Morphokinetic characteristics of preimplantation development of human donor embryos

Mariia A. Ishchuk , Evgeniia M. Komarova , Elena A. Lesik , Yanina M. Sagurova , Valeria Yu. Zhiliaeva , Ksenia V. Ob’edkova , Alexander M. Gzgzyan , Natalia I. Tapilskaya , Olesya N. Bespalova

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (6) : 67 -78.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (6) : 67 -78. DOI: 10.17816/JOWD635008
Original study articles
research-article

Morphokinetic characteristics of preimplantation development of human donor embryos

Author information +
History +
PDF

Abstract

Background: The introduction of time-lapse incubators into assisted reproductive technology practices provides a detailed examination of human pre-implantation embryo development. The continuous time-lapse filming technology is used to determine prognostic markers of embryo viability and implantation potential based on morphokinetic parameters. At present, the main time intervals for morphokinetic events during the pre-implantation phase of human embryo development have been documented primarily in embryos from infertile patients, with limited data available concerning the development of donor embryos. In this regard, it becomes relevant to follow the early development of such embryos and describe the embryonic development timeline using time-lapse technology.

Aim: The aim of this study was to determine the time intervals of critical events in the pre-implantation development of human donor embryos.

Materials and methods: The material for the study was 18 donor embryos obtained after fertilization of donor oocytes with donor sperm. The embryos were cultured for 140 hours in an EmbryoVisor time-lapse incubator (Westtrade Ltd., Russia).

Results: The video image analysis of diploid donor embryo development showed that the disappearance of both pronuclei occurred at 22.2 (21.0–25.4) hours post fertilization, the 2-cell embryo stage was observed at 24.5 (23.4–27.3) hours post fertilization, the 4-cell embryo stage at 35.9 (34.6–38.6) hours post fertilization, and the 8-cell embryo stage at 52.8 (49.0–58.8) hours post fertilization. Morula formation occurred at 86.0 (76.9–95.4) hours post fertilization, and complete blastocyst formation was recorded at 107.0 (99.1–114.3) hours post fertilization. Triploid embryos tended to have a delay in the cleavage stage and a shorter compaction phase, yet generally developed within similar timeframes as diploid embryos.

Conclusions: The analysis of video recordings obtained after culturing donor embryos in the time-lapse incubator allows for comparing the morphokinetic parameters of pre-implantation development of the donor embryos, taking into account their ploidy. The checkpoints in the development of pre-implantation embryos from the zygote stage to blastocyst formation are characterized. A tendency is noted for earlier disappearance of pronuclei, a delay at the cleavage stage from four to eight cells, and a shorter compaction stage in the donor embryos with impaired ploidy. Various anomalies in the development of such embryos are also described. Special attention should be paid, perhaps, to embryos that do not fit into the established development intervals, exhibit anomalies such as reverse cleavage, direct division from one to three cells, and excessive fragmentation, or stop developing at one point or another, since this may indicate anomalies in the embryo’s genome such as, for example, aneuploidy. Timely identification of these deviations may lead to the exclusion of embryos with morphokinetic abnormalities from transfer, thereby favoring the selection of normally developing embryos to enhance implantation success and promote ongoing pregnancies. An increase in the sample of donor embryos under study, information on their genetic status and the clinical results of pregnancy after embryo transfer, and further accumulation of data will augment the ability to predict embryo implantation potential without the use of invasive methods.

Keywords

embryo culture / embryo morphokinetic parameters / time-lapse technology / donor embryos

Cite this article

Download citation ▾
Mariia A. Ishchuk, Evgeniia M. Komarova, Elena A. Lesik, Yanina M. Sagurova, Valeria Yu. Zhiliaeva, Ksenia V. Ob’edkova, Alexander M. Gzgzyan, Natalia I. Tapilskaya, Olesya N. Bespalova. Morphokinetic characteristics of preimplantation development of human donor embryos. Journal of obstetrics and women's diseases, 2024, 73(6): 67-78 DOI:10.17816/JOWD635008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Payne D, Flaherty SP, Barry MF, et al. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12(3):532–541. doi: 10.1093/humrep/12.3.532

[2]

Payne D., Flaherty S.P., Barry M.F., et al. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography // Hum Reprod. 1997. Vol. 12, N 3. P. 532–541. doi: 10.1093/humrep/12.3.532

[3]

Kahraman S, Sahin Y, Yelke H, et al. High rates of aneuploidy, mosaicism and abnormal morphokinetic development in cases with low sperm concentration. J Assist Reprod Genet. 2020;37(3):629–640. doi: 10.1007/s10815-019-01673-w

[4]

Kahraman S., Sahin, Y., Yelke H., et al. High rates of aneuploidy, mosaicism and abnormal morphokinetic development in cases with low sperm concentration // J Assist Reprod Genet. 2020 Vol. 37, N 3. P. 629–640. doi: 10.1007/s10815-019-01673-w

[5]

Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod Biomed Online. 2017;35(5):511–520. doi: 10.1016/j.rbmo.2017.06.022

[6]

Pribenszky C., Nilselid A.M., Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis // Reprod Biomed Online. 2017. Vol. 35, N 5. P. 511–520. doi: 10.1016/j.rbmo.2017.06.022

[7]

Armstrong S, Bhide P, Jordan V, et al. Time-lapse systems for ART. Reprod Biomed Online. 2018;36(3):288–289. doi: 10.1016/j.rbmo.2017.12.012

[8]

Armstrong S., Bhide P., Jordan V., et al. Time-lapse systems for ART // Reprod Biomed Online. 2018. Vol. 36, N 3. P. 288–289. doi: 10.1016/j.rbmo.2017.12.012

[9]

ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online. 2017;35(5):494–510. doi: 10.1016/j.rbmo.2017.06.015

[10]

ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators // Reprod Biomed Online. 2017. Vol. 35, N 5. P. 494–510. doi: 10.1016/j.rbmo.2017.06.015

[11]

Gardner D, Schoolcraft W. In vitro culture of human blastocysts. In: Jansen R., Mortimer D., editors. Towards reproductive certainty: infertility and genetics beyond. New York, London: Parthenon Publishing Group; 1999.P. 378–388.

[12]

Gardner D., Schoolcraft W. In vitro culture of human blastocysts. In: Jansen R., Mortimer D., editors. Towards reproductive certainty: infertility and genetics beyond. New York, London: Parthenon Publishing Group, 1999.P. 378–388.

[13]

Shurygina O, Bachurin A, Bichevaya N, et al. Evaluation of oocytes and embryos in the ART laboratory. Methodological recommendations. 2021. 17 p. Available from: https://www.rahr.ru/d_pech_mat_metod/MR_evaluation_of_embryos.pdf (In Russ.)

[14]

Шурыгина О.В, Бачурин А.В., Бичевая Н.К., и др. Оценка ооцитов и эмбрионов в лаборатории ВРТ. Методические рекомендации. 2021. 17 с. Доступ по ссылке: https://www.rahr.ru/d_pech_mat_metod/MR_evaluation_of_embryos.pdf

[15]

Kida Y, Fukunaga N, Kitasaka H, et al. Identification of embryo markers predicting blastocyst formation before 1st cleavage. Fertil Steril. 2015;104(3):25. doi: 10.1016/j.fertnstert.2015.07.078

[16]

Kida Y., Fukunaga N., Kitasaka, H., et al. Identification of embryo markers predicting blastocyst formation before 1st cleavage // Fertil Steril. 2015. Vol. 104, N 3. P. e25. doi: 10.1016/j.fertnstert.2015.07.078

[17]

Kljajic M, Sayme N, Krebs T, et al. Zygote morphokinetics as a predictor of blastocyst quality. Human Reprod. 2021;36(1):130–139. doi: 10.1093/humrep/deab130.139

[18]

Kljajic M., Sayme N., Krebs T., et al. Zygote morphokinetics as a predictor of blastocyst quality // Hum Reprod. 2021. Vol. 36, N 1. P. 130–139. doi: 10.1093/humrep/deab130.139

[19]

Márquez-Hinojosa S, Noriega-Hoces L, Guzmán L. Time-Lapse Embryo culture: a better understanding of embryo development and clinical application. JBRA Assist Reprod. 2022;26(3):432–443. doi: 10.5935/1518-0557.20210107

[20]

Márquez-Hinojosa S., Noriega-Hoces L., Guzmán L. Time-Lapse Embryo culture: a better understanding of embryo development and clinical application // JBRA Assist Reprod. 2022. Vol. 26, N 3. P. 432–443. doi: 10.5935/1518-0557.20210107

[21]

Barrie A, Smith R, Campbell A, et al. Optimisation of the timing of fertilisation assessment for oocytes cultured in standard incubation: lessons learnt from time-lapse imaging of 78 348 embryos. Hum Reprod. 2021;36(11):2840–2847. doi: 10.1093/humrep/deab209

[22]

Barrie A., Smith R., Campbell A., et al. Optimisation of the timing of fertilisation assessment for oocytes cultured in standard incubation: lessons learnt from time-lapse imaging of 78 348 embryos // Hum Reprod. 2021. Vol. 36, N 11. P. 2840–2847. doi: 10.1093/humrep/deab209

[23]

Niemann-Seyde SC, Rehder H, Zoll B. A case of full triploidy (69,XXX) of paternal origin with unusually long survival time. Clin Genet. 1993;43(2):79–82. doi: 10.1111/j.1399-0004.1993.tb04432.x

[24]

Niemann-Seyde S.C., Rehder H., Zoll B. A case of full triploidy (69,XXX) of paternal origin with unusually long survival time // Clin Genet. 1993. Vol. 43, N 2. P. 79–82. doi: 10.1111/j.1399-0004.1993.tb04432.x

[25]

Daumová M, Hadravská Š, Putzová M. Hydatidiform mole. Cesk Patol. 2023;59(2):50–54.

[26]

Daumová M., Hadravská Š., Putzová M. Hydatidiform mole // Cesk Patol. 2023. Vol. 59, N 2. P. 50–54.

[27]

Devriendt K. Hydatidiform mole and triploidy: the role of genomic imprinting in placental development. Hum Reprod Update. 2005;11(2):137–142. doi: 10.1093/humupd/dmh060

[28]

Devriendt K. Hydatidiform mole and triploidy: the role of genomic imprinting in placental development // Hum Reprod Update. 2005. Vol. 11, N 2. P. 137–142. doi: 10.1093/humupd/dmh060

[29]

Asakawa T, Ishikawa M, Shimizu T, et al. The chromosomal normality of in vitro-fertilized rabbit oocytes. Biol Reprod. 1988;38(2):292–295. doi: 10.1095/biolreprod38.2.292

[30]

Asakawa T., Ishikawa M., Shimizu T., et al. The chromosomal normality of in vitro-fertilized rabbit oocytes // Biol Reprod. 1988. Vol. 38, N 2. P. 292–295. doi: 10.1095/biolreprod38.2.292

[31]

Mutia K, Wiweko B, Iffanolida PA, et al. The Frequency of chromosomal euploidy among 3PN embryos. J Reprod Infertil. 2019;20(3):127–131.

[32]

Mutia K., Wiweko B., Iffanolida P.A., et al. The frequency of chromosomal euploidy among 3PN embryos // J Reprod Infertil. 2019. Vol. 20, N 3. P. 127.

[33]

Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–1121. doi: 10.1038/nbt.1686

[34]

Wong C.C., Loewke K.E., Bossert N.L., et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage // Nature Biotechnol. 2010. Vol. 28, N 10. P. 1115–1121. doi: 10.1038/nbt.1686

[35]

Campbell A., Fishel A. Atlas of Embryology. Timelapse technology. Moscow: MEDpress-inform; 2018. 120 p. (In Russ.)

[36]

Кэмпбел А., Фишел А. Атлас эмбриологии. Последовательные покадровые изображения (timelapse-технология). Москва. МЕДпресс-информ, 2018. 120 c.

[37]

Ivec M, Kovacic B, Vlaisavljevic V. Prediction of human blastocyst development from morulas with delayed and/or incomplete compaction. Fertil Steril. 2011;96(6):1473–1478.e2. doi: 10.1016/j.fertnstert.2011.09.015

[38]

Ivec M., Kovacic B., Vlaisavljevic V. Prediction of human blastocyst development from morulas with delayed and/or incomplete compaction // Fertil Steril. 2011. Vol. 96, N 6. P. 1473–1478. doi: 10.1016/j.fertnstert.2011.09.015

[39]

Wata K, Yumoto K, Sugishima M, et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J Assist Reprod Genet. 2014;31(4):421–426. doi: 10.1007/s10815-014-0195-2

[40]

Iwata K., Yumoto K., Sugishima M., et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography // J Assist Reprod Genet. 2014. Vol. 31, N 4. P. 421–426. doi: 10.1007/s10815-014-0195-2

[41]

Skiadas CC, Jackson KV, Racowsky C. Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril. 2006;86(5):1386–1391. doi: 10.1016/j.fertnstert.2006.03.051

[42]

Skiadas C.C., Jackson K.V., Racowsky C. Early compaction on day 3 may be associated with increased implantation potential // Fertil Steril. 2006. Vol. 86, N 5. P. 1386–1391. doi: 10.1016/j.fertnstert.2006.03.051

[43]

Ishchuk MA, Lesik EA, Sagurova YM, et al. TIME-LAPSE technology in modern embryological practice. Journal of Obstetrics and Women’s Diseases. 2023;73(6):193–201. EDN: OCIEST doi: 10.17816/JOWD609504

[44]

Ищук М.А., Лесик Е.А., Сагурова Я.М., и др. Технология TIME-LAPSE в современной эмбриологической практике // Журнал акушерства и женских болезней. 2023. Т. 72, № 6. С. 193–201. EDN: OCIEST doi: 10.17816/JOWD609504

[45]

Tabibnejad N, Soleimani M, Aflatoonian A. Serum Anti-Mullerian hormone and embryo morphokinetics detecting by time-lapse imaging: a comparison between the polycystic ovarian syndrome and tubal factor infertility. Int J Reprod Biomed. 2018;16(8):483–490.

[46]

Tabibnejad N., Soleimani M., Aflatoonian A. Serum Anti-Mullerian hormone and embryo morphokinetics detecting by time-lapse imaging: a comparison between the polycystic ovarian syndrome and tubal factor infertility // Int J Reprod Biomed. 2018. Vol. 16, N 8. P. 483–490.

[47]

Barnes J, Brendel M, Gao VR, et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digit Health. 2023;5(1):e28–e40. doi: 10.1016/S2589-7500(22)00213-8

[48]

Barnes J., Brendel M., Gao V.R., et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study // Lancet Digit Health. 2023. Vol. 5, N 1. P. e28–e40. doi: 10.1016/S2589-7500(22)00213-8

[49]

Alomar M, Tasiaux H, Remacle S, et al. Kinetics of fertilization and development, and sex ratio of bovine embryos produced using the semen of different bulls. Anim Reprod Sci. 2008;107(1–2):48–61. doi: 10.1016/j.anireprosci.2007.06.009

[50]

Alomar M., Tasiaux H., Remacle S., et al. Kinetics of fertilization and development, and sex ratio of bovine embryos produced using the semen of different bulls // Anim Reprod Sci. 2008. Vol. 107, № 1–2. P. 48–61. doi: 10.1016/j.anireprosci.2007.06.009

[51]

Setti AS, Braga DP, Figueira RC, et al. The predictive value of high-magnification sperm morphology examination on ICSI outcomes in the presence of oocyte dysmorphisms. J Assist Reprod Genet. 2012;29(11):1241–1247. doi: 10.1007/s10815-012-9868-x

[52]

Setti A.S., Braga D.P., Figueira R.C., et al. The predictive value of high-magnification sperm morphology examination on ICSI outcomes in the presence of oocyte dysmorphisms // J Assist Reprod Genet. 2012. Vol. 29, N 11. P. 1241–1247. doi: 10.1007/s10815-012-9868-x

[53]

Ciray HN, Aksoy T, Goktas C, et al. Time-lapse evaluation of human embryo development in single versus sequential culture media – a sibling oocyte study. J Assist Reprod Genet. 2012;29(9):891–900. doi: 10.1007/s10815-012-9818-7

[54]

Ciray H.N., Aksoy T., Goktas C., et al. Time-lapse evaluation of human embryo development in single versus sequential culture media – a sibling oocyte study // J Assist Reprod Genet. 2012. Vol. 29, N 9. P. 891–900. doi: 10.1007/s10815-012-9818-7

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/