Oxytocin: physiological and pathophysiological determinants. A review

Olga V. Prokhorova , Anna A. Olina , Gulrukhsor Kh. Tolibova , Tatyana G. Tral

Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (6) : 105 -116.

PDF (265KB)
Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (6) : 105 -116. DOI: 10.17816/JOWD63825
Reviews
review-article

Oxytocin: physiological and pathophysiological determinants. A review

Author information +
History +
PDF (265KB)

Abstract

Oxytocin is a pleiotropic peptide hormone that plays a leading role in the implementation of the tonomotor activity of the myometrium during labor. Over the past decade, significant progress has been made in understanding the complex neurobiology of the oxytocin system, including oxytocinergic pathways, local release patterns and distribution of oxytocin receptors in the brain, and intra-neuronal oxytocin receptor signaling. This article presents the view of modern researchers on the biological functions of the hormone, including its participation in onco- and immunogenesis, as well as in the implementation of adaptation, reproduction and social behavior in humans.

Keywords

oxytocin / receptors / reproductive system / central nervous system / oncogenesis

Cite this article

Download citation ▾
Olga V. Prokhorova, Anna A. Olina, Gulrukhsor Kh. Tolibova, Tatyana G. Tral. Oxytocin: physiological and pathophysiological determinants. A review. Journal of obstetrics and women's diseases, 2021, 70(6): 105-116 DOI:10.17816/JOWD63825

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kimura T, Tanizawa O, Mori K, et al. Structure and expression of a human oxytocin receptor. Nature. 1992;356:526–529. DOI: 10.1038/356526a0

[2]

Kimura T., Tanizawa O., Mori K. et al. Structure and expression of a human oxytocin receptor // Nature. 1992. Vol. 356. P. 526–529. DOI: 10.1038 / 356526a0

[3]

Tsirkin VI, Trukhina SI, Trukhin AN. Oxytocin: synthesis, release, metabolism and the regulation of these processes. Journal of Medical and Biological Research. 2018;6(3):270–283. (In Russ.). DOI: 10.17238/issn2542-298.2018.6.3.270

[4]

Циркин В.И., Трухина С.И., Трухин А.Н. Окситоцин: синтез, выделение, метаболизм и регуляция этих процессов // Журнал медико-биологических исследований. 2018. Т. 6. № 3. С. 270−283. DOI: 10.17238/issn2542-1298.2018.6.3.270

[5]

Grigor’eva ME, Golubeva MG. Oksitocin: stroenie, sintez, receptory i osnovnye effekty. Nejrohimiya. 2010;27(2):93−101. (In Russ.)

[6]

Григорьева М.Е., Голубева М.Г. Окситоцин: строение, синтез, рецепторы и основные эффекты // Нейрохимия. 2010. Т. 27. № 2. С. 93−101.

[7]

Tom N, Assinder SJ. Oxytocin in health and disease. Int J Biochem Cell Biol. 2010;42(2):202−205. DOI: 10.1016/j.biocel.2009.10.008

[8]

Tom N., Assinder S.J. Oxytocin in health and disease // Int. J. Biochem. Cell Biol. 2010. Vol. 42. No. 2. P. 202−205. DOI: 10.1016/j.biocel.2009.10.008

[9]

Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81(2):629−683. DOI: 10.1152/physrev.2001.81.2.629

[10]

Gimpl G., Fahrenholz F. The oxytocin receptor system: structure, function, and regulation // Physiol. Rev. 2001. Vol. 81. No. 2. P. 629−683. DOI: 10.1152/physrev.2001.81.2.629

[11]

Tribollet E, Dubois-Dauphin M, Dreifuss JJ, et al. Oxytocin receptors in the central nervous system. Distribution, development, and species differences. Ann N Y Acad Sci. 1992;652:29−38. DOI: 10.1111/j.1749-6632.1992.tb34343.x

[12]

Tribollet E., Dubois-Dauphin M., Dreifuss J.J. et al. Oxytocin receptors in the central nervous system. Distribution, development, and species differences // Ann. N.Y. Acad. Sci. 1992. Vol. 652. P. 29−38. DOI: 10.1111/j.1749-6632.1992.tb34343.x

[13]

Strunecká A, Hynie S, Klenerová V. Role of oxytocin/oxytocin receptor system in regulation of cell growth and neoplastic processes. Folia Biol. 2009;55(5):159−165.

[14]

Strunecká A., Hynie S., Klenerová V. Role of oxytocin/oxytocin receptor system in regulation of cell growth and neoplastic processes // Folia Biol. 2009. Vol. 55. No. 5. P. 159−165.

[15]

Gimpl G, Reitz J, Brauer S, Trossen C. Oxytocin receptors: ligand binding, signalling and cholesterol dependence. Prog Brain Res. 2008;170:193−204. DOI: 10.1016/S0079-6123(08)00417-2.

[16]

Gimpl G., Reitz J., Brauer S., Trossen C. Oxytocin receptors: ligand binding, signalling and cholesterol dependence // Prog. Brain Res. 2008. Vol. 170. P. 193−204. DOI: 10.1016 / S0079-6123 (08) 00417-2

[17]

Phaneuf S, Carrasco MP, Europe-Finner GN, et al. Multiple G proteins and phospholipase C isoforms in human myometrial cells: implication for oxytocin action. J Clin Endocrinol Metab. 1996;81:2098−2103. DOI: 10.1210/jcem.81.6.8964834

[18]

Phaneuf S., Carrasco M.P., Europe-Finner G.N. et al. Multiple G proteins and phospholipase C isoforms in human myometrial cells: implication for oxytocin action // J. Clin. Endocrinol. Metab. 1996. Vol. 81. P. 2098−2103. DOI: 10.1210/jcem.81.6.8964834

[19]

Zhou XB, Lutz S, Steffens F, Korth M, Wieland T. Oxytocin receptors differentially signal via Gq and Gi proteins in pregnant and nonpregnant rat uterine myocytes: implications for myometrial contractility. Mol Endocrinol. 2007;21:740−752. DOI: 10.1210/me.2006-0220

[20]

Zhou X.B., Lutz S., Steffens F. et al. Oxytocin receptors differentially signal via Gq and Gi proteins in pregnant and nonpregnant rat uterine myocytes: implications for myometrial contractility // Mol. Endocrinol. 2007. Vol. 21. P. 740−752. DOI: 10.1210/me.2006-0220

[21]

Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol. 2014;26(6):356−369. DOI: 10.1111/jne.12154

[22]

Arrowsmith S., Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium // J. Neuroendocrinol. 2014. Vol. 26. No. 6. P. 356−369. DOI: 10.1111/jne.12154

[23]

Li T, Wang P, Wang SC, Wang YF. Approaches mediating oxytocin regulation of the immune system. Front Immunol. 2017;10(7):693. DOI: 10.3389/fimmu.2016.00693

[24]

Li T., Wang P., Wang S.C., Wang Y.F. Approaches mediating oxytocin regulation of the immune system // Front. Immunol. 2017. Vol. 10. No. 7. P. 693. DOI: 10.3389/fimmu.2016.00693

[25]

Friebe-Hoffmann U, Baston DM, Chiao JP, et al. The effect of relaxin on the oxytocin receptor in human uterine smooth muscle cells. Regul Pept. 2007;138(2−3):74−81. DOI: 10.1016/j.regpep.2006.08.004

[26]

Friebe-Hoffmann U., Baston D.M., Chiao J.P. et al. The effect of relaxin on the oxytocin receptor in human uterine smooth muscle cells // Regul. Pept. 2007. Vol. 138. No. 2−3. P. 74−81. DOI: 10.1016/j.regpep.2006.08.004

[27]

Gimpl G, Wiegand V, Burger K, Fahrenholz F. Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog Brain Res. 2002;139:43−55. DOI: 10.1016/s0079-6123(02)39006-x

[28]

Gimpl G., Wiegand V., Burger K., Fahrenholz F. Cholesterol and steroid hormones: modulators of oxytocin receptor function // Prog. Brain Res. 2002. Vol. 139. P. 43−55. DOI: 10.1016/s0079-6123(02)39006-x

[29]

Sausville E, Carney D, Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem. 1985;260:10236–10241. DOI: 10.1016/s0021-9258(17)39236-0

[30]

Sausville E., Carney D., Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line // J. Biol. Chem. 1985. Vol. 260. P. 10236–10241. DOI: 10.1016/s0021-9258(17)39236-0

[31]

Imanieh MH, Bagheri F, Alizadeh AM, Ashkani-Esfahani S. Oxytocin has therapeutic effects on cancer, a hypothesis. Eur J Pharmacol. 2014;741:112–123. DOI: 10.1016/j.ejphar.2014.07.053

[32]

Imanieh M.H., Bagheri F., Alizadeh A.M., Ashkani-Esfahani S. Oxytocin has therapeutic effects on cancer, a hypothesis // Eur. J. Pharmacol. 2014. Vol. 741. P. 112–123. DOI: 10.1016/j.ejphar.2014.07.053

[33]

Petersson M. Opposite effects of oxytocin on proliferation of osteosarcoma cell lines. Regul Pept. 2008;150:50–54. DOI: 10.1016/j.regpep.2008.02.007

[34]

Petersson M. Opposite effects of oxytocin on proliferation of osteosarcoma cell lines // Regul. Pept. 2008. Vol. 150. P. 50–54. DOI: 10.1016/j.regpep.2008.02.007

[35]

Cassoni P, Sapino A, Stella A, et al. Presence and significance of oxytocin receptors in human neuroblastomas and glial tumors. Int J Cancer. 1998;77:695–700. DOI: 10.1002/(sici)1097-0215(19980831)77

[36]

Cassoni P., Sapino A., Stella A. et al. Presence and significance of oxytocin receptors in human neuroblastomas and glial tumors // Int. J. Cancer. 1998. Vol. 77. P. 695–700. DOI: 10.1002/(SICI)1097-0215(19980831)77:5<695::AID-IJC6>3.0.CO;2-Q

[37]

Bakos J, Strbak V, Ratulovska N, Bacova Z. Effect of oxytocin on neuroblastoma cell viability and growth. Cell Mol Neurobiol. 2012;32:891–896. DOI: 10.1007/s10571-012-9799-1

[38]

Bakos J., Strbak V., Ratulovska N., Bacova Z. Effect of oxytocin on neuroblastoma cell viability and growth // Cell Mol. Neurobiol. 2012. Vol. 32. P. 891–896. DOI: 10.1007/s10571-012-9799-1

[39]

Whittington K, Connors B, King K, et al. The effect of oxytocin on cell proliferation in the human prostate is modulated by gonadal steroids: implications for benign prostatic hyperplasia and carcinoma of the prostate. Prostate. 2007;67:1132–1142. DOI: 10.1002/pros.20612

[40]

Whittington K., Connors B., King K. et al. The effect of oxytocin on cell proliferation in the human prostate is modulated by gonadal steroids: implications for benign prostatic hyperplasia and carcinoma of the prostate // Prostate. 2007. Vol. 67. P. 1132–1142. DOI: 10.1002/pros.20612

[41]

Busnelli M, Rimoldi V, Viganò P, et al. Oxytocin-induced cell growth proliferation in human myometrial cells and leiomyomas. Fertil Steril. 2010;94(5):1869−1874. DOI: 10.1016/j.fertnstert.2009.10.064

[42]

Busnelli M., Rimoldi V., Viganò P. et al. Oxytocin-induced cell growth proliferation in human myometrial cells and leiomyomas // Fertil. Steril. 2010. Vol. 94. No. 5. P. 1869−1874. DOI: 10.1016/j.fertnstert.2009.10.064

[43]

Cassoni P, Sapino A, Marrocco T, et al. Oxytocin and oxytocin receptors in cancer cells and proliferation. J Neuroendocrinol. 2004;16(4):362−364. DOI: 10.1111/j.0953-8194.2004.01165.x

[44]

Cassoni P., Sapino A., Marrocco T. et al. Oxytocin and oxytocin receptors in cancer cells and proliferation // J. Neuroendocrinol. 2004. Vol. 16. No. 4. P. 362−364. DOI: 10.1111/j.0953-8194.2004.01165.x

[45]

Kim SH, Bennett PR, Terzidou V. Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocrinol. 2017;449:56−63. DOI: 10.1016/j.mce.2017.01.034

[46]

Kim S.H., Bennett P.R., Terzidou V. Advances in the role of oxytocin receptors in human parturition // Mol. Cell Endocrinol. 2017. Vol. 449. P. 56−63. DOI: 10.1016/j.mce.2017.01.034

[47]

Soloff MS, Alexandrova M, Fernstrom MJ. Oxytocin receptors: triggers for parturition and lactation? Science. 1979;204:1313–1315. DOI: 10.1126 / science.221972

[48]

Soloff M.S., Alexandrova M., Fernstrom M.J. Oxytocin receptors: triggers for parturition and lactation? // Science. 1979. Vol. 204. P. 1313–1315. DOI: 10.1126 / science.221972

[49]

Ferreira JJ, Butler A, Stewart R, et al. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na+ -activated K+ channel, Slo2.1. J Physiol. 2019;597(1):137−149. DOI: 10.1113/JP276806

[50]

Ferreira J.J., Butler A., Stewart R. et al. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na+-activated K+ channel, Slo2.1 // J. Physiol. 2019. Vol. 597. No. 1. P. 137–149. DOI: 10.1113/JP276806

[51]

Chard T. Fetal and maternal oxytocin in human parturition. Am J Perinatol. 1989;2:145−152. DOI: 10.1055/s-2007-999566

[52]

Chard T. Fetal and maternal oxytocin in human parturition. Am. J. Perinatol. 1989. Vol. 2. P. 145−152. DOI: 10.1055/s-2007-999566

[53]

Hirst JJ, Haluska GJ, Cook MJ, Novy MJ. Plasma oxytocin and nocturnal uterine activity: maternal but not fetal concentrations increase progressively during late pregnancy and delivery in rhesus monkeys. Am J Obstet Gynecol. 1993;169(2 Pt 1):415−422. DOI: 10.1016/0002-9378(93)90099-5

[54]

Hirst J.J., Haluska G.J., Cook M.J., Novy M.J. Plasma oxytocin and nocturnal uterine activity: maternal but not fetal concentrations increase progressively during late pregnancy and delivery in rhesus monkeys // Am. J. Obstet. Gynecol. 1993. Vol. 169. No. 2. (Pt. 1). P. 415−422. DOI: 10.1016/0002-9378(93)90099-5

[55]

Arthur P, Taggart MJ, Mitchell BF. Oxytocin and parturition: a role for increased myometrial calcium and calcium sensitization? Front Biosci. 2007;12:619−633. DOI: 10.2741/2087

[56]

Arthur P., Taggart M.J., Mitchell B.F. Oxytocin and parturition: a role for increased myometrial calcium and calcium sensitization? // Front. Biosci. 2007. Vol. 12. P. 619−633. DOI: 10.2741/2087

[57]

Wray S. Insights into the uterus. Exp Physiol. 2007;92(4):621−631. DOI: 10.1113/expphysiol.2007.038125

[58]

Wray S. Insights into the uterus // Exp. Physiol. 2007. Vol. 92. No. 4. P. 621−631. DOI: 10.1113/expphysiol.2007.038125

[59]

Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16:725–744. DOI: 10.1093/humupd/dmq016

[60]

Aguilar H.N., Mitchell B.F. Physiological pathways and molecular mechanisms regulating uterine contractility // Hum. Reprod. Update. 2010. Vol. 16. P. 725–744. DOI: 10.1093/humupd/dmq016

[61]

Shlykov SН. Оxytocin and its role in the control of intracellular level of calcium ions in the myometrium. Ukr Biokhim Zh. 2010;82(2):5−14.

[62]

Shlykov S.Н. Оxytocin and its role in the control of intracellular level of calcium ions in the myometrium // Ukr. Biokhim. Zh. 2010. Vol. 82. No. 2. P. 5−14.

[63]

Kawamata M, Tonomura Y, Kimura T, et al. Oxytocin-induced phasic and tonic contractions are modulated by the contractile machinery rather than the quantity of oxytocin receptor. Am J Physiol Endocrinol Metab. 2007;292(4):E992−999. DOI: 10.1152/ajpendo.00492.2006

[64]

Kawamata M., Tonomura Y., Kimura T. et al. Oxytocin-induced phasic and tonic contractions are modulated by the contractile machinery rather than the quantity of oxytocin receptor // Am. J. Physiol. Endocrinol. Metab. 2007. Vol. 292. No. 4. P. E992−999. DOI: 10.1152/ajpendo.00492.2006

[65]

Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81(2):629−683. DOI: 10.1152/physrev.2001.81.2.629

[66]

Gimpl G., Fahrenholz F. The oxytocin receptor system: structure, function, and regulation // Physiol. Rev. 2001. Vol. 81. No. 2. P. 629−683. DOI: 10.1152/physrev.2001.81.2.629

[67]

Fuchs AR, Fields MJ, Freidman S, et al. Oxytocin and the timing of parturition. Influence of oxytocin receptor gene expression, oxytocin secretion, and oxytocin-induced prostaglandin F2 alpha and E2 release. Adv Exp Med Biol. 1995;395:405−420.

[68]

Fuchs A.R., Fields M.J., Freidman S. et al. Oxytocin and the timing of parturition. Influence of oxytocin receptor gene expression, oxytocin secretion, and oxytocin-induced prostaglandin F2 alpha and E2 release // Adv. Exp. Med. Biol. 1995. Vol. 395. P. 405−420.

[69]

Cook JR, MacIntyre DA, Samara E, et al. Exogenous oxytocin modulates human myometrial microRNAs. Am J Obstet Gynecol. 2015; 213(1):65.E1−65.E9. DOI: 10.1016/j.ajog.2015.03.015

[70]

Cook J.R., MacIntyre D.A., Samara E. et al. Exogenous oxytocin modulates human myometrial microRNAs // Am. J. Obstet. Gynecol. 2015. Vol. 213. No. 1. P. 65.E1−65.E9. DOI: 10.1016/j.ajog.2015.03.015

[71]

Bueno MJ, Perez de Castro I, Malumbres M. Control of cell proliferation pathways by microRNAs. Cell Cycle. 2008;7:3143−3148. DOI: 10.4161/cc.7.20.6833

[72]

Bueno M.J., Perez de Castro I., Malumbres M. Control of cell proliferation pathways by microRNAs // Cell Cycle. 2008. Vol. 7. P. 3143−3148. DOI: 10.4161/cc.7.20.6833

[73]

Thackare H, Nicholson HD, Whittington K. Oxytocin – its role in male reproduction and new potential therapeutic uses. Hum Reprod Update. 2006;12:437–448. DOI: 10.1093/humupd/dmk002

[74]

Thackare H., Nicholson H.D., Whittington K. Oxytocin – its role in male reproduction and new potential therapeutic uses // Hum. Reprod. Update. 2006. Vol. 12. P. 437–448. DOI: 10.1093/humupd/dmk002

[75]

Andersson KE. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev. 2011;63:811–859. DOI: 10.1124/pr.111.004515

[76]

Andersson K.E. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction // Pharmacol. Rev. 2011. Vol. 63. P. 811–859. DOI: 10.1124/pr.111.004515

[77]

Breuil V, Panaia-Ferrari P, Fontas E, et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: analysis of the OPUS cohort. J Clin Endocrinol Metab. 2014;99:E634–E641. DOI: 10.1210/jc.2013-4126

[78]

Breuil V., Panaia-Ferrari P., Fontas E. et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: analysis of the OPUS cohort // J. Clin. Endocrinol. Metab. 2014. Vol. 99. P. E634–E641. DOI: 10.1210/jc.2013-4126

[79]

Breton C, Haenggeli C, Barberis C, et al. Presence of functional oxytocin receptors in cultured human myoblasts. J Clin Endocrinol Metab. 2002;87(3):1415−1418. DOI: 10.1210/jcem.87.3.8537

[80]

Breton C., Haenggeli C., Barberis C. et al. Presence of functional oxytocin receptors in cultured human myoblasts // J. Clin. Endocrinol. Metab. 2002. Vol. 87. No. 3. P. 1415−1418. DOI: 10.1210/jcem.87.3.8537

[81]

Elabd C, Cousin W, Upadhyayula P, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun. 2014;10 (5):4082. DOI: 10.1038/ncomms5082

[82]

Elabd C., Cousin W., Upadhyayula P. et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration // Nat. Commun. 2014. Vol. 10. No. 5. P. 4082. DOI: 10.1038/ncomms5082

[83]

Elabd C, Basillais A, Beaupied H, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells. 2008;26(9):2399−2407. DOI: 10.1634/stemcells.2008-0127

[84]

Elabd C., Basillais A., Beaupied H. et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis // Stem. Cells. 2008. Vol. 26. No. 9. P. 2399−2407. DOI: 10.1634/stemcells.2008-0127

[85]

Kim YS, Ahn Y, Kwon JS, et al. Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells Tissues Organs. 2012;195(5):428−442. DOI: 10.1159/000329234

[86]

Kim Y.S., Ahn Y., Kwon J.S. et al. Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury // Cells Tissues Organs. 2012. Vol. 195. No. 5. P. 428−442. DOI: 10.1159/000329234

[87]

Mohan S, Khan D, Moffett RC, et al. Oxytocin is present in islets and plays a role in beta-cell function and survival. Peptides. 2018;100:260−268. DOI: 10.1016/j.peptides.2017.12.019

[88]

Mohan S., Khan D., Moffett R.C. et al. Oxytocin is present in islets and plays a role in beta-cell function and survival // Peptides. 2018. Vol. 100. P. 260−268. DOI: 10.1016/j.peptides.2017.12.019

[89]

Besedovsky H, Sorkin E. Network of immune-neuroendocrine interactions. Clin Exp Immunol. 1977;27(1):1–12.

[90]

Besedovsky H., Sorkin E. Network of immune-neuroendocrine interactions // Clin. Exp. Immunol. 1977. Vol. 27. No. 1. P. 1–12.

[91]

Deing V, Roggenkamp D, Kuhnl J, et al. Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis. Exp Dermatol. 2013;22(6):399–405. DOI: 10.1111/exd.12155

[92]

Deing V., Roggenkamp D., Kuhnl J. et al. Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis // Exp. Dermatol. 2013. Vol. 22. No. 6. P. 399–405. DOI:10.1111/exd.12155

[93]

Jurek B, Neumann ID. The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev. 2018;98(3):1805−1908. DOI: 10.1152/physrev.00031.2017

[94]

Jurek B., Neumann I.D. The oxytocin receptor: from intracellular signaling to behavior // Physiol. Rev. 2018. Vol. 98. No. 3. P. 1805−1908. DOI: 10.1152/physrev.00031.2017

[95]

Lukas M, Neumann ID. Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behav Brain Res. 2013;251:85–94. DOI: 10.1016/j.bbr.2012.08.011

[96]

Lukas M., Neumann I.D. Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders // Behav. Brain Res. 2013. Vol. 251. P. 85–94. DOI: 10.1016/j.bbr.2012.08.011

[97]

Mitre M, Marlin BJ, Schiavo JK, et al. A distributed network for social cognition enriched for oxytocin receptors. J Neurosci. 2016;36(8):2517−2535. DOI: 10.1523/JNEUROSCI.2409-15.2016

[98]

Mitre M., Marlin B.J., Schiavo J.K. et al. A distributed network for social cognition enriched for oxytocin receptors // J. Neurosci. 2016. Vol. 36. No. 8. P. 2517−2535. DOI: 10.1523/JNEUROSCI.2409-15.2016

[99]

Feldman R. Oxytocin and social affiliation in humans. Horm Behav. 2012;61(3):380–391. DOI: 10.1016/j.yhbeh.2012.01.008

[100]

Feldman R. Oxytocin and social affiliation in humans // Horm. Behav. 2012. Vol. 61. No. 3. P. 380–391. DOI: 10.1016/j.yhbeh.2012.01.008

[101]

Jones C, Barrera I, Brothers S, et al. Oxytocin and social functioning. Dialogues Clin Neurosci. 2017;19(2):193−201. DOI: 10.31887/DCNS.2017.19.2/cjones

[102]

Jones C., Barrera I., Brothers S. et al. Oxytocin and social functioning // Dialogues Clin. Neurosci. 2017. Vol. 19. No. 2. P. 193−201. DOI: 10.31887/DCNS.2017.19.2/cjones

[103]

Olff M, Frijling JL, Kubzansky LD, et al The role of oxytocin in social bonding, stress regulation and mental health: an update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology. 2013;38(9):1883–1894. DOI: 10.1016/j.psyneuen.2013.06.019

[104]

Olff M., Frijling J.L., Kubzansky L.D. et al The role of oxytocin in social bonding, stress regulation and mental health: an update on the moderating effects of context and interindividual differences // Psychoneuroendocrinology. 2013. Vol. 38. No. 9. P. 1883–1894. DOI: 10.1016/j.psyneuen.2013.06.019

[105]

Calcagnoli F, Meyer N, de Boer SF, et al. Chronic enhancement of brain oxytocin levels causes enduring anti-aggressive and pro-social explorative behavioral effects in male rats. Horm Behav. 2014;65(4):427−433. DOI: 10.1016/j.yhbeh.2014.03.008

[106]

Calcagnoli F., Meyer N., de Boer S.F. et al. Chronic enhancement of brain oxytocin levels causes enduring anti-aggressive and pro-social explorative behavioral effects in male rats // Horm. Behav. 2014. Vol. 65. No. 4. P. 427−433. DOI: 10.1016/j.yhbeh.2014.03.008

[107]

van Wimersma Greidanus TB, Maigret C. The role of limbic vasopressin and oxytocin in social recognition. Brain Res. 1996;713(1−2):153–159. DOI: 10.1016/0006-8993(95)01505-1

[108]

van Wimersma Greidanus TB., Maigret C. The role of limbic vasopressin and oxytocin in social recognition // Brain Res. 1996. Vol. 713. No. 1−2. P. 153–159. DOI: 10.1016/0006-8993 (95) 01505-1

[109]

Popik P, Vos PE, Van Ree JM. Neurohypophyseal hormone receptors in the septum are implicated in social recognition in the rat. Behav Pharmacol. 1992;3(4):351–358.

[110]

Popik P., Vos P.E., Van Ree J.M. Neurohypophyseal hormone receptors in the septum are implicated in social recognition in the rat // Behav. Pharmacol. 1992. Vol. 3. No. 4. P. 351–358.

[111]

Dluzen DE, Muraoka S, Engelmann M, Landgraf R. The effects of infusion of arginine vasopressin, oxytocin, or their antagonists into the olfactory bulb upon social recognition responses in male rats. Peptides. 1998;19(6):999–1005. DOI: 10.1016/s0196-9781(98)00047-3

[112]

Dluzen D.E., Muraoka S., Engelmann M., Landgraf R. The effects of infusion of arginine vasopressin, oxytocin, or their antagonists into the olfactory bulb upon social recognition responses in male rats // Peptides. 1998. Vol. 19. No. 6. P. 999–1005. DOI: 10.1016/s0196-9781(98)00047-3

[113]

Winter J, Jurek B. The interplay between oxytocin and the CRF system: regulation of the stress response. Cell Tissue Res. 2019;375(1):85−91. DOI: 10.1007/s00441-018-2866-2

[114]

Winter J., Jurek B. The interplay between oxytocin and the CRF system: regulation of the stress response // Cell Tissue Res. 2019. Vol. 375. No. 1. P. 85−91. DOI: 10.1007/s00441-018-2866-2

[115]

Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation. 2009;16(5):265–271. DOI: 10.1159/000216184

[116]

Papadimitriou A., Priftis K.N. Regulation of the hypothalamic-pituitary-adrenal axis // Neuroimmunomodulation. 2009. Vol. 16. No. 5. P. 265–271. DOI: 10.1159/000216184

[117]

Wisner KL, Sit DKY, McShea MC, et al. Onset timing, thoughts of self-harm, and diagnoses in postpartum women with screen-positive depression findings. JAMA Psychiatry. 2013;70(5):490–498. DOI: 10.1001/jamapsychiatry.2013.87

[118]

Wisner K.L., Sit D.K.Y., McShea M.C. et al. Onset timing, thoughts of self-harm, and diagnoses in postpartum women with screen-positive depression findings // JAMA Psychiatry. 2013. Vol. 70. No. 5. P. 490–498. DOI: 10.1001/jamapsychiatry.2013.87

[119]

Seay JS, Lattie E, Schneiderman N, et al. Linear and quadratic associations of plasma oxytocin with depressive symptoms in ethnic minority women living with HIV. J Appl Biobehav Res. 2014;19(1):70–78. DOI: 10.1111/jabr.12016

[120]

Seay J.S., Lattie E., Schneiderman N. et al. Linear and quadratic associations of plasma oxytocin with depressive symptoms in ethnic minority women living with HIV // J. Appl. Biobehav. Res. 2014. Vol. 19. No. 1. P. 70–78. DOI: 10.1111/jabr.12016

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF (265KB)

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/