In vitro model of premature ovarian insufficiency based on cyclophosphamide-induced mitochondrial dysfunction in granulosa cells

Karina A. Zakuraeva , Maria I. Yarmolinskaya , Andrey Yu. Vinokurov , Marina Yu. Pogonyalova

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (5) : 15 -23.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (5) : 15 -23. DOI: 10.17816/JOWD634557
Original study articles
research-article

In vitro model of premature ovarian insufficiency based on cyclophosphamide-induced mitochondrial dysfunction in granulosa cells

Author information +
History +
PDF

Abstract

BACKGROUND: Currently, there is no unified approach or effective method for treating premature ovarian insufficiency. The primary strategy is hormone replacement therapy aimed at mitigating estrogen deficiency and its associated complications. However, this therapy does not restore lost ovarian function or fertility. Thus, further research into the pathogenesis of premature ovarian insufficiency is crucial for developing alternative pathogenetically based therapies. Investigating the efficacy of various drugs in preclinical trials using cellular models holds significant promise. Experimental modeling of premature ovarian insufficiency, which closely replicates the origin and development mechanism of the human disease, can be effectively used to develop promising therapeutic approaches, in particular, for testing new drugs.

AIM: The aim of this study was to develop a new method for experimental modeling of premature ovarian insufficiency using cyclophosphamide in Wistar rats, the significant advantages of which are high reproducibility, ease of implementation, and cost-effectiveness.

MATERIALS AND METHODS: A culture of Wistar rat ovarian granulosa cells after five stages of subculturing was treated with the drug cyclophosphamide, ensuring a working concentration in the growth medium of 0.1 mg/ml, followed by incubation for six hours.

RESULTS: A cellular model of premature ovarian insufficiency has been created, which is characterized by 100% modeling efficiency, high manufacturability and environmental safety for modeling the pathological condition.

CONCLUSIONS: The model created will allow for testing the medicinal effectiveness of chemicals with a view to their further use in medicine.

Keywords

premature ovarian insufficiency / experimental model / cyclophosphamide

Cite this article

Download citation ▾
Karina A. Zakuraeva, Maria I. Yarmolinskaya, Andrey Yu. Vinokurov, Marina Yu. Pogonyalova. In vitro model of premature ovarian insufficiency based on cyclophosphamide-induced mitochondrial dysfunction in granulosa cells. Journal of obstetrics and women's diseases, 2024, 73(5): 15-23 DOI:10.17816/JOWD634557

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Webber L, Davies M, Anderson R, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. doi: 10.1093/HUMREP/DEW027

[2]

Webber L., Davies M., Anderson R., et al. ESHRE Guideline: management of women with premature ovarian insufficiency // Hum Reprod. 2016. Vol. 31, N 5. P. 926–937. doi: 10.1093/HUMREP/DEW027

[3]

Kalich-Philosoph L, Roness H, Carmely A, et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185). doi: 10.1126/SCITRANSLMED.3005402

[4]

Kalich-Philosoph L., Roness H., Carmely A., et al. Cyclophosphamide triggers follicle activation and “burnout “; AS101 prevents follicle loss and preserves fertility // Sci Transl Med. 2013. Vol. 5, N 185. doi: 10.1126/SCITRANSLMED.3005402

[5]

Yuksel A, Bildik G, Senbabaoglu F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod. 2015;30(12):2926–2935. doi: 10.1093/HUMREP/DEV256

[6]

Yuksel A., Bildik G., Senbabaoglu F., et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells // Hum Reprod. 2015. Vol. 30, N 12. P. 2926–2935. doi: 10.1093/HUMREP/DEV256

[7]

Helsby NA, Yong M, van Kan M, et al. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharmacol. 2019;85(9):1925–1934. doi: 10.1111/BCP.14031

[8]

Helsby N.A., Yong M., van Kan M., et al. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes // Br J Clin Pharmacol. 2019. Vol. 85, N 9. P. 1925–1934. doi: 10.1111/BCP.14031

[9]

Colvin OM. An overview of cyclophosphamide development and clinical applications. Curr Pharm Des. 1999;30(51). doi: 10.1002/CHIN.199951281

[10]

Colvin O. An overview of cyclophosphamide development and clinical applications // Curr Pharm Des. 1999. Vol. 30, N 51. P. 555–560. doi: 10.1002/CHIN.199951281

[11]

Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: Implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–183. doi: 10.1146/ANNUREV.PHARMTOX.47.120505.105122

[12]

Orrenius S., Gogvadze V., Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. // Annu Rev Pharmacol Toxicol. 2007. Vol. 47. P. 143–183. doi: 10.1146/ANNUREV.PHARMTOX.47.120505.105122

[13]

Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–1180. doi: 10.1007/S00204-013-1034-4

[14]

Sinha K., Das J., Pal P.B., et al. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis // Arch Toxicol. 2013. Vol. 87, N 7. P. 1157–1180. doi: 10.1007/S00204-013-1034-4

[15]

Wang S, Zheng Y, Li J, et al. Single-cell transcriptomic atlas of primate ovarian aging. Obstet Gynecol Surv. 2020;75(5):295–296. doi: 10.1097/OGX.0000000000000804

[16]

Wang S., Zheng Y., Li J., et al. Single-cell transcriptomic atlas of primate ovarian aging. // Obstet Gynecol Surv. 2020. Vol. 75, N 5. P. 295–296. doi: 10.1097/OGX.0000000000000804

[17]

Franasiak JM, Forman EJ, Hong KH, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3). doi: 10.1016/J.FERTNSTERT.2013.11.004

[18]

Franasiak J., Forman E., Hong K., et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening // Fertil Steril. 2014. Vol. 101, N 3. P. 656–663. doi: 10.1016/J.FERTNSTERT.2013.11.004

[19]

Vatlin A Danilenko B. Bacterial fof1 atp — nanomotor for atp synthesis and hydrolysis,mechanism of interaction with the macrolide antibiotic oligomycin A. Advances in modern biology. 2020;140(3):231–243. EDN: FIIDQY doi: 10.31857/S0042132420020076

[20]

Ватлин A., Даниленко B. FОF1-атфаза бактерий — наномотор для синтеза и гидролиза АТФ, механизм взаимодействия с макролидным антибиотиком олигомицином A // Успехи современной биологии. 2020. T. 140, № 3. С. 231–243. EDN: FIIDQY doi: 10.31857/S0042132420020076

[21]

Tarasenko VI, Garnik EYu, Shmakov VN, et al. Influence of respiratory complex I dysfunctions on the reactive oxygen species level in arabidopsis cells. The Bulletin of Irkutsk State University. Series: Biology. Ecology. 2010;3(2):9–13. EDN: MVHFVN

[22]

Тарасенко В.И., Гарник Е.Ю., Шмаков В.Н., и др. Влияние нарушений в функционировании дыхательного комплекса I на уровень активных форм кислорода в клетках арабидопсиса // Известия Иркутского Государственного Университета. Серия: Биология. Экология. 2010. Т. 3, № 2. С. 9–13. EDN: MVHFVN

[23]

Ivanova VV, Starostina IG, Martynova EV, et al. Analysis of Bj fibroblasts mitochondrial respiratory chain function under glucose starvation and exposure to different doses of rotenone: implications for neurogenerative diseases. Genes & Cells. 2015;10(4):40–46. EDN: WCLIQZ

[24]

Иванова В.В., Старостина И.Г., Мартынова Е.В., и др. Функционирование дыхательной цепи митохондрий фибробластов линии Bj в условиях глюкозного голодания и воздействия различных доз ротенона // Гены и клетки. 2015. Т. 10, № 4. С. 40–46. EDN: WCLIQZ

[25]

Park KS, Jo I, Pak Y, et al. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch. 2002;443(3):344–352. doi: 10.1007/S004240100703

[26]

Park K., Jo I., Pak Y., et al. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. // Pflugers Arch. 2002. Vol. 443, N 3. P. 344–352. doi: 10.1007/S004240100703

[27]

Kenwood BM, Weaver JL, Bajwa A, et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab. 2013;3(2):114–123. doi: 10.1016/J.MOLMET.2013.11.005

[28]

Kenwood B., Weaver J., Bajwa A., et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. // Mol Metab. 2013. Vol. 3, N 2. P. 114–123. doi: 10.1016/J.MOLMET.2013.11.005

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/