The role of heat shock protein 90 in malignant neoplasms of the female reproductive system: diagnostic and therapeutic potential. A literature review

Irina S. Rvacheva , Dzhaminat A. Apatova , Laurita Zh. Movsesyan , Dmitry I. Yudin , Diana S. Logvinova , Milana O. Bichegkueva , Darya E. Deryabina , Alexandra A. Timakova , Darya D. Prikhodko , Elizaveta I. Budalova , Aygun M. Alieva , Alexandra A. Musina , Georgy G. Davydov

Journal of obstetrics and women's diseases ›› 2025, Vol. 74 ›› Issue (1) : 119 -136.

PDF
Journal of obstetrics and women's diseases ›› 2025, Vol. 74 ›› Issue (1) : 119 -136. DOI: 10.17816/JOWD640153
Reviews
research-article

The role of heat shock protein 90 in malignant neoplasms of the female reproductive system: diagnostic and therapeutic potential. A literature review

Author information +
History +
PDF

Abstract

The study of malignant neoplasms of the female reproductive system remains a crucial issue in modern oncology, requiring new approaches to diagnosis and treatment. One of the promising molecular targets for therapy is heat shock protein 90, which plays a key role in stabilizing oncoproteins, regulating cellular stress, and modulating signaling pathways. Its overexpression is associated with aggressive tumor growth, metastasis, reduced sensitivity to therapy, and poor prognosis.

This review analyzes publications that address the role of heat shock protein 90 in cervical, ovarian, and uterine cancer. An analysis of 3955 papers from PubMed/MEDLINE, 115 studies from eLibrary, and 2725 publications from Google Scholar was conducted, covering the period from the inception of these databases to August 2024. The findings indicate a significant impact of heat shock protein 90 on tumor progression, its ability to prevent apoptosis, and contribution to drug resistance.

Heat shock protein 90 inhibitors are being actively investigated as potential therapeutic agents to suppress the activity of this protein and induce tumor regression. Preclinical and clinical trials have demonstrated their efficacy in reducing tumor size and decreasing the risk of recurrence. However, the toxicity and selectivity of the inhibitors remain unresolved.

The development of monoclonal antibody-based medications targeting heat shock protein 90 is promising and may provide higher specificity and reduce adverse effects. Further studies are needed to optimize therapeutic efficacy, improve the selectivity and bioavailability of the inhibitors, and identify potential biomarkers of response to therapy.

Keywords

heat shock protein / cervical cancer / uterine cancer / ovarian cancer / therapy

Cite this article

Download citation ▾
Irina S. Rvacheva, Dzhaminat A. Apatova, Laurita Zh. Movsesyan, Dmitry I. Yudin, Diana S. Logvinova, Milana O. Bichegkueva, Darya E. Deryabina, Alexandra A. Timakova, Darya D. Prikhodko, Elizaveta I. Budalova, Aygun M. Alieva, Alexandra A. Musina, Georgy G. Davydov. The role of heat shock protein 90 in malignant neoplasms of the female reproductive system: diagnostic and therapeutic potential. A literature review. Journal of obstetrics and women's diseases, 2025, 74(1): 119-136 DOI:10.17816/JOWD640153

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blinov DV, Solopova AG, Achkasov EE, et al. Strengthening rehabilitation for patients with ovarian tumors: current approaches and future directions. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(2):303–316. EDN: DCAONY doi: 10.17749/2070-4909/farmakoekonomika.2023.196

[2]

Блинов Д.В., Солопова А.Г., Ачкасов Е.Е., и др. Организация реабилитации пациенток с опухолями яичников: современные подходы и будущие направления // Современная фармакоэкономика и фармакоэпидемиология. 2023. Т. 16, № 2. С. 303–316. EDN: DCAONY doi: 10.17749/2070-4909/farmakoekonomika.2023.196

[3]

Kulieva GZ, Mkrtchyan LS, Krikunova LI, et al. Epidemiological aspects of the incidence and mortality of cervical cancer (literature review). Tumors of female reproductive system. 2023;19(3):77–84. EDN: ZISAVS doi: 10.17650/1994-4098-2023-19-3-77-84

[4]

Кулиева Г.З., Мкртчян Л.С., Крикунова Л.И., и др. Эпидемиологические аспекты заболеваемости раком шейки матки и смертности от него (обзор литературы) // Опухоли женской репродуктивной системы. 2023. Т. 19, № 3. С. 77–84. EDN: ZISAVS doi: 10.17650/1994-4098-2023-19-3-77-84

[5]

Sviridova NI, Tkachenko LV, Yakhontova MA, et al. Endometrial hyperplastic processes: modern approaches to diagnosis and treatment. Obstetrics, gynecology and reproduction. 2024;18(1):83–95. EDN: HZTXYX doi: 10.17749/2313-7347/ob.gyn.rep.2023.464

[6]

Свиридова Н.И., Ткаченко Л.В., Яхонтова М.А., и др. Гиперпластические процессы эндометрия: современные подходы к диагностике и лечению // Акушерство, гинекология и репродукция. 2024. Т. 18, № 1. С. 83–95. EDN: HZTXYX doi: 10.17749/2313-7347/ob.gyn.rep.2023.464

[7]

Sokolenko AP, Poletaeva SV, Shestakova AD, et al. HRD-negative high-grade carcinoma of the ovary in BRCA2 pathogenic variant carrier. Siberian journal of oncology. 2024;23(2):139–146. EDN: BXRPOC doi: 10.21294/1814-4861-2024-23-2-139-146

[8]

Соколенко А.П., Полетаева С.В., Шестакова А.Д., и др. HRD-негативная карцинома яичника высокой степени злокачественности у пациентки с наследственной мутацией BRCA2 // Сибирский онкологический журнал. 2024. Т. 23, № 2. С. 139–146. EDN: BXRPOC doi: 10.21294/1814-4861-2024-23-2-139-146

[9]

Zhao C, Tang X, Chen X, et al. Multifaceted carbonized metal-organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy. ACS Nano. 2024;18(27):17852–17868. EDN: VOIDMU doi: 10.1021/acsnano.4c04022

[10]

Zhao C., Tang X., Chen X., et al. Multifaceted carbonized metal-organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy // ACS Nano. 2024. Vol. 18, N 27. P. 17852–17868. EDN: VOIDMU doi: 10.1021/acsnano.4c04022

[11]

Keyvani V, Riahi E, Yousefi M, et al. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front Pharmacol. 2022;13:823572. EDN: NFLUNI doi: 10.3389/fphar.2022.823572

[12]

Keyvani V., Riahi E., Yousefi M., et al. Gynecologic cancer, cancer stem cells, and possible targeted therapies // Front Pharmacol. 2022. Vol. 13. ID: 823572. EDN: NFLUNI doi: 10.3389/fphar.2022.823572

[13]

Sager RA, Khan F, Toneatto L, et al. Targeting extracellular Hsp90: a unique frontier against cancer. Front Mol Biosci. 2022;9:982593. EDN: QKBRAB doi: 10.3389/fmolb.2022.982593

[14]

Sager R.A., Khan F., Toneatto L., et al. Targeting extracellular Hsp90: a unique frontier against cancer // Front Mol Biosci. 2022. Vol. 9. ID: 982593. EDN: QKBRAB doi: 10.3389/fmolb.2022.982593

[15]

Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J Natl Cancer Cent. 2022;2(4):277–290. EDN: OEVPPK doi: 10.1016/j.jncc.2022.09.002

[16]

Yang Y., Zhang M., Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy // J Natl Cancer Cent. 2022. Vol. 2, N 4. P. 277–290. EDN: OEVPPK doi: 10.1016/j.jncc.2022.09.002

[17]

Paul R, Shreya S, Pandey S, et al. Functions and therapeutic use of heat shock proteins in hepatocellular carcinoma. Livers. 2024;4(1):142–163. EDN: COZDOV doi: 10.3390/livers4010011

[18]

Paul R., Shreya S., Pandey S., et al. Functions and therapeutic use of heat shock proteins in hepatocellular carcinoma // Livers. 2024. Vol. 4, N 1. P. 142–163. EDN: COZDOV doi: 10.3390/livers4010011

[19]

Li ZN, Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (review). Oncol Rep. 2023;49(1):6. EDN: PMKTKG doi: 10.3892/or.2022.8443

[20]

Li Z.N., Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (review) // Oncol Rep. 2023. Vol. 49, N 1. P. 6. EDN: PMKTKG doi: 10.3892/or.2022.8443

[21]

Nazaralieva ET, Fedorov BC, Zabrodskaya YuM, et al. Heat shock proteins as diagnostic and prognostic markers in malignant tumors of the central nervous system. Translational Medicine. 2022;9(6):5–15. EDN: FMSHBM doi: 10.18705/2311-4495-2022-9-6-5-15

[22]

Назаралиева Э.Т., Федоров В.С., Забродская Ю.М., и др. Белки теплового шока в качестве диагностических и прогностических маркеров при злокачественных опухолях центральной нервной системы // Трансляционная медицина. 2022. Т. 9, № 6. С. 5–15. EDN: FMSHBM doi: 10.18705/2311-4495-2022-9-6-5-15

[23]

Backe SJ, Sager RA, Regan BR, et al. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep. 2022;40(2):111039. EDN: BMQXZK doi: 10.1016/j.celrep.2022.111039

[24]

Backe S.J., Sager R.A., Regan B.R., et al. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand // Cell Rep. 2022. Vol. 40, N 2. ID: 111039. EDN: BMQXZK doi: 10.1016/j.celrep.2022.111039

[25]

Niinuma SA, Lubbad L, Lubbad W, et al. The role of heat shock proteins in the pathogenesis of polycystic ovarian syndrome: a review of the literature. Int J Mol Sci. 2023;24(3):1838. EDN: YAMATL doi: 10.3390/ijms24031838

[26]

Niinuma S.A., Lubbad L., Lubbad W., et al. The role of heat shock proteins in the pathogenesis of polycystic ovarian syndrome: a review of the literature // Int J Mol Sci. 2023. Vol. 24, N 3. P. 1838. EDN: YAMATL doi: 10.3390/ijms24031838

[27]

Wang Q, Tang X, Lv X, et al. Age at menarche and risk of ovarian hyperstimulation syndrome in women undergoing IVF/ICSI cycles: a retrospective cohort study. BMJ Open. 2024;14(2):e076867. EDN: MAEEZF doi: 10.1136/bmjopen-2023-076867

[28]

Wang Q., Tang X., Lv X., et al. Age at menarche and risk of ovarian hyperstimulation syndrome in women undergoing IVF/ICSI cycles: a retrospective cohort study // BMJ Open. 2024. Vol. 14, N 2. ID: e076867. EDN: MAEEZF doi: 10.1136/bmjopen-2023-076867

[29]

Gareis NC, Rodríguez FM, Cattaneo Moreyra ML, et al. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle. Theriogenology. 2023;197:209–223. EDN: TYROHO doi: 10.1016/j.theriogenology.2022.12.003

[30]

Gareis N.C., Rodríguez F.M., Cattaneo Moreyra M.L., et al. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle // Theriogenology. 2023. Vol. 197. P. 209–223. EDN: TYROHO doi: 10.1016/j.theriogenology.2022.12.003

[31]

Wickner S, Nguyen TL, Genest O. The bacterial Hsp90 chaperone: cellular functions and mechanism of action. Annu Rev Microbiol. 2021;75:719–739. EDN: DTYVKC doi: 10.1146/annurev-micro-032421-035644

[32]

Wickner S., Nguyen T.L., Genest O. The bacterial Hsp90 chaperone: cellular functions and mechanism of action // Annu Rev Microbiol. 2021. Vol. 75. P. 719–739. EDN: DTYVKC doi: 10.1146/annurev-micro-032421-035644

[33]

Prodromou C, Bjorklund DM. Advances towards understanding the mechanism of action of the Hsp90 complex. biomolecules. 2022;12(5):600. EDN: DULCDY doi: 10.3390/biom12050600.

[34]

Prodromou C., Bjorklund D.M. Advances towards understanding the mechanism of action of the Hsp90 complex // Biomolecules. 2022. Vol. 12, N 5. P. 600. EDN: DULCDY doi: 10.3390/biom12050600

[35]

Biebl MM, Buchner J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol. 2019;11(9):a034017. doi: 10.1101/cshperspect.a034017

[36]

Biebl M.M., Buchner J. Structure, function, and regulation of the Hsp90 machinery // Cold Spring Harb Perspect Biol. 2019. Vol. 11, N 9. ID: a034017. doi: 10.1101/cshperspect.a034017

[37]

Cheng S, Huang M, Liu S, et al. Bisphenol F and bisphenol S induce metabolic perturbations in human ovarian granulosa cells. Arab J Chem. 2024;17(9):105904. EDN: JPPUWT doi: 10.1016/j.arabjc.2024.105904

[38]

Cheng S., Huang M., Liu S., et al. Bisphenol F and bisphenol S induce metabolic perturbations in human ovarian granulosa cells // Arabian J Chem. 2024. Vol. 17, N 9. ID: 105904. EDN: JPPUWT doi: 10.1016/j.arabjc.2024.105904

[39]

Hu C, Yang J, Qi Z, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm. 2022;3(3):e161. EDN: OJMUCK doi: 10.1002/mco2.161

[40]

Hu C., Yang J., Qi Z., et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities // MedComm (2020). 2022. Vol. 3, N 3. P. e161. EDN: OJMUCK doi: 10.1002/mco2.161

[41]

Baker JD, Ozsan I, Rodriguez Ospina S, et al. Hsp90 heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease. Int J Mol Sci. 2018;20(1):79. EDN: SJXPUY doi: 10.3390/ijms20010079.

[42]

Baker J.D., Ozsan I., Rodriguez Ospina S., et al. Hsp90 heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease // Int J Mol Sci. 2018. Vol. 20, N 1. P. 79. EDN: SJXPUY doi: 10.3390/ijms20010079

[43]

Isobe N, Yoshimura Y. Deficient proliferation and apoptosis in the granulosa and theca interna cells of the bovine cystic follicle. J Reprod Dev. 2007;53(5):1119–1124. doi: 10.1262/jrd.19041.

[44]

Isobe N., Yoshimura Y. Deficient proliferation and apoptosis in the granulosa and theca interna cells of the bovine cystic follicle // J Reprod Dev. 2007. Vol. 53, N 5. P. 1119–1124. doi: 10.1262/jrd.19041

[45]

Kolegova ES, Kondakova IV, Zavyalov AA. Small heat shock proteins and the ubiquitin-proteasome system in malignant tumors Oncology issues. 2016;62(3):401–405. EDN: WCNORB doi: 10.37469/0507-3758-2016-62-3-401-405

[46]

Колегова Е.С., Кондакова И.В., Завьялов А.А. Малые белки теплового шока и убиквитин-протеасомная система при злокачественных опухолях // Вопросы онкологии. 2016. Т. 62, № 3. С. 401–405. EDN: WCNORB doi: 10.37469/0507-3758-2016-62-3-401-405

[47]

Velázquez MM, Alfaro NS, Salvetti NR, et al. Levels of heat shock protein transcripts in normal follicles and ovarian follicular cysts. Reprod Biol. 2011;11(3):276–283. doi: 10.1016/s1642-431x(12)60072-2

[48]

Velázquez M.M., Alfaro N.S., Salvetti N.R., et al. Levels of heat shock protein transcripts in normal follicles and ovarian follicular cysts // Reprod Biol. 2011. Vol. 11, N 3. P. 276–283. doi: 10.1016/s1642-431x(12)60072-2

[49]

Silveyra GR, Medesani DA, Rodríguez EM. Effects of the herbicide atrazine on crustacean reproduction. Mini-review. Front Physiol. 2022;13:926492. EDN: TCFVWX doi: 10.3389/fphys.2022.926492

[50]

Silveyra G.R., Medesani D.A., Rodríguez E.M. Effects of the herbicide atrazine on crustacean reproduction. Mini-review // Front Physiol. 2022. Vol. 13. ID: 926492. EDN: TCFVWX doi: 10.3389/fphys.2022.926492

[51]

Park E, Cockrem JF, Han KH, et al. Stress-induced activation of ovarian heat shock protein 90 in a rat model of polycystic ovary syndrome. J Obstet Gynaecol Res. 2012;38(2):396–407. doi: 10.1111/j.1447-0756.2011.01705.x

[52]

Park E., Cockrem J.F., Han K.H., et al. Stress-induced activation of ovarian heat shock protein 90 in a rat model of polycystic ovary syndrome // J Obstet Gynaecol Res. 2012. Vol. 38, N 2. P. 396–407. doi: 10.1111/j.1447-0756.2011.01705.x

[53]

Li L, Mo H, Zhang J, et al. The role of heat shock protein 90B1 in patients with polycystic ovary syndrome. PLoS One. 2016;11(4):e0152837. doi: 10.1371/journal.pone.0152837

[54]

Li L., Mo H., Zhang J., et al. The role of heat shock protein 90B1 in patients with polycystic ovary syndrome // PLoS One. 2016. Vol. 11, N 4. ID: e0152837. doi: 10.1371/journal.pone.0152837

[55]

Mazitova AM, Topchu IA, Mingazova LA, et al. Role of autophagy in response of epithelial ovarian cancer cells to cisplatin treatment and cisplatin resistance. Genes and Cells. 2020;15(3):44-47. EDN: KAYQOE doi: 10.23868/202011006

[56]

Мазитова А.М., Топчу Ю.А., Мингазова Л.А., и др. Роль аутофагии в ответе клеток эпителиального рака яичника на воздействие цисплатином и развитие цисплатиновой устойчивости // Гены и Клетки. 2020. Т. 15, № 3. С. 44–47. EDN: KAYQOE doi: 10.23868/202011006

[57]

Li B, Wang W, Zhao L, et al. Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus transmission blockage in monkeypox. Adv Mater. 2024;36(9):e2305378. EDN: DIVFUC doi: 10.1002/adma.202305378

[58]

Li B., Wang W., Zhao L., et al. Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus transmission blockage in monkeypox // Adv Mater. 2024. Vol. 36, N 9. ID: e2305378. EDN: DIVFUC doi: 10.1002/adma.202305378

[59]

Dai J, Ashrafizadeh M, Aref AR, et al. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today. 2024;29(7):103981. EDN: KZEJOV doi: 10.1016/j.drudis.2024.103981

[60]

Dai J., Ashrafizadeh M., Aref A.R., et al. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy // Drug Discov Today. 2024. Vol. 29, N 7. ID: 103981. EDN: KZEJOV doi: 10.1016/j.drudis.2024.103981

[61]

Zheng P, Tan Y, Liu Q, et al. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: a comprehensive pan-cancer study. Heliyon. 2024;10(5):e26993. EDN: MPJEZR doi: 10.1016/j.heliyon.2024.e26993

[62]

Zheng P., Tan Y., Liu Q., et al. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: a comprehensive pan-cancer study // Heliyon. 2024. Vol. 10, N 5. ID: e26993. EDN: MPJEZR doi: 10.1016/j.heliyon.2024.e26993

[63]

Lu Q, Kou D, Lou S, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol. 2024;17(1):16. EDN: DWTEEH doi: 10.1186/s13045-024-01535-8

[64]

Lu Q., Kou D., Lou S., et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy // J Hematol Oncol. 2024. Vol. 17, N 1. P. 16. EDN: DWTEEH doi: 10.1186/s13045-024-01535-8

[65]

Niu MM, Guo HX, Shang JC, et al. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from bifidobacterium breve H4-2. J Agric Food Chem. 2023;71(49):19791–19803. EDN: ENDAWJ doi: 10.1021/acs.jafc.3c04916

[66]

Niu M.M., Guo H.X., Shang J.C., et al. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from bifidobacterium breve H4-2 // J Agric Food Chem. 2023. Vol. 71, N 49. P. 19791–19803. EDN: ENDAWJ doi: 10.1021/acs.jafc.3c04916

[67]

Bitsadze VО, Slukhanchuk ЕV, Solopova АG, et al. The role of the microenvironment in tumor growth and spreading. Obstetrics, gynecology and reproduction. 2024;18(1):96–111. EDN: JGPFWA doi: 10.17749/2313-7347/ob.gyn.rep.2024.489

[68]

Бицадзе В.О., Слуханчук Е.В., Солопова А.Г., и др. Роль микроокружения в росте и распространении опухоли // Акушерство, гинекология и репродукция. 2024. Т. 18, № 1. С. 96–111. EDN: JGPFWA doi: 10.17749/2313-7347/ob.gyn.rep.2024.489

[69]

Ren X, Li T, Zhang W, et al. Targeting heat-shock protein 90 in cancer: an update on combination therapy. Cells. 2022;11(16):2556. EDN: RBKAOW doi: 10.3390/cells11162556

[70]

Ren X., Li T., Zhang W., et al. Targeting heat-shock protein 90 in cancer: an update on combination therapy // Cells. 2022. Vol. 11, N 16. P. 2556. EDN: RBKAOW doi: 10.3390/cells11162556

[71]

Wu J, Liu T, Rios Z, et al. Heat shock proteins and cancer. Trends Pharmacol Sci. 2017;38(3):226–256. doi: 10.1016/j.tips.2016.11.009

[72]

Wu J., Liu T., Rios Z., et al. Heat shock proteins and cancer // Trends Pharmacol Sci. 2017. Vol. 38, N 3. P. 226–256. doi: 10.1016/j.tips.2016.11.009

[73]

Lang BJ, Guerrero-Giménez ME, Prince TL, et al. Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond. Int J Mol Sci. 2019;20(18):4507. EDN: OITAWI doi: 10.3390/ijms20184507

[74]

Lang B.J., Guerrero-Giménez M.E., Prince T.L., et al. Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond // Int J Mol Sci. 2019. Vol. 20, N 18. P. 4507. EDN: OITAWI doi: 10.3390/ijms20184507

[75]

Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: biological and prognostic value. Russian Journal of Archive of Pathology. 2016;78(1):62-69. EDN: VOMQEH doi: 10.17116/patol201678162-68

[76]

Селиванова Л.С., Волганова К.С., Абросимов А.Ю. Мутации промотора теломеразной обратной транскриптазы (TERT) в опухолях эндокринных органов человека: биологическое и прогностическое значение // Архив патологии. 2016. Т. 78, № 1. C. 62–69. EDN: VOMQEH doi: 10.17116/patol201678162-68

[77]

Szymonowicz K, Oeck S, Malewicz NM, et al. New Insights into protein kinase B/Akt signaling: role of localized akt activation and compartment-specific target proteins for the cellular radiation response. Cancers (Basel). 2018;10(3):78. doi: 10.3390/cancers10030078

[78]

Szymonowicz K., Oeck S., Malewicz N.M., et al. New insights into protein kinase B/Akt signaling: role of localized akt activation and compartment-specific target proteins for the cellular radiation response // Cancers (Basel). 2018. Vol. 10, N 3. P. 78. doi: 10.3390/cancers10030078

[79]

Shkurnikov MYu, Kaprin AD. The role of interactomic interactions in tamoxifen-resistant breast cancer: new approaches to searching for the mechanisms of pathogenesis. P.A. Herzen Journal of Oncology. 2020;9(6):80-85. EDN: INGLFY doi: 10.17116/onkolog2020906180

[80]

Шкурников М.Ю., Каприн А.Д. Роль интерактомных взаимодействий в формировании резистентности к тамоксифену рака молочной железы: новые подходы к поиску механизмов патогенеза // Онкология. Журнал им. П.А. Герцена. 2020. Т. 9, № 6. С. 80–85. EDN: INGLFY doi: 10.17116/onkolog2020906180

[81]

Nagaraju GP, Zakka KM, Landry JC, et al. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int J Cancer. 2019;145(6):1529–1537. doi: 10.1002/ijc.32227

[82]

Nagaraju G.P., Zakka K.M., Landry J.C., et al. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer // Int J Cancer. 2019. Vol. 145, N 6. P. 1529–1537. doi: 10.1002/ijc.32227

[83]

Haeri MR, White K, Qharebeglou M, et al. Cholesterol suppresses antimicrobial effect of statins. Iran J Basic Med Sci. 2015;18(12):1253–1256.

[84]

Haeri M.R., White K., Qharebeglou M., et al. Cholesterol suppresses antimicrobial effect of statins // Iran J Basic Med Sci. 2015. Vol. 18, N 12. P. 1253–1256.

[85]

Xue XL, Zhao S, Xu MC, et al. Circular RNA_0000326 accelerates breast cancer development via modulation of the miR-9-3p/YAP1 axis. Neoplasma. 2023;70(3):430–442. EDN: NKWDYD doi: 10.4149/neo_2023_220904N894

[86]

Xue X.L., Zhao S., Xu M.C., et al. Circular RNA_0000326 accelerates breast cancer development via modulation of the miR-9-3p/YAP1 axis // Neoplasma. 2023. Vol. 70, N 3. P. 430–442. EDN: NKWDYD doi: 10.4149/neo_2023_220904N894

[87]

Yu Y, Wang L, Ni S, et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun. 2022;13(1):4241. EDN: GLXWSQ doi: 10.1038/s41467-022-31997-8

[88]

Yu Y., Wang L., Ni S., et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation // Nat Commun. 2022. Vol. 13, N 1. P. 4241. EDN: GLXWSQ doi: 10.1038/s41467-022-31997-8

[89]

Dubrez L, Causse S, Borges Bonan N, et al. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020;39(3):516–529. EDN: YEDCVQ doi: 10.1038/s41388-019-1016-y

[90]

Dubrez L., Causse S., Borges Bonan N., et al. Heat-shock proteins: chaperoning DNA repair // Oncogene. 2020. Vol. 39, N 3. P. 516–529. EDN: YEDCVQ doi: 10.1038/s41388-019-1016-y

[91]

Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–817. EDN: YGCDZF doi: 10.1016/j.molcel.2017.05.015

[92]

Blackford A.N., Jackson S.P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response // Mol Cell. 2017. Vol. 66, N 6. P. 801–817. EDN: YGCDZF doi: 10.1016/j.molcel.2017.05.015

[93]

Yao X, Xie R, Zan X, et al. A novel image encryption scheme for DNA storage systems based on DNA hybridization and gene mutation. Interdiscip Sci. 2023;15(3):419–432. EDN: UKFYLD doi: 10.1007/s12539-023-00565-z

[94]

Yao X., Xie R., Zan X., et al. A novel image encryption scheme for DNA storage systems based on DNA hybridization and gene mutation // Interdiscip Sci. 2023. Vol. 15, N 3. P. 419–432. EDN: UKFYLD doi: 10.1007/s12539-023-00565-z

[95]

Quanz M, Herbette A, Sayarath M, et al. Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem. 2012;287(12):8803–8815. doi: 10.1074/jbc.M111.320887

[96]

Quanz M., Herbette A., Sayarath M., et al. Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci // J Biol Chem. 2012. Vol. 287, N 12. P. 8803–8815. doi: 10.1074/jbc.M111.320887

[97]

Ha K, Fiskus W, Rao R, et al. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol Cancer Ther. 2011;10(7):1194–206. doi: 10.1158/1535-7163.MCT-11-0094

[98]

Ha K., Fiskus W., Rao R., et al. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage // Mol Cancer Ther. 2011. Vol. 10, N 7. P. 1194–1206. doi: 10.1158/1535-7163.MCT-11-0094

[99]

Orth M, Albrecht V, Seidl K, et al. Inhibition of HSP90 as a strategy to radiosensitize glioblastoma: targeting the DNA damage response and beyond. Front Oncol. 2021;11(7):612354. EDN: GAGLRC doi: 10.3389/fonc.2021.612354

[100]

Orth M., Albrecht V., Seidl K., et al. Inhibition of HSP90 as a strategy to radiosensitize glioblastoma: targeting the DNA damage response and beyond // Front Oncol. 2021. Vol. 11. ID: 612354. EDN: GAGLRC doi: 10.3389/fonc.2021.612354

[101]

Graner MW. HSP90 and immune modulation in cancer. Adv Cancer Res. 2016;129:191–224. EDN: WSRDFT doi: 10.1016/bs.acr.2015.10.001

[102]

Graner M.W. HSP90 and immune modulation in cancer // Adv Cancer Res. 2016. Vol. 129. P. 191–224. EDN: WSRDFT doi: 10.1016/bs.acr.2015.10.001

[103]

Aoyagi Y, Fujita N, Tsuruo T. Stabilization of integrin-linked kinase by binding to Hsp90. Biochem Biophys Res Commun. 2005;331(4):1061–1068. doi: 10.1016/j.bbrc.2005.03.225

[104]

Aoyagi Y., Fujita N., Tsuruo T. Stabilization of integrin-linked kinase by binding to Hsp90 // Biochem Biophys Res Commun. 2005. Vol. 331, N 4. P. 1061–1068. doi: 10.1016/j.bbrc.2005.03.225

[105]

Nikitin KD, Baryshnikov AYu. Antitumor vaccines based on heat shock proteins. Russian Biotherapeutic Journal. 2007;6(2):3–12. EDN: LACYTX

[106]

Никитин К.Д., Барышников А.Ю. Противоопухолевые вакцины на основе белков теплового шока // Российский биотерапевтический журнал. 2007. Т. 6, № 2. С. 3–12. EDN: LACYTX

[107]

Xu G, Ma X, Chen F, et al. 17-DMAG disrupted the autophagy flux leading to the apoptosis of acute lymphoblastic leukemia cells by inducing heat shock cognate protein 70. Life Sci. 2020;249:117532. EDN: UXJGHN doi: 10.1016/j.lfs.2020.117532

[108]

Xu G., Ma X., Chen F., et al. 17-DMAG disrupted the autophagy flux leading to the apoptosis of acute lymphoblastic leukemia cells by inducing heat shock cognate protein 70 // Life Sci. 2020. Vol. 249. ID: 117532. EDN: UXJGHN doi: 10.1016/j.lfs.2020.117532

[109]

Suwannalert P, Panpinyaporn P, Wantanachaisaeng P, et al. 17-AAG Induces endoplasmic reticulum stress-mediated apoptosis in breast cancer cells, possibly through PERK/eIF2α up-regulation. In Vivo. 2024;38(5):2228–2238. EDN: HRZLRJ doi: 10.21873/invivo.13687

[110]

Suwannalert P., Panpinyaporn P., Wantanachaisaeng P., et al. 17-AAG induces endoplasmic reticulum stress-mediated apoptosis in breast cancer cells, possibly through PERK/eIF2α up-regulation // In Vivo. 2024. Vol. 38, N 5. P. 2228–2238. EDN: HRZLRJ doi: 10.21873/invivo.13687

[111]

Kim SH, Cho YK, Huh JH, et al. Heat shock protein 90 inhibitors AUY922, BIIB021 and SNX5422 induce bim-mediated death of thyroid carcinoma cells. Anticancer Res. 2020;40(11):6137–6150. EDN: JRZFES doi: 10.21873/anticanres.

[112]

Kim S.H., Cho Y.K., Huh J.H., et al. Heat shock protein 90 inhibitors AUY922, BIIB021 and SNX5422 induce bim-mediated death of thyroid carcinoma cells // Anticancer Res. 2020. Vol. 40, N 11. P. 6137–6150. EDN: JRZFES doi: 10.21873/anticanres

[113]

Hartman ML, Rogut M, Mielczarek-Lewandowska A, et al. 17-aminogeldanamycin inhibits constitutive nuclear factor-kappa B (NF-κB) activity in patient-derived melanoma cell lines. Int J Mol Sci. 2020;21(11):3749. EDN: MFHQRV doi: 10.3390/ijms21113749

[114]

Hartman M.L., Rogut M., Mielczarek-Lewandowska A., et al. 17-Aminogeldanamycin inhibits constitutive nuclear factor-kappa B (NF-κB) activity in patient-derived melanoma cell lines // Int J Mol Sci. 2020. Vol. 21, N 11. P. 3749. EDN: MFHQRV doi: 10.3390/ijms21113749

[115]

Zong S, Jiao Y, Liu X, et al. FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling. Cell Death Dis. 2021;12(6):602. EDN: JDPRCN doi: 10.1038/s41419-021-03857-8

[116]

Zong S., Jiao Y., Liu X., et al. FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling // Cell Death Dis. 2021. Vol. 12, N 6. P. 602. EDN: JDPRCN doi: 10.1038/s41419-021-03857-8

[117]

Elpek GO, Karaveli S, Simşek T, et al. Expression of heat-shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries. APMIS. 2003;111(4):523–530. EDN: DLXTXF doi: 10.1034/j.1600-0463.2003.1110411.x

[118]

Elpek G.O., Karaveli S., Simşek T., et al. Expression of heat-shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries // APMIS. 2003. Vol. 111, N 4. P. 523–530. EDN: DLXTXF doi: 10.1034/j.1600-0463.2003.1110411.x

[119]

Mileo AM, Fanuele M, Battaglia F, et al. Selective over-expression of mRNA coding for 90 KDa stress-protein in human ovarian cancer. Anticancer Res. 1990;10(4):903–906.

[120]

Mileo A.M., Fanuele M., Battaglia F., et al. Selective over-expression of mRNA coding for 90 KDa stress-protein in human ovarian cancer // Anticancer Res. 1990. Vol. 10, N 4. P. 903–906.

[121]

Duan C, Li K, Pan X, et al. Hsp90 is a potential risk factor for ovarian cancer prognosis: an evidence of a Chinese clinical center. BMC Cancer. 2023;23(1):489. EDN: NBRQYR doi: 10.1186/s12885-023-10929-9

[122]

Duan C., Li K., Pan X., et al. Hsp90 is a potential risk factor for ovarian cancer prognosis: an evidence of a Chinese clinical center // BMC Cancer. 2023. Vol. 23, N 1. P. 489. EDN: NBRQYR doi: 10.1186/s12885-023-10929-9

[123]

Amoroso MR, Matassa DS, Sisinni L, et al. TRAP1 revisited: novel localizations and functions of a ‘next-generation’ biomarker (review). Int J Oncol. 2014;45(3):969–9677. doi: 10.3892/ijo.2014.2530

[124]

Amoroso M.R., Matassa D.S., Sisinni L., et al. TRAP1 revisited: novel localizations and functions of a ‘next-generation’ biomarker (review) // Int J Oncol. 2014. Vol. 45, N 3. P. 969–977. doi: 10.3892/ijo.2014.2530

[125]

Matassa DS, Agliarulo I, Avolio R, et al. TRAP1 regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195. doi: 10.3390/genes9040195

[126]

Matassa D.S., Agliarulo I., Avolio R., et al. TRAP1 regulation of cancer metabolism: dual role as oncogene or tumor suppressor // Genes (Basel). 2018. Vol. 9, N 4. P. 195. doi: 10.3390/genes9040195

[127]

Lan J, Chen L, Li Z, et al. Multifunctional biomimetic liposomes with improved tumor-targeting for TNBC treatment by combination of chemotherapy, antiangiogenesis and immunotherapy. Adv Healthc Mater. 2024;13(26):e2400046. EDN: YSXFEN doi: 10.1002/adhm.202400046

[128]

Lan J., Chen L., Li Z., et al. Multifunctional biomimetic liposomes with improved tumor-targeting for TNBC treatment by combination of chemotherapy, antiangiogenesis and immunotherapy // Adv Healthc Mater. 2024. Vol. 13, N 26. ID: e2400046. EDN: YSXFEN doi: 10.1002/adhm.202400046

[129]

Matassa DS, Amoroso MR, Lu H, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–1554. doi: 10.1038/cdd.2016.39

[130]

Matassa D.S., Amoroso M.R., Lu H., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer // Cell Death Differ. 2016. Vol. 23, N 9. P. 1542–1554. doi: 10.1038/cdd.2016.39

[131]

Aust S, Bachmayr-Heyda A, Pateisky P, et al. Role of TRAP1 and estrogen receptor alpha in patients with ovarian cancer -a study of the OVCAD consortium. Mol Cancer. 2012;11:69. EDN: XWBYKN doi: 10.1186/1476-4598-11-69

[132]

Aust S., Bachmayr-Heyda A., Pateisky P., et al. Role of TRAP1 and estrogen receptor alpha in patients with ovarian cancer – a study of the OVCAD consortium // Mol Cancer. 2012. Vol. 11. P. 69. EDN: XWBYKN doi: 10.1186/1476-4598-11-69

[133]

Amoroso MR, Matassa DS, Agliarulo I, et al. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis. 2016;7(12):e2522. doi: 10.1038/cddis.2016.400

[134]

Amoroso M.R., Matassa D.S., Agliarulo I., et al. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition // Cell Death Dis. 2016. Vol. 7, N 12. ID: e2522. doi: 10.1038/cddis.2016.400

[135]

Maloney A, Clarke PA, Naaby-Hansen S, et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2007;67(7):3239–3253. doi: 10.1158/0008-5472.CAN-06-2968

[136]

Maloney A., Clarke P.A., Naaby-Hansen S., et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin // Cancer Res. 2007. Vol. 67, N 7. P. 3239–3253. doi: 10.1158/0008-5472.CAN-06-2968

[137]

Amoroso MR, Matassa DS, Agliarulo I, et al. Stress-adaptive response in ovarian cancer drug resistance: role of TRAP1 in oxidative metabolism-driven inflammation. Adv Protein Chem Struct Biol. 2017;108:163–198. EDN: YXGVYV doi: 10.1016/bs.apcsb.2017.01.004

[138]

Amoroso M.R., Matassa D.S., Agliarulo I., et al. Stress-adaptive response in ovarian cancer drug resistance: role of TRAP1 in oxidative metabolism-driven inflammation // Adv Protein Chem Struct Biol. 2017. Vol. 108. P. 163–198. EDN: YXGVYV doi: 10.1016/bs.apcsb.2017.01.004

[139]

Kalfa MA, Golovkin IO, Lazarev AE, et al. Molecular genetic markers of ovarian cancer tumor cells and their microenvironment, study methods, and clinical value: a review. Journal of Modern Oncology. 2023;25(3):308–312. EDN: NORXCW doi: 10.26442/18151434.2023.3.202422

[140]

Кальфа М.А., Головкин И.О., Лазарев А.Э., и др. Молекулярно-генетические маркеры опухолевых клеток рака яичника и их микроокружения, методы изучения и клиническая ценность // Современная Онкология. 2023. Т. 25, № 3. С. 308–312. EDN: NORXCW doi: 10.26442/18151434.2023.3.202422

[141]

Aleshikova OI, Babaeva NA, Gerfanova EV. et al. Ovarian cancer, malignant ascites and microenvironment. Literature review. Sechenov Medical Journal. 2023;14(2):21–30. EDN: QTWJAP doi: 10.47093/2218-7332.2023.14.2.21-30

[142]

Алешикова О.И., Бабаева Н.А., Герфанова Е.В., и др. Рак яичников, злокачественный асцит и микросреда. Обзор литературы // Сеченовский вестник. 2023. Т. 14, № 2. С. 21–30. EDN: QTWJAP doi: 10.47093/2218-7332.2023.14.2.21-30

[143]

Landriscina M, Amoroso MR, Piscazzi A, Esposito F. Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecol Oncol. 2010;117(2):177–182. doi: 10.1016/j.ygyno.2009.10.078

[144]

Landriscina M., Amoroso M.R., Piscazzi A., et al. Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy // Gynecol Oncol. 2010. Vol. 117, N 2. P. 177–182. doi: 10.1016/j.ygyno.2009.10.078

[145]

Yun CO, Bhargava P, Na Y, et al. Relevance of mortalin to cancer cell stemness and cancer therapy. Sci Rep. 2017;7:42016. EDN: MJKLDL doi: 10.1038/srep42016

[146]

Yun C.O., Bhargava P., Na Y., et al. Relevance of mortalin to cancer cell stemness and cancer therapy // Sci Rep. 2017. Vol. 7. ID: 42016. EDN: MJKLDL doi: 10.1038/srep42016

[147]

Li S, Lv M, Qiu S, et al. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. J Cell Mol Med. 2019;23(6):4338–4348. doi: 10.1111/jcmm.14325

[148]

Li S., Lv M., Qiu S., et al. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin // J Cell Mol Med. 2019. Vol. 23, N 6. P. 4338–4348. doi: 10.1111/jcmm.14325

[149]

Zhou JW, Tang JJ, Sun W, et al. PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Mol Med. 2019;25(1):11. EDN: UUJJTM doi: 10.1186/s10020-019-0079-0

[150]

Zhou J.W., Tang J.J., Sun W., et al. PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma // Mol Med. 2019. Vol. 25, N 1. P. 11. EDN: UUJJTM doi: 10.1186/s10020-019-0079-0

[151]

Chen X, Zhao C, Li X, et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol. 2015;11(1):19–25. doi: 10.1038/nchembio.1657

[152]

Chen X., Zhao C., Li X., et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance // Nat Chem Biol. 2015. Vol. 11, N 1. P. 19–25. doi: 10.1038/nchembio.1657

[153]

Wang G, Cao P, Fan Y, Tan K. Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188390. EDN: NUFQGB doi: 10.1016/j.bbcan.2020.188390

[154]

Wang G., Cao P., Fan Y., et al. Emerging roles of HSF1 in cancer: cellular and molecular episodes // Biochim Biophys Acta Rev Cancer. 2020. Vol. 1874, N 1. ID: 188390. EDN: NUFQGB doi: 10.1016/j.bbcan.2020.188390

[155]

Carpenter RL, Gökmen-Polar Y. HSF1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets. 2019;19(7):515–524. doi: 10.2174/1568009618666181018162117

[156]

Carpenter R.L., Gökmen-Polar Y. HSF1 as a cancer biomarker and therapeutic target // Curr Cancer Drug Targets. 2019. Vol. 19, N 7. P. 515–524. doi: 10.2174/1568009618666181018162117

[157]

Cyran AM, Zhitkovich A. Heat shock proteins and HSF1 in cancer. Front Oncol. 2022;12:860320. EDN: LJVDHV doi: 10.3389/fonc.2022.860320

[158]

Cyran A.M., Zhitkovich A. Heat shock proteins and HSF1 in cancer // Front Oncol. 2022. Vol. 12. ID: 860320. EDN: LJVDHV doi: 10.3389/fonc.2022.860320

[159]

Chin Y, Gumilar KE, Li XG, et al. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics. 2023;13(7):2281–2300. EDN: UUWSLZ doi: 10.7150/thno.82431

[160]

Chin Y., Gumilar K.E., Li X.G., et al. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development // Theranostics. 2023. Vol. 13, N 7. P. 2281–2300. EDN: UUWSLZ doi: 10.7150/thno.82431

[161]

Engerud H, Tangen IL, Berg A, et al. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors. Br J Cancer. 2014;111(1):78–84. EDN: USJOXZ doi: 10.1038/bjc.2014.262

[162]

Engerud H., Tangen I.L., Berg A., et al. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors // Br J Cancer. 2014. Vol. 111, N 1. P. 78–84. EDN: USJOXZ doi: 10.1038/bjc.2014.262

[163]

Han S, Cheng Z, Zhao X, et al. Diagnostic value of heat shock protein 90α and squamous cell carcinoma antigen in detection of cervical cancer. J Int Med Res. 2019;47(11):5518–5525. doi: 10.1177/0300060519865634

[164]

Han S., Cheng Z., Zhao X., et al. Diagnostic value of heat shock protein 90α and squamous cell carcinoma antigen in detection of cervical cancer // J Int Med Res. 2019. Vol. 47, N 11. P. 5518–5525. doi: 10.1177/0300060519865634

[165]

Sihe Chen, Yongheng Chen, Lanting Yu, et al. Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by regulating JAK1/STAT3 signaling pathway. Eur J Gynaecol Oncol. 2021. 42(3);554–560. doi: 10.31083/j.ejgo.2021.03.2416

[166]

Sihe Ch., Yongheng Ch., Lanting Y., et al. Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by regulating JAK1/STAT3 signaling pathway // Eur J Gynaecol Oncol. 2021. Vol. 42, N 3. P. 554–560. doi: 10.31083/j.ejgo.2021.03.2416

[167]

Lee RY, Koo JY, Kim NI, et al. Usefulness of the human papillomavirus DNA chip test as a complementary method for cervical cytology. Cytojournal. 2023;20:34. EDN: CKDVQB doi: 10.25259/Cytojournal_40_2020

[168]

Lee R.Y., Koo J.Y., Kim N.I., et al. Usefulness of the human papillomavirus DNA chip test as a complementary method for cervical cytology // Cytojournal. 2023. Vol. 20. P. 34. EDN: CKDVQB doi: 10.25259/Cytojournal_40_2020

[169]

Al Amri W, Al Salmi I, Al Nabhani SK, et al. A rare and challenging case of uterine mass successfully reported in a cervical smear. Cytojournal. 2023;20:35. EDN: UKHBAA doi: 10.25259/Cytojournal_37_2022

[170]

Al Amri W., Al Salmi I., Al Nabhani S.K., et al. A rare and challenging case of uterine mass successfully reported in a cervical smear // Cytojournal. 2023. Vol. 20, P. 35. EDN: UKHBAA doi: 10.25259/Cytojournal_37_2022

[171]

Zeng J, He SL, Li LJ, et al. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway. Mol Med. 2021;27(1):130. EDN: FCITJU doi: 10.1186/s10020-021-00384-2

[172]

Zeng J., He S.L., Li L.J., et al. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway // Mol Med. 2021. Vol. 27, N 1. P. 130. EDN: FCITJU doi: 10.1186/s10020-021-00384-2

[173]

Song Q, Wen J, Li W, et al. HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6-mediated CD147 polyubiquitination. Cancer Sci. 2022;113(4):1463–1474. EDN: FUXEWH doi: 10.1111/cas.15269

[174]

Song Q., Wen J., Li W., et al. HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6-mediated CD147 polyubiquitination // Cancer Sci. 2022. Vol. 113, N 4. P. 1463–1474. EDN: FUXEWH doi: 10.1111/cas.15269

[175]

Vogelsang TLR, Schmoeckel E, Topalov NE, et al. Prognostic impact of heat shock protein 90 expression in women diagnosed with cervical cancer. Int J Mol Sci. 2024;25(3):1571. EDN: AMNPLE doi: 10.3390/ijms25031571

[176]

Vogelsang T.L.R., Schmoeckel E., Topalov N.E., et al. Prognostic impact of heat shock protein 90 expression in women diagnosed with cervical cancer // Int J Mol Sci. 2024. Vol. 25, N 3. P. 1571. EDN: AMNPLE doi: 10.3390/ijms25031571

[177]

Chen L, He Y, Zhu J, et al. The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839. EDN: SEJWQM doi: 10.1016/j.biopha.2023.114839

[178]

Chen L., He Y., Zhu J., et al. The roles and mechanism of m6A RNA methylation regulators in cancer immunity // Biomed Pharmacother. 2023. Vol. 163. ID: 114839. EDN: SEJWQM doi: 10.1016/j.biopha.2023.114839

[179]

Barrott JJ, Haystead TA. Hsp90, an unlikely ally in the war on cancer. FEBS J. 2013;280(6):1381–1396. EDN: RHIICR doi: 10.1111/febs.12147

[180]

Barrott J.J., Haystead T.A. Hsp90, an unlikely ally in the war on cancer // FEBS J. 2013. Vol. 280, N 6. P. 1381–1396. EDN: RHIICR doi: 10.1111/febs.12147

[181]

Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–772. EDN: MCWEPJ doi: 10.1038/nrc1716

[182]

Whitesell L., Lindquist S.L. HSP90 and the chaperoning of cancer // Nat Rev Cancer. 2005. Vol. 5, N 10. P. 761–772. EDN: MCWEPJ doi: 10.1038/nrc1716

[183]

Liu H, Xiao F, Serebriiskii IG, et al. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res. 2013;19(18):5053–5067. doi: 10.1158/1078-0432.CCR-13-1115

[184]

Liu H., Xiao F., Serebriiskii I.G., et al. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer // Clin Cancer Res. 2013. Vol. 19, N 18. P. 5053–5067. doi: 10.1158/1078-0432.CCR-13-1115

[185]

Kitson RR, Chang CH, Xiong R, et al. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat Chem. 2013;5(4):307–314. doi: 10.1038/nchem.1596

[186]

Kitson R.R., Chang C.H., Xiong R., et al. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90 // Nat Chem. 2013. Vol. 5, N 4. P. 307–314. doi: 10.1038/nchem.1596

[187]

Li D, Marchenko ND, Schulz R, et al. Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 2011;9(5):577–588. doi: 10.1158/1541-7786

[188]

Li D., Marchenko N.D., Schulz R., et al. Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells // Mol Cancer Res. 2011. Vol. 9, N 5. P. 577–588. doi: 10.1158/1541-7786

[189]

Stope MB, Koensgen D, Burchardt M, et al. Jump in the fire--heat shock proteins and their impact on ovarian cancer therapy. Crit Rev Oncol Hematol. 2016;97:152–156. doi: 10.1016/j.critrevonc.2015.08.008

[190]

Stope M.B., Koensgen D., Burchardt M., et al. Jump in the fire-heat shock proteins and their impact on ovarian cancer therapy // Crit Rev Oncol Hematol. 2016. Vol. 97. P. 152–156. doi: 10.1016/j.critrevonc.2015.08.008

[191]

Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–615. EDN: SMJGTF doi: 10.1038/nature10166

[192]

Cancer genome atlas research network. integrated genomic analyses of ovarian carcinoma // Nature. 2011. Vol. 474, N 7353. P. 609–615. EDN: SMJGTF doi: 10.1038/nature10166

[193]

Jiao Y, Ou W, Meng F, et al. Targeting HSP90 in ovarian cancers with multiple receptor tyrosine kinase coactivation. Mol Cancer. 2011;10:125. EDN: XFGCRT doi: 10.1186/1476-4598-10-125

[194]

Jiao Y., Ou W., Meng F., et al. Targeting HSP90 in ovarian cancers with multiple receptor tyrosine kinase coactivation // Mol Cancer. 2011. Vol. 10. P. 125. EDN: XFGCRT doi: 10.1186/1476-4598-10-125

[195]

Kim YJ, Lee SA, Myung SC, et al. Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins. Mol Cell Biochem. 2012;359(1–2):33–43. EDN: SZQWNW doi: 10.1007/s11010-011-0997-9.

[196]

Kim Y.J., Lee S.A., Myung S.C., et al. Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins // Mol Cell Biochem. 2012. Vol. 359, N 1–2. P. 33–43. EDN: SZQWNW doi: 10.1007/s11010-011-0997-9

[197]

Talaei S, Mellatyar H, Asadi A, et al. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des. 2019;93(5):760–786. EDN: ORYFQS doi: 10.1111/cbdd.13486.

[198]

Talaei S., Mellatyar H., Asadi A., et al. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment // Chem Biol Drug Des. 2019. Vol. 93, N 5. P. 760–786. EDN: ORYFQS doi: 10.1111/cbdd.13486

[199]

Banerji U, Sain N, Sharp SY, et al. An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models. Cancer Chemother Pharmacol. 2008;62(5):769–778. doi: 10.1007/s00280-007-0662-x

[200]

Banerji U., Sain N., Sharp S.Y., et al. An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models // Cancer Chemother Pharmacol. 2008. Vol. 62, N 5. P. 769–778. doi: 10.1007/s00280-007-0662-x

[201]

Choi YE, Battelli C, Watson J, et al. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells. Oncotarget. 2014;5(9):2678–2687. doi: 10.18632/oncotarget.1929

[202]

Choi Y.E., Battelli C., Watson J., et al. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells // Oncotarget. 2014. Vol. 5, N 9. P. 2678–2987. doi: 10.18632/oncotarget.1929

[203]

Chandran T, Katragadda U, Teng Q, Tan C. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG). Int J Pharm. 2010;392(1–2):170–177. doi: 10.1016/j.ijpharm.2010.03.056

[204]

Chandran T., Katragadda U., Teng Q., et al. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG) // Int J Pharm. 2010. Vol. 392, N 1–2. P. 170–177. doi: 10.1016/j.ijpharm.2010.03.056

[205]

Qin DJ, Tang CX, Yang L, et al. Hsp90 Is a novel target molecule of CDDO-me in inhibiting proliferation of ovarian cancer Cells. PLoS One. 2015;10(7):e0132337. EDN: YDLJGT doi: 10.1371/journal.pone.0132337

[206]

Qin D.J., Tang C.X., Yang L., et al. Hsp90 is a novel target molecule of CDDO-Me in inhibiting proliferation of ovarian cancer cells // PLoS One. 2015. Vol. 10, N 7. ID: e0132337. EDN: YDLJGT doi: 10.1371/journal.pone.0132337

[207]

Liang J, Wang D, Zhao Y, et al. Novel Hsp90-targeting PROTACs: enhanced synergy with cisplatin in combination therapy of cervical cancer. Eur J Med Chem. 2024;275:116572. EDN: MCZMRI doi: 10.1016/j.ejmech.2024.116572

[208]

Liang J., Wang D., Zhao Y., et al. Novel Hsp90-targeting PROTACs: enhanced synergy with cisplatin in combination therapy of cervical cancer // Eur J Med Chem. 2024. Vol. 275. ID: 116572. EDN: MCZMRI doi: 10.1016/j.ejmech.2024.116572

[209]

Fu LS, Qiu HH, Liu M, et al. SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway. Med Chem Res. 2020;29(6):942–953. EDN: SFWZUI doi: 10.1007/s00044-020-02534-3

[210]

Fu L.S., Qiu H.H., Liu M., et al. SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway // Med Chem Res, 2020. Vol. 29, N 6. P. 942–953. EDN: SFWZUI doi: 10.1007/s00044-020-02534-3

[211]

Xu D, Dong P, Xiong Y, et al. MicroRNA-361-mediated inhibition of HSP90 expression and EMT in cervical cancer is counteracted by oncogenic lncRNA NEAT1. Cells. 2020;9(3):632. EDN: XXCQOC doi: 10.3390/cells9030632

[212]

Xu D., Dong P., Xiong Y., et al. MicroRNA-361-mediated inhibition of HSP90 expression and EMT in cervical cancer is counteracted by oncogenic lncRNA NEAT1 // Cells. 2020. Vol. 9, N 3. P. 632. EDN: XXCQOC doi: 10.3390/cells9030632

[213]

Güven CM, Özgür A. BIIB021, an orally available and small-molecule inhibitor of HSP90, activates intrinsic apoptotic pathway in human cervical adenocarcinoma cell line (HeLa). Eur Rev Med Pharmacol Sci. 2023;27(15):7299–7308. doi: 10.26355/eurrev_202308_33301

[214]

Güven C.M., Özgür A. BIIB021, an orally available and small-molecule inhibitor of HSP90, activates intrinsic apoptotic pathway in human cervical adenocarcinoma cell line (HeLa) // Eur Rev Med Pharmacol Sci. 2023. Vol. 27, N 15. P. 7299–7308. doi: 10.26355/eurrev_202308_33301

[215]

Okamoto J, Mikami I, Tominaga Y, et al. Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J Thorac Oncol. 2008;3(10):1089–1095. doi: 10.1097/JTO.0b013e3181839693

[216]

Okamoto J., Mikami I., Tominaga Y., et al. Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma // J Thorac Oncol. 2008. Vol. 3, N 10. P. 1089–1095. doi: 10.1097/JTO.0b013e3181839693

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

49

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/