Serum cytokine profile in women with type 1 diabetes mellitus in the III trimester of pregnancy and in their newborns
Elena N. Alekseenkova , Ekaterina V. Kopteeva , Alena V. Tiselko , Sergey A. Selkov , Roman V. Kapustin , Igor Yu. Kogan
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (6) : 5 -20.
Serum cytokine profile in women with type 1 diabetes mellitus in the III trimester of pregnancy and in their newborns
Background: Chronic hyperglycemia and abnormal glucose variability are established risk factors for perinatal complications. Abnormal fetal growth and diabetic fetopathy can be associated not only with carbohydrate metabolism disorders, but also with impaired production of cytokines, chemokines, and growth factors that regulate intercellular interactions.
Aim: The aim of this study was to evaluate cytokine and growth factor levels in the blood serum of pregnant women with type 1 diabetes mellitus and in umbilical cord blood of their neonates, as well as assessing the associations of these levels with the development of fetal macrosomia and diabetic fetopathy.
Materials and methods: This prospective study included 88 women with a singleton pregnancy and cesarean delivery. All the patients provided informed consent for participation. The study groups comprised individuals with type 1 diabetes mellitus (n = 32) and non-impaired glucose tolerance (n = 56). The levels of interferons alfa 2 and gamma, monokine induced by interferon-gamma, interleukin-1α, -1β, -2, -3, -4, -5, -6, -7, -8, -9, -10, -13, -15, -16, -17, -18, interleukin-1 receptor antagonist, interleukin-2 receptor alpha subunits, p40 and p70 subunits of interleukin-12, monocyte chemotactic protein-1, -3, macrophage inflammatory protein-1α, -1β, leukemia inhibitory factor, macrophage ingibitory factor, nerve growth factor beta, stem cell factor, cutaneous T-cell-attracting chemokine, growth-regulated oncogene alpha, hepatocyte growth factor, stem cell growth factor beta, stromal cell-derived factor-1 alfa, interferon gamma inducible protein 10, platelet-derived growth factor-bb, vascular endothelial growth factor, basic fibroblast growth factor, eotaxin, chemokine ligand 5, and macrophage, granulocyte, and granulocyte/macrophage colony-stimulating factors, tumor necrosis factor alfa and beta, and tumor necrosis factor-related apoptosis-inducing ligand were measured with multiplex immunoassay in the blood serum of women at 36–40 weeks of gestation and in the umbilical cord blood serum of their neonates.
Results: Cytokine levels varied widely in the both study groups. Women with type 1 diabetes mellitus had higher levels of interleukin-1β, -6, -17, basic fibroblast growth factor, macrophage inflammatory protein-1α, -1β, and lower levels of interleukin-1ra compared to the control group. Their neonates had higher levels of interleukin-6, -8, granulocyte colony-stimulating factor, macrophage inflammatory protein-1α, -1β. Higher levels of interleukin-1β, -6, -17, and basic fibroblast growth factor in the blood serum of the women were associated with time in range less than 70% and the development of diabetic fetopathy. Time in range was inversely associated with the interferon gamma / interleukin-5 (ρ = −0.531; p = 0.013), interferon gamma / interleukin-10 (ρ = −0.441; p = 0.045), interleukin-2 / -10 (ρ = −0.473; p = 0.030), interleukin-1β / -10 (ρ = −0.561; p = 0.008), interleukin-1β / -1ra (ρ = −0.635; p = 0.002), and interleukin-6 / -10 (ρ = −0.540; p = 0.012) ratios.
Conclusions: Cytokine profile alterations were the most pronounced in pregnant women with non-target time in range values and in those with diabetic fetopathy development. Serum cytokine levels correlate with glycemic profile parameters but are considered non-specific markers of pregnancy complications.
pregnancy / type 1 diabetes mellitus / cytokines / interleukins / basic fibroblast growth factor / continuous glucose monitoring / fetal macrosomia / birth weight
| [1] |
Sokolov DI, Stepanova OI, Selkov SA. The role of the different subpopulations of CD4+Т lymphocytes during pregnancy. Medical Immunology (Russia). 2016;18(6):521–536. EDN: XDZCXX doi: 10.15789/1563-0625-2016-6-521-536 |
| [2] |
Соколов Д.И., Степанова О.И., Сельков С.А. Роль различных субпопуляций CD4+Т-лимфоцитов при беременности // Медицинская иммунология. 2016. Т. 18, № 6. С. 521–536. EDN: XDZCXX doi: 10.15789/1563-0625-2016-6-521-536 |
| [3] |
Veenstra van Nieuwenhoven AL. The immunology of successful pregnancy. Hum Reprod Update. 2003;9(4):347–357. doi: 10.1093/humupd/dmg026 |
| [4] |
Veenstra van Nieuwenhoven A.L. The immunology of successful pregnancy // Hum Reprod Update. 2003. Vol. 9, N 4. P. 347–357. doi: 10.1093/humupd/dmg026 |
| [5] |
Selkov SA, Sokolov DI. Immunologic control of placenta development. Journal of Obstetrics and Women’s Diseases. 2010;59(1):6–10. EDN: NEAVZL |
| [6] |
Сельков С.А., Соколов Д.И. Иммунологические механизмы контроля развития плаценты // Журнал акушерства и женских болезней. 2010. Т. 59, № 1. С. 6–10. EDN: NEAVZL |
| [7] |
Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2):S844–S866. doi: 10.1016/j.ajog.2021.11.1356 |
| [8] |
Jung E., Romero R., Yeo L., et al. The etiology of preeclampsia // Am J Obstet Gynecol. 2022. Vol. 226, N 2. P. S844–S866. doi: 10.1016/j.ajog.2021.11.1356 |
| [9] |
Guan X, Fu Y, Liu Y, et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Front Immunol. 2023;14:1156039. doi: 10.3389/fimmu.2023.1156039 |
| [10] |
Guan X., Fu Y., Liu Y., et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis // Front Immunol. 2023. Vol. 14. ID: 1156039. doi: 10.3389/fimmu.2023.1156039 |
| [11] |
Makarkov AI, Buianova SN, Ivanova OG, et al. The specific features of T-cell immunoregulation in miscarriage: paradigm evolution. Russian Bulletin of Obstetrician-Gynecologist. 2012;12(5):10–16. EDN: NXZCFR |
| [12] |
Макарков А.И., Буянова С.Н., Иванова О.Г., и др. Особенности Т-клеточной иммунорегуляции при невынашивании беременности: эволюция парадигмы // Российский вестник акушера-гинеколога. 2012. Т. 12, № 5. С. 10–16. EDN: NXZCFR |
| [13] |
Groen B, van der Wijk AE, van den Berg PP, et al. Immunological Adaptations to Pregnancy in Women with Type 1 Diabetes. Sci Rep. 2015;5(1):13618. doi: 10.1038/srep13618 |
| [14] |
Groen B., van der Wijk A.E., van den Berg P.P., et al. Immunological adaptations to pregnancy in women with type 1 diabetes // Sci Rep. 2015. Vol. 5, N 1. ID: 13618. doi: 10.1038/srep13618 |
| [15] |
Kapustin RV, Arzhanova ON, Tiselko AV. Oxidative stress in pregnant women with diabetes mellitus. Diabetes mellitus. 2017;20(6):461–471. EDN: YOQQFO doi: 10.14341/DM8669 |
| [16] |
Капустин Р.В., Аржанова О.Н., Тиселько А.В. Оксидативный стресс у беременных с сахарным диабетом // Сахарный диабет. 2017. Т. 20, № 6. С. 461–471. EDN: YOQQFO doi: 10.14341/DM8669 |
| [17] |
Grigoryan OR, Absatarova YuS, Mikheev RK, et al. Comparative morphofunctional analysis of the state of fetoplacental complex in diabetes mellitus (literature review). Problems of Endocrinology. 2020;66(2):85–92. EDN: TFAZQG doi: 10.14341/probl12399 |
| [18] |
Григорян О.Р., Абсатарова Ю.С., Михеев Р.К., и др. Сравнительный анализ морфофункционального состояния фетоплацентарного комплекса при сахарном диабете (обзор литературы) // Проблемы Эндокринологии. 2020. Т. 66, № 2. С. 85–92. EDN: TFAZQG doi: 10.14341/probl12399 |
| [19] |
Kapustin RV, Onopriychuk AR, Arzhanova ON, et al. Pathophysiology of placenta and fetus in diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2018;67(6):79–92. EDN: YVNRPN doi: 10.17816/JOWD67679-92 |
| [20] |
Капустин Р.В., Оноприйчук А.Р., Аржанова О.Н., и др. Патофизиология плаценты и плода при сахарном диабете // Журнал акушерства и женских болезней. 2018. Т. 67, № 6. С. 79–92. EDN: YVNRPN doi: 10.17816/JOWD67679-92 |
| [21] |
Scott EM, Feig DS, Murphy HR, et al. Continuous glucose monitoring in pregnancy: importance of analyzing temporal profiles to understand clinical outcomes. Diabetes Care. 2020;43(6):1178–1184. doi: 10.2337/dc19-2527 |
| [22] |
Scott E.M., Feig D.S., Murphy H.R., et al. Continuous glucose monitoring in pregnancy: importance of analyzing temporal profiles to understand clinical outcomes // Diabetes Care. 2020. Vol. 43, N 6. P. 1178–1184. doi: 10.2337/dc19-2527 |
| [23] |
Tiselko AV, Yarmolinskaya MI, Misharina EV, et al. Evaluation of glycaemic profile variability as a basis for insulin therapy strategy in pregnant women with type 1 diabetes. Diabetes Mellitus. 2019;22(6):526–535. EDN: ATYQMJ doi: 10.14341/DM10214 |
| [24] |
Тиселько А.В., Ярмолинская М.И., Мишарина Е.В., и др. Оценка вариабельности гликемического профиля как основа стратегии инсулинотерапии у беременных с сахарным диабетом 1 типа // Сахарный диабет. 2019. Т. 22, № 6. С. 526–535. EDN: ATYQMJ doi: 10.14341/DM10214 |
| [25] |
Klimontov VV, Mavlianova KR, Orlov NB, et al. Serum cytokines and growth factors in subjects with type 1 diabetes: associations with time in ranges and glucose variability. Biomedicines. 2023;11(10):2843. doi: 10.3390/biomedicines11102843 |
| [26] |
Klimontov V.V., Mavlianova K.R., Orlov N.B., et al. Serum cytokines and growth factors in subjects with type 1 diabetes: associations with time in ranges and glucose variability // Biomedicines. 2023. Vol. 11, N 10. P. 2843. doi: 10.3390/biomedicines11102843 |
| [27] |
Tiselko AV, Misharina EV, Yarmolinskaya MI, et al. Evaluation of folliculogenesis and oxidative stress parameters in type 1 diabetes mellitus women with different glycemic profiles. Endocrine. 2024;85(3):1131–1140. doi: 10.1007/s12020-024-03805-4 |
| [28] |
Tiselko A.V., Misharina E.V., Yarmolinskaya M.I., et al. Evaluation of folliculogenesis and oxidative stress parameters in type 1 diabetes mellitus women with different glycemic profiles // Endocrine. 2024. Vol. 85, N 3. P. 1131–1140. doi: 10.1007/s12020-024-03805-4 |
| [29] |
Villar J, Papageorghiou AT, Pang R, et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st project: the fetal growth longitudinal study and newborn cross-sectional study. Lancet Diabetes Endocrinol. 2014;2(10):781–792. doi: 10.1016/S2213-8587(14)70121-4 |
| [30] |
Villar J., Papageorghiou A.T., Pang R., et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study // Lancet Diabetes Endocrinol. 2014. Vol. 2, N 10. P. 781–792. doi: 10.1016/S2213-8587(14)70121-4 |
| [31] |
Dogan Y, Akarsu S, Ustundag B, et al. Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm. 2006;2006(1):1–6. doi: 10.1155/MI/2006/59206 |
| [32] |
Dogan Y., Akarsu S., Ustundag B., et al. Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children // Mediators Inflamm. 2006. Vol. 2006, N 1. P. 1–6. doi: 10.1155/MI/2006/59206 |
| [33] |
Fatima N, Faisal SM, Zubair S, et al. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PLoS One. 2016;11(8):e0161548. doi: 10.1371/journal.pone.0161548 |
| [34] |
Fatima N., Faisal S.M., Zubair S., et al. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects // PLoS One. 2016. Vol. 11, N 8. ID: e0161548. doi: 10.1371/journal.pone.0161548 |
| [35] |
Andrade Lima Gabbay M, Sato MN, Duarte AJS, et al. Serum titres of anti-glutamic acid decarboxylase-65 and anti-IA-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients. Clin Exp Immunol. 2012;168(1):60–67. doi: 10.1111/j.1365-2249.2011.04538.x |
| [36] |
Andrade Lima Gabbay M., Sato M.N., Duarte A.J.S., et al. Serum titres of anti-glutamic acid decarboxylase-65 and anti-IA-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients // Clin Exp Immunol. 2012. Vol. 168, N 1. P. 60–67. doi: 10.1111/j.1365-2249.2011.04538.x |
| [37] |
Chen YL, Qiao YC, Pan YH, et al. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: a systematic review and meta-analysis. Cytokine. 2017;94:14–20. doi: 10.1016/j.cyto.2017.01.002 |
| [38] |
Chen Y.L., Qiao Y.C., Pan Y.H., et al. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: a systematic review and meta-analysis // Cytokine. 2017. Vol. 94. P. 14–20. doi: 10.1016/j.cyto.2017.01.002 |
| [39] |
Li J, Xu L, Zhao W, et al. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diabetes Metab Res Rev. 2022;38(6). doi: 10.1002/dmrr.3547 |
| [40] |
Li J., Xu L., Zhao W., et al. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes // Diabetes Metab Res Rev. 2022. Vol. 38, N 6. P. e3547. doi: 10.1002/dmrr.3547 |
| [41] |
Purohit S, Sharma A, Hopkins D, et al. Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1β in patients with type 1 diabetes. J Clin Endocrinol Metab. 2015;100(9):E1179–E1187. doi: 10.1210/JC.2015-1388 |
| [42] |
Purohit S., Sharma A., Hopkins D., et al. Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1β in patients with type 1 diabetes // J Clin Endocrinol Metab. 2015. Vol. 100, N 9. P. E1179–E1187. doi: 10.1210/JC.2015-1388 |
| [43] |
Pan X, Kaminga AC, Kinra S, et al. Chemokines in type 1 diabetes mellitus. Front Immunol. 2022;12:690082. doi: 10.3389/fimmu.2021.690082 |
| [44] |
Pan X., Kaminga A.C., Kinra S., et al. Chemokines in type 1 diabetes mellitus // Front Immunol. 2022. Vol. 12. ID: 690082. doi: 10.3389/fimmu.2021.690082 |
| [45] |
Krukier II, Avrutskaya VV, Smolyaninov GV, et al. Dynamics of cytokines in the serum and placenta in pregnant women with diabetes mellitus. Tauride Medical and Biological Herald. 2017;20(2):63–67. EDN: ZFIYED (In Russ.) |
| [46] |
Крукиер И.И., Авруцкая В.В., Смолянинов Г.В., и др. Динамика цитокинов в сыворотке крови и плаценте у беременных с сахарным диабетом // Таврический медико-биологический вестник. 2017. Т. 20, № 2–2. С. 63–67. EDN: ZFIYED |
| [47] |
Krukier II, Avrutskaya VV, Grigoriants AA, et al. Placental and serum production of cytokines and relaxin in pregnant women with diabetes mellitus. Medical Alphabet. 2019;3(25):43–45. EDN: GXLSJS doi: 10.33667/2078-5631-2019-3-25(400)-43-45 |
| [48] |
Крукиер И.И., Авруцкая В.В., Григорьянц А.А., и др. Плацентарная и сывороточная продукция цитокинов и релаксина у беременных с сахарным диабетом // Медицинский алфавит. 2019. Т. 3, № 25. С. 43–45. EDN: GXLSJS doi: 10.33667/2078-5631-2019-3-25(400)-43-45 |
| [49] |
Radaelli T, Uvena-Celebrezze J, Minium J, et al. Maternal interleukin-6: marker of fetal growth and adiposity. J Soc Gynecol Investig. 2006;13(1):53–57. doi: 10.1016/j.jsgi.2005.10.003 |
| [50] |
Radaelli T., Uvena-Celebrezze J., Minium J., et al. Maternal interleukin-6: marker of fetal growth and adiposity // J Soc Gynecol Investig. 2006. Vol. 13, N 1. P. 53–57. doi: 10.1016/j.jsgi.2005.10.003 |
| [51] |
Keenan-Devlin LS, Caplan M, Freedman A, et al. Using principal component analysis to examine associations of early pregnancy inflammatory biomarker profiles and adverse birth outcomes. Am J Reprod Immunol. 2021;86(6):e13497. doi: 10.1111/aji.13497 |
| [52] |
Keenan-Devlin L.S., Caplan M., Freedman A., et al. Using principal component analysis to examine associations of early pregnancy inflammatory biomarker profiles and adverse birth outcomes // Am J Reprod Immunol. 2021. Vol. 86, N 6. ID: e13497. doi: 10.1111/aji.13497 |
| [53] |
Žák P, Souček M. Correlation of Tumor necrosis factor alpha, interleukin 6 and interleukin 10 with blood pressure, risk of preeclampsia and low birth weight in gestational diabetes. Physiol Res. 2019;68(3):395–408. doi: 10.33549/physiolres.934002 |
| [54] |
Žák P., Souček M. Correlation of tumor necrosis factor alpha, interleukin 6 and interleukin 10 with blood pressure, risk of preeclampsia and low birth weight in gestational diabetes // Physiol Res. 2019. Vol. 68, N 3. P. 395–408. doi: 10.33549/physiolres.934002 |
| [55] |
Ragsdale HB, Kuzawa CW, Borja JB, et al. Regulation of inflammation during gestation and birth outcomes: Inflammatory cytokine balance predicts birth weight and length. Am J Hum Biol. 2019;31(3):e23245. doi: 10.1002/ajhb.23245 |
| [56] |
Ragsdale H.B., Kuzawa C.W., Borja J.B., et al. Regulation of inflammation during gestation and birth outcomes: inflammatory cytokine balance predicts birth weight and length // Am J HumBiol. 2019. Vol. 31, N 3. ID: e23245. doi: 10.1002/ajhb.23245 |
| [57] |
Francis EC, Li M, Hinkle SN, et al. Maternal proinflammatory adipokines throughout pregnancy and neonatal size and body composition: a prospective study. Curr Dev Nutr. 2021;5(10):nzab113. doi: 10.1093/cdn/nzab113 |
| [58] |
Francis E.C., Li M., Hinkle S.N., et al. Maternal proinflammatory adipokines throughout pregnancy and neonatal size and body composition: a prospective study // Curr Dev Nutr. 2021. Vol. 5, N 10. ID: nzab113. doi: 10.1093/cdn/nzab113 |
Eсо-Vector
/
| 〈 |
|
〉 |