. 2010;89(1):48–50. (In Russ.)

[28]

Аронскинд Е.В., Ковтун О.П., Кабдрахманова О.Т. и др. Сравнительные результаты катамнестического наблюдения детей, перенесших критические состояния // Педиатрия. Журнал им. Г.Н. Сперанского. 2010. Т. 89. № 1. С. 48–50.

[29]

Saugstad OD. Oxidative stress in the newborn — a 30-year perspective. Biol Neonate. 2005;88(3):228–236. DOI: 10.1159/000087586

[30]

Saugstad O.D. Oxidative stress in the newborn — a 30-year perspective // Biol. Neonate. 2005. Vol. 88. No. 3. P. 228–236. DOI: 10.1159/000087586

[31]

D’Angelo G, Chimenz R, Reiter RJ, Gitto E. Use of melatonin in oxidative stress related neonatal diseases. Antioxidant (Basel). 2020;9(6):477. DOI: 10.3390/antiox9060477

[32]

D’Angelo G., Chimenz R., Reiter R.J., Gitto E. Use of melatonin in oxidative stress related neonatal diseases // Antioxidant (Basel). 2020. Vol. 9. No. 6. P. 477. DOI: 10.3390/antiox9060477

[33]

Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal. 2002;4(5):769–781. DOI: 10.1089/152308602760598918

[34]

Lemasters J.J., Qian T., He L. et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy // Antioxid. Redox. Signal. 2002. Vol. 4. No. 5. P. 769–781. DOI: 10.1089/152308602760598918

[35]

Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15(4):191–195. DOI: 10.1016/j.siny.2010.04.001

[36]

Davis J.M., Auten R.L. Maturation of the antioxidant system and the effects on preterm birth // Semin. Fetal. Neonatal. Med. 2010. Vol. 15. No. 4. P. 191–195. DOI: 10.1016/j.siny.2010.04.001

[37]

Perez M, Robbins ME, Revhaugc C, Saugstadb OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med. 2019;142:61–72. DOI: 10.1016/j.freeradbiomed.2019.03.035

[38]

Perez M., Robbins M.E., Revhaugc C., Saugstadb O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period // Free Radic. Biol. Med. 2019. Vol. 142. P. 61–72. DOI: 10.1016/j.freeradbiomed.2019.03.035

[39]

Morton S, Brodsky D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016; 43(3):395–407. DOI: 10.1016/j.clp.2016.04.001

[40]

Morton S., Brodsky D. Fetal physiology and the transition to extrauterine life // Clin. Perinatol. 2016. Vol. 43. No. 3. P. 395–407. DOI: 10.1016/j.clp.2016.04.001

[41]

Perrone S, Tataranno ML, Negro S, et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev. 2010;86(4):241–244. DOI: 10.1016/j.earlhumdev.2010.03.008

[42]

Perrone S., Tataranno M.L., Negro S. et al. Early identification of the risk for free radical-related diseases in preterm newborns // Early Hum. Dev. 2010. Vol. 86. No. 4. P. 241–244. DOI: 10.1016/j.earlhumdev.2010.03.008

[43]

Gitto E, Marseglia L, Manti S, et al. Protective role of melatonin in neonatal diseases. Oxidative Med Cell Longev. 2013;2013:980374. DOI: 10.1155/2013/980374

[44]

Gitto E., Marseglia L., Manti S. et al. Protective role of melatonin in neonatal diseases // Oxidative Med. Cell. Longev. 2013. Vol. 2013. P. 980374. DOI: 10.1155/2013/980374

[45]

Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst Rev. 2017;4(4):CD011190. DOI: 10.1002/14651858.CD011190.pub2

[46]

Askie L.M., Darlow B.A., Davis P.G. et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants // Cochrane Database Syst. Rev. 2017. Vol. 4. No. 4. P. CD011190. DOI: 10.1002/14651858.CD011190.pub2

[47]

Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent. Am J Physiol Lung Cell Mol Physiol. 2015;309(4):369–377. DOI: 10.1152/ajplung.00176.2014

[48]

Datta A., Kim G.A., Taylor J.M. et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent // Am. J. Physiol. Lung. Cell. Mol. Physiol. 2015. Vol. 309. No. 4. P. 369–377. DOI: 10.1152/ajplung.00176.2014

[49]

Berkelhamer SK, Kim GA, Radder JE, et al. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med. 2013;61:51–60. DOI: 10.1016/j.freeradbiomed.2013.03.003

[50]

Berkelhamer S.K., Kim G.A., Radder J.E. et al. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung // Free Radic. Biol. Med. 2013. Vol. 61. P. 51–60. DOI: 10.1016/j.freeradbiomed.2013.03.003

[51]

Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate. 2002;81(3):146–157. DOI: 10.1159/000051527

[52]

Gitto E., Reiter R.J., Karbownik M. et al. Causes of oxidative stress in the pre- and perinatal period // Biol. Neonate. 2002. Vol. 81. No. 3. P. 146–157. DOI: 10.1159/000051527

[53]

Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019;142:113–122. DOI: 10.1016/j.freeradbiomed.2019.04.028

[54]

Solevåg A.L., Schmölzer G.M., Cheung P.Y. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia // Free Radic. Biol. Med. 2019. Vol. 142. P. 113–122. DOI: 10.1016/j.freeradbiomed.2019.04.028

[55]

Barton SK, Tolcos M, Miller SL, et al. Ventilation-induced brain injury in preterm neonates: A review of potential therapies. Neonatology. 2016;110:155–162. DOI: 10.1159/000444918

[56]

Barton S.K., Tolcos M., Miller S.L. et al. Ventilation-induced brain injury in preterm neonates: A review of potential therapies // Neonatology. 2016. Vol. 110. P. 155–162. DOI: 10.1159/000444918

[57]

Schultz C, Tautz J, Reiss I, Moller JC. Prolonged mechanical ventilation induces pulmonary inflammation in preterm infants. Biol Neonate. 2003;84(1):64–66. DOI: 10.1159/000071446

[58]

Schultz C., Tautz J., Reiss I., Moller J.C. Prolonged mechanical ventilation induces pulmonary inflammation in preterm infants // Biol. Neonate. 2003. Vol. 84. No. 1. P. 64–66. DOI: 10.1159/000071446

[59]

Markus T, Hansson S, Amer-Wahlin I, et al. Cerebral inflammatory response after fetal asphyxia and hyperoxic resuscitation in newborn sheepю. Pediatr Res. 2007;62(1):71–77. DOI: 10.1203/PDR.0b013e31811ead6e

[60]

Markus T., Hansson S., Amer-Wahlin I. et al. Cerebral inflammatory response after fetal asphyxia and hyperoxic resuscitation in newborn sheep // Pediatr. Res. 2007. Vol. 62. No. 1. P. 71–77. DOI: 10.1203/PDR.0b013e31811ead6e

[61]

Yanowitz TD, Jordan JA, Gilmour CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: Association with cord blood cytokine concentrations. Pediatric Res. 2002;51(3):310–316. DOI: 10.1203/00006450-200203000-00008

[62]

Yanowitz T.D., Jordan J.A., Gilmour C.H. et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: Association with cord blood cytokine concentrations // Pediatric Res. 2002. Vol. 51. No. 3. P. 310–316. DOI: 10.1203/00006450-200203000-00008

[63]

Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol. 2013;8(1):66–78. DOI: 10.1007/s11481-012-9347-2

[64]

Kaur C., Rathnasamy G., Ling E.A. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina // J. Neuroimmune Pharmacol. 2013. Vol. 8. No. 1. P. 66–78. DOI: 10.1007/s11481-012-9347-2

[65]

McAdams RM, Juul SE. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int. 2012;2012:561494. DOI: 10.1155/2012/561494

[66]

McAdams R.M., Juul S.E. The role of cytokines and inflammatory cells in perinatal brain injury // Neurol. Res. Int. 2012. Vol. 2012. P. 561494. DOI: 10.1155/2012/561494

[67]

Vasiljevic B, Maglajlic-Djukic S, Gojnic M, et al. New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury. Pediatr Int. 2011;53(4):454–462. DOI: 10.1111/j.1442-200X.2010.03290.x

[68]

Vasiljevic B., Maglajlic-Djukic S., Gojnic M. et al. New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury // Pediatr. Int. 2011. Vol. 53. No. 4. P 454–462. DOI: 10.1111/j.1442-200X.2010.03290.x

[69]

Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional? Epigenetic? And physiological integration during development. J Clin Invest. 2010;120(4):1016–1025. DOI: 10.1172/JCI41211

[70]

Maltepe E., Bakardjiev A.I., Fisher S.J. The placenta: transcriptional? Epigenetic? And physiological integration during development // J. Clin. Invest. 2010. Vol. 120. No. 4. P. 1016–1025. DOI: 10.1172/JCI41211

[71]

Schreuder AM, McDonnell M, Gaffney G, et al. Outcome at school age following antenatal detection of absent or reversed end diastolic flow velocity in the umbilical artery. Arch Dis Child Fetal Neonatal Ed. 2002;86:F108–114. DOI: 10.1136/fn.86.2.f108

[72]

Schreuder A.M., McDonnell M., Gaffney G. et al. Outcome at school age following antenatal detection of absent or reversed end diastolic flow velocity in the umbilical artery // Arch. Dis. Child. Fetal. Neonatal. Ed. 2002. Vol. 86. P. F108–114. DOI: 10.1136/fn.86.2.f108

[73]

van der Burg JW, Sen S, Chomitz VR, et al. The role of systemic inflammation linking maternal BMI to neurodevelopment in children. Pediatr Res. 2016;79(1–1):3–12. DOI: 10.1038/pr.2015.179

[74]

van der Burg J.W., Sen S., Chomitz V.R. et al. The role of systemic inflammation linking maternal BMI to neurodevelopment in children // Pediatr. Res. 2016. Vol. 79. No. 1–1. P. 3–12. DOI: 10.1038/pr.2015.179

[75]

Ogata J, Yamanishi H, Ishibashi-Ueda H. Review: role of cerebral vessels in ischaemic injury of the brain. Neuropathol Appl Neurobiol. 2011;37(1):40–55. DOI: 10.1111/j.1365-2990.2010.01141.x

[76]

Ogata J., Yamanishi H., Ishibashi-Ueda H. Review: role of cerebral vessels in ischaemic injury of the brain // Neuropathol. Appl. Neurobiol. 2011. Vol. 37. No. 1. P. 40–55. DOI: 10.1111/j.1365-2990.2010.01141.x

[77]

Cummings JJ, Polin RA, COMMITTEE ON FETUS AND NEWBORN. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016;138(6):e20162904. DOI: 10.1542/peds.2016-2904

[78]

Cummings J.J., Polin R.A., COMMITTEE ON FETUS AND NEWBORN. Oxygen targeting in extremely low birth weight infants // Pediatrics. 2016. Vol. 138. No. 6. P. e20162904. DOI: 10.1542/peds.2016-2904

[79]

Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;19(3):CD004454. DOI: 10.1002/14651858.CD004454.pub2

[80]

Roberts D., Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth // Cochrane Database Syst. Rev. 2006. Vol. 19. No. 3. P. CD004454. DOI: 10.1002/1465 1858.CD004454.pub2

[81]

Ryan M, Lacaze-Masmonteil T, Mohammad K. Neuroprotection from acute brain injury in preterm infants. Paediatrics. Child Health; 2019;24(4):276–290. DOI: 10.1093/pch/pxz056

[82]

Ryan M., Lacaze-Masmonteil T., Mohammad K. Neuroprotection from acute brain injury in preterm infants // Paediatrics. Child. Health. 2019. Vol. 24. No. 4. P. 276–290. DOI: 10.1093/pch/pxz056

[83]

Vogel JP, Oladapo OT, Manu A, et al. New WHO recommendations to improve the outcomes of preterm birth. Lancet Glob Health. 2015;3(10):e589–590. DOI: 10.1016/S2214-109X(15)00183-7

[84]

Vogel J.P., Oladapo O.T., Manu A. et al. New WHO recommendations to improve the outcomes of preterm birth // Lancet Glob. Health. 2015. Vol. 3. No. 10. P. e589–590. DOI: 10.1016/S2214-109X(15)00183-7

[85]

Doyle LW, Crowther CA, Middleton P, et al. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009;(1):CD004661. DOI: 10.1002/14651858.CD004661.pub3

[86]

Doyle L.W., Crowther C.A., Middleton P. et al. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus // Cochrane Database Syst. Rev. 2009. No. 1. P. CD004661. DOI: 10.1002/14651858.CD004661.pub3

[87]

Crowther CA, Middleton PF, Voysey M, et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: An individual participant data meta-analysis. PLoS Med. 2017;14(10):e1002398. DOI: 10.1371/journal.pmed.1002398

[88]

Crowther C.A., Middleton P.F., Voysey M. et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: An individual participant data meta-analysis // PLoS Med. 2017. Vol. 14. No. 10. P. e1002398. DOI: 10.1371/journal.pmed.1002398

[89]

Gibbins KJ, Browning KR, Lopes VV, et al. Evaluation of the clinical use of magnesium sulfate for cerebral palsy prevention. Obstet Gynecol. 2013;121(2 Pt 1):235–240. DOI: 10.1097/aog.0b013e31827c5cf8

[90]

Gibbins K.J., Browning K.R., Lopes V.V. et al. Evaluation of the clinical use of magnesium sulfate for cerebral palsy prevention // Obstet. Gynecol. 2013. Vol. 121. No. 2. Pt. 1. P. 235–240. DOI: 10.1097/aog.0b013e31827c5cf8

[91]

Magee L, Sawchuck D, Synnes A, von Dadelszen P; Magnesium Sulphate for Fetal Neuroprotection Consensus Committee; Maternal Fetal Medicine Committee. SOGC Clinical Practice Guideline. Magnesium sulphate for fetal neuroprotection. J Obstet Gynaecol Can. 2011;33(5):516–529. DOI: 10.1016/S1701-2163(16)34886-1

[92]

Magee L., Sawchuck D., Synnes A., von Dadelszen P.; Magnesium Sulphate for Fetal Neuroprotection Consensus Committee; Maternal Fetal Medicine Committee; SOGC Clinical Practice Guideline. Magnesium sulphate for fetal neuroprotection // J. Obstet. Gynaecol. Can. 2011. Vol. 33. No. 5. P. 516–529.

[93]

Wang X, Svedin P, Nie C, et al. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol. 2007;61:263–271. DOI: 10.1002/ana.21066

[94]

Wang X., Svedin P., Nie C. et al. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury // Ann. Neurol. 2007. Vol. 61. P. 263–271. DOI: 10.1002/ana.21066

[95]

Buhimschi IA, Buhimschi CS, Weiner CP. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation. Am J Obstet Gynecol. 2003;188(1):203–208. DOI: 10.1067/mob.2003.112

[96]

Buhimschi I.A., Buhimschi C.S., Weiner C.P. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation // Am. J. Obstet. Gynecol. 2003. Vol. 188. No. 1. P. 203–208. DOI: 10.1067/mob.2003.112

[97]

Jenkins DD, Wiest DB, Mulvihill DM, et al. Fetal and neonatal effects of N-acetylcysteine when used for neuroprotection in maternal chorioamnionitis. J Pediatr. 2016;168:67–76.e6. DOI: 10.1016/j.jpeds.2015.09.076

[98]

Jenkins D.D., Wiest D.B., Mulvihill D.M. et al. Fetal and neonatal effects of N-acetylcysteine when used for neuroprotection in maternal chorioamnionitis // J. Pediatr. 2016. Vol. 168. P. 67–76.e6. DOI: 10.1016/j.jpeds.2015.09.076

[99]

Wiest DB, Chang E, Fanning D, et al. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J Pediatr. 2014;165(4):672–677. DOI: 10.1016/j.jpeds.2014.06.044

[100]

Wiest D.B., Chang E., Fanning D. et al. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection // J. Pediatr. 2014. Vol. 165. No. 4. P. 672–677. DOI: 10.1016/j.jpeds.2014.06.044

[101]

Li S, Guo P, Zou Q, et al. Efficacy and safety of plastic wrap for prevention of hypothermia after birth and during NICU in preterm infants: A systematic review and meta-analysis. PLoS One. 2016;11(6):e0156960. DOI: 10.1371/journal.pone.0156960

[102]

Li S., Guo P., Zou Q. et al. Efficacy and safety of plastic wrap for prevention of hypothermia after birth and during NICU in preterm infants: A systematic review and meta-analysis // PLoS One. 2016. Vol. 11. No. 6. P. e0156960. DOI: 10.1371/journal.pone.0156960

[103]

Nist MD. The biological embedding of neonatal stress exposure: A conceptual model describing the mechanisms of stress-induced neurodevelopmental impairment in preterm infants. Res Nurs Health. 2019;42(1):61–71. DOI: 10.1002/nur.21923

[104]

Nist M.D. The biological embedding of neonatal stress exposure: A conceptual model describing the mechanisms of stress-induced neurodevelopmental impairment in preterm infants // Res. Nurs. Health. 2019. Vol. 42. No. 1. P. 61–71. DOI: 10.1002/nur.21923

[105]

Fogarty M, Osborn DA, Askie L, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(1):1–18. DOI: 10.1016/j.ajog.2017.10.231

[106]

Fogarty M., Osborn D.A., Askie L. et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis // Am. J. Obstet. Gynecol. 2018. Vol. 218. No. 1. P. 1–18. DOI: 10.1016/j.ajog.2017.10.231

[107]

Lui K, Jones LJ, Foster JP, et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018;5(5):CD010239. DOI: 10.1002/14651858.CD010239.pub2

[108]

Lui K., Jones L.J., Foster J.P. et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth // Cochrane Database Syst. Rev. 2018. Vol. 5. No. 5. P. CD010239. DOI: 10.1002/14651858.CD010239.pub2

[109]

Kosov MN, Evsyukova II. Jeffektivnost’ primenenija jekzogennogo surfaktanta u novorozhdennyh detej. Rossijskiy vestnik perinatologii i pediatrii. 2000;45(6):20–24. (In Russ.)

[110]

Косов М.Н., Евсюкова И.И. Эффективность применения экзогенного сурфактанта у новорожденных детей // Российский вестник перинатологии и педиатрии. 2000. Т. 45. № 6. С. 20–24.

[111]

Hagberg H, Mallard C, Ferriero DM, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11(4):192–208. DOI: 10.1038/nrneurol.2015.13

[112]

Hagberg H., Mallard C., Ferriero D.M. et al. The role of inflammation in perinatal brain injury // Nat. Rev. Neurol. 2015. Vol. 11. No. 4. P. 192–208. DOI: 10.1038/nrneurol.2015.13

[113]

Dilek M, Kumral A, Okyay E, et al. Protective effects of pentoxifylline on lipopolysaccharide-induced white matter injury in a rat model of periventricular leukomalasia. J Matern Fetal Neonatal Med. 2013;26(18):1865–1871. DOI: 10.3109/14767058.2013.798290

[114]

Dilek M., Kumral A., Okyay E. et al. Protective effects of pentoxifylline on lipopolysaccharide-induced white matter injury in a rat model of periventricular leukomalasia // J. Matern. Fetal. Neonatal. Med. 2013. Vol. 26. No. 18. P. 1865–1871. DOI: 10.3109/14767058.2013.798290

[115]

Juul SE, Pet GC. Erythropoietin and neonatal neuroprotection. Clin Perinatol. 2015;42(3):469–481. DOI: 10.1016/j.clp.2015.04.004

[116]

Juul S.E., Pet G.C. Erythropoietin and neonatal neuroprotection // Clin. Perinatol. 2015. Vol. 42. No. 3. P. 469–481. DOI: 10.1016/j.clp.2015.04.004

[117]

Rangarajan V, Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol. 2014;51(4):481–488. DOI: 10.1016/j.pediatrneurol.2014.06.008

[118]

Rangarajan V., Juul S.E. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection // Pediatr. Neurol. 2014. Vol. 51. No. 4. P. 481–488. DOI: 10.1016/j.pediatrneurol.2014.06.008

[119]

Ohlsson A, Sanjay M, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2017;11(11):CD004863. DOI: 10.1002/14651858.CD004863.pub5

[120]

Ohlsson A., Sanjay M., Aher S.M. Early erythropoiesis-stimulating agents in preterm or low birth weight infants // Cochrane Database Syst. Rev. 2017. Vol. 11. No. 11. P. CD004863. DOI: 10.1002/14651858.CD004863.pub5

[121]

Platonova TN, Ryzhak GA. Primenenie korteksina pri zabolevanii central’noj nervnoj sistemy u detej. Medicinskie rekomendacii. Saint Petersburg: Foliant; 2000. (In Russ.)

[122]

Платонова Т.Н., Рыжак Г.А. Применение кортексина при заболевании центральной нервной системы у детей: медицинские рекомендации. Санкт-Петербург: Фолиант, 2000.

[123]

Koval’chuk-Kovalevskaja OV, Evsjukova II. Ispol’zovanie nejroprotekcii v lechenii novorozhdennyh detej s zaderzhkoj funkcional’nogo razvitija CNS. Pediatria Journal named after GN Speransky. 2012;91(6):129–134. (In Russ.)

[124]

Ковальчук-Ковалевская О.В., Евсюкова И.И. Использование нейропротекции в лечении новорожденных детей с задержкой функционального развития ЦНС // Педиатрия. Журнал им. Г.Н. Сперанского. 2012. Т. 91. № 6. С. 129–134.

[125]

Biran V, Phan Duy A, Decobert F, et al. Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol. 2014;56(8):717–723. DOI: 10.1111/dmcn.12415

[126]

Biran V., Phan Duy A., Decobert F. et al. Is melatonin ready to be used in preterm infants as a neuroprotectant? // Dev. Med. Child. Neurol. 2014. Vol. 56. No. 8. P. 717–723. DOI: 10.1111/dmcn.12415

[127]

Tarocco A, Caroccia N, Morciano G, et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):317. DOI: 10.1038/s41419-019-1556-7

[128]

Tarocco A., Caroccia N., Morciano G. et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care // Cell. Death. Dis. 2019. Vol. 10. No. 4. P. 317. DOI: 10.1038/s41419-019-1556-7

[129]

Merchant N, Azzopardi D, Counsell S, et al. Melatonin as a novel neuroprotectant in preterm infants – a double blinded randomised controlled trial (Mint Study). Arch. Dis. Child. 2014;99(Suppl 2):A43–A43. DOI: 10.1136/archdischild-2014-307384.125. [cited 2021 Apr 25]. Available from: https://adc.bmj.com/content/archdischild/99/Suppl_2/A43.2.full.pdf

[130]

Merchant N., Azzopardi D., Counsell S. et al. Melatonin as a novel neuroprotectant in preterm infants – a double blinded randomised controlled trial (Mint Study) // Arch. Dis. Child. 2014. Vol. 99. Suppl 2. P. A43–A43. DOI: 10.1136/archdischild-2014-307384.125. [дата обращения 25.04.2021]. Доступ по ссылке: https://adc.bmj.com/content/archdischild/99/Suppl_2/A43.2.full.pdf

[131]

Aversa S, Pellegrino S, Barberi I, et al. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med. 2012;25(3):207–221. DOI: 10.3109/14767058.2011.573827

[132]

Aversa S., Pellegrino S., Barberi I. et al. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period // J. Matern. Fetal. Neonatal. Med. 2012. Vol. 25. No. 3. P. 207–221. DOI: 10.3109/14767058.2011.573827

[133]

Marseglia L, Manti S, D’Angelo G, et al. Melatonin for the newborn. J Pediatr Neonat Individ Med. 2014;3(2):e030232. DOI: 10.7363/030232

[134]

Marseglia L., Manti S., D’Angelo G. et al. Melatonin for the newborn // J. Pediatr. Neonat. Individ. Med. 2014. Vol. 3. No. 2. P. e030232. DOI: 10.7363/030232

[135]

Gitto E. Oxidative stress-mediated damage in newborns with necrotizing enterocolitis: A possible role of melatonin. Am J Perinatol. 2015;32(10):905–909. DOI: 10.1055/s-0035-1547328

[136]

Gitto E. Oxidative stress-mediated damage in newborns with necrotizing enterocolitis: A possible role of melatonin // Am. J. Perinatol. 2015. Vol. 32. No. 10. P. 905–909. DOI: 10.1055/s-0035-1547328

[137]

Tordjman S, Chokron S, Delorme R, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434–443. DOI: 10.2174/1570159X14666161228122115

[138]

Tordjman S., Chokron S., Delorme R. et al. Melatonin: pharmacology, functions and therapeutic benefits // Curr. Neuropharmacol. 2017. Vol. 15. No. 3. P. 434–443. DOI: 10.2174/1570159X14666161228122115

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF (229KB)

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/