Impact of the method of delivery and feeding practice on the gut microbiome of infants in the postnatal period

Victoria V. Barinova , Dmitry O. Ivanov , Irina O. Bushtyreva , Vasilisa V. Dudurich , Dmitry E. Polev , Ekaterina E. Artouz

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (4) : 5 -18.

PDF (714KB)
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (4) : 5 -18. DOI: 10.17816/JOWD630240
Original study articles
research-article

Impact of the method of delivery and feeding practice on the gut microbiome of infants in the postnatal period

Author information +
History +
PDF (714KB)

Abstract

BACKGROUND: The increasing frequency of cesarean sections and artificial feeding creates a predisposition to allergic diseases, obesity, and diabetes mellitus. Pathogenesis of these involves changes in the gut microbiome of infants.

AIM: The aim of this study was to evaluate the impact of the method of delivery and feeding practice on the gut microbiome of infants.

MATERIALS AND METHODS: This study included 103 infants aged 4-6 weeks (group 1: 39 infants born vaginally and breastfed; group 2: 10 infants born vaginally and formula-fed; group 3: 31 infants born by caesarean section and breastfed; group 4: 23 infants born by caesarean section and formula-fed), each of whom had stool collected for 16S ribosomal RNA gene sequencing.

RESULTS: We found differences in the relative abundance of Akkermansia spp. [34.07 (29.29–38.85)% in group 4 and 0.01 (0.01–0.02)% in group 1; p = 0.011], Bifidobacterium spp. [30.68 (21.65–39.41)% in group 1 and 17.08 (9.86–21.68)% in group 4, (p = 0.002); 31.46 (24,30–52.97)% in group 3 and 17.08 (9.86–21.68)% in group 4 (p = 0.001)], and Enterococcus spp. [4.69 (1.01–8.59)% in group 3 and 0.58 (0.12–1.87)% in group 1 (p = 0.003); 4.29 (2.07–6.96)% in group 4 and 0.58 (0.12–1.87)% in group 1 (p = 0.001)]. The coefficient of correlation adaptometry was maximum for groups of infants who were breastfed. Analysis of the morbidity of infants in the first year of life revealed differences in the incidence of acute respiratory viral infections between infants in groups 1 and 4 (17.9 and 78.3%, respectively; p = 0.0064), as well as groups 3 and 4 (32.2 and 78.3%, respectively; p = 0.018).

CONCLUSIONS: The relative abundance of Bifidobacterium spp. depends on feeding practice to a greater extent than on the method of delivery. The method of delivery affects the relative abundance of opportunistic bacteria such as Enterococcus spp. Correlation analysis demonstrated the role of breastfeeding as a mechanism for “learning” and maturing the immune system of children.

Keywords

gut microbiome / neonatal period / natural childbirth / cesarean section / breastfeeding / artificial feeding

Cite this article

Download citation ▾
Victoria V. Barinova, Dmitry O. Ivanov, Irina O. Bushtyreva, Vasilisa V. Dudurich, Dmitry E. Polev, Ekaterina E. Artouz. Impact of the method of delivery and feeding practice on the gut microbiome of infants in the postnatal period. Journal of obstetrics and women's diseases, 2024, 73(4): 5-18 DOI:10.17816/JOWD630240

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paolella G, Vajro P. Maternal microbiota, prepregnancy weightand mode of delivery: intergenerational transmission of risk for childhood overweight and obesity. JAMA Pediatr. 2018:172(4):320–322. doi: 10.1001/jamapediatrics.2017.5686

[2]

Paolella G., Vajro P. Maternal microbiota, prepregnancy weight, and mode of delivery: intergenerational transmission of risk for childhood overweight and obesity // JAMA Pediatr. 2018. Vol. 172, N 4. P. 320–322. doi: 10.1001/jamapediatrics.2017.5686

[3]

Blaser MJ, Dominguez-Bello MG. The human microbiome before birth. Cell Host Microbe. 2016.20(5):558–560. doi: 10.1016/j.chom.2016.10.014

[4]

Blaser M.J., Dominguez-Bello M.G. The human microbiome before birth // Cell Host Microbe. 2016. Vol. 20, N 5. P. 558–560. doi: 10.1016/j.chom.2016.10.014

[5]

Blustein J, Attina T, Liu M, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 2013;37(7):900–906. doi: 10.1038/ijo.2013.49

[6]

Blustein J., Attina T., Liu M., et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years // Int J Obes. 2013. Vol. 37, N 7. P. 900–906. doi: 10.1038/ijo.2013.49

[7]

Akagawa S, Tsuji S, Onuma C, et al. Effect of delivery mode and nutrition on gut microbiota in neonates. Ann Nutr Metab. 2019;74(2):132–141. doi: 10.1159/000496427

[8]

Akagawa S., Tsuji S., Onuma C., et al. Effect of delivery mode and nutrition on gut microbiota in neonates // Ann Nutr Metab. 2019. Vol. 74, N 2. P. 132–139. doi: 10.1159/000496427

[9]

Davis EC, Dinsmoor AM, Wang M, et al. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. Dig Dis Sci. 2020;65(3):706–722. doi: 10.1007/s10620-020-06092-x

[10]

Davis E.C., Dinsmoor A.M., Wang M., et al. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions // Dig Dis Sci. 2020. Vol. 65, N 3. P. 706–722. doi: 10.1007/s10620-020-06092-x

[11]

Carpay NC, Kamphorst K, de Meij TGJ, et al. Microbial effects of prebiotics, probiotics and synbiotics after caesarean section or exposure to antibiotics in the first week of life: a systematic review. PLoS ONE. 2022;17(11):e0277405. doi: 10.1371/journal.pone.0277405

[12]

Carpay N.C., Kamphorst K., de Meij T.G.J., et al. Microbial effects of prebiotics, probiotics and synbiotics after caesarean section or exposure to antibiotics in the first week of life: a systematic review // PLoS ONE. 2022. Vol. 17, N 11. doi: 10.1371/journal.pone.0277405

[13]

Salas Garcia MC, Yee AL, Gilbert JA, et al. Dysbiosis in children born by caesarean section. Ann Nutr Metab. 2018;73(S3):24–32. doi: 10.1159/000492168

[14]

Salas Garcia M.C., Yee A.L., Gilbert J.A., et al. Dysbiosis in children born by caesarean section // Ann Nutr Metab. 2018. Vol. 73, Suppl. S3. P. 24–32. doi: 10.1159/000492168

[15]

Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med. 2023;29:90. doi: 10.1186/s10020-023-00689-4

[16]

Chen X., Shi Y. Determinants of microbial colonization in the premature gut // Mol Med. 2023. Vol. 29. P. 90. doi: 10.1186/s10020-023-00689-4

[17]

Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, et al. Microbiota signals during the neonatal period forge life-long immune responses. Int J Mol Sci. 2021;22(15):8162. doi: 10.3390/ijms22158162

[18]

Phillips-Farfán B., Gómez-Chávez F., Medina-Torres E.A., et al. Microbiota signals during the neonatal period forge life-long immune responses // Int. J. Mol Sci. 2021. Vol. 22, N 15. P. 8162. doi: 10.3390/ijms22158162

[19]

Francavilla R, Cristofori F, Tripaldi ME, et al. Intervention for dysbiosis in children born by C-section. Ann Nut. Metab. 2018;73(S3):33–39. doi: 10.1159/000490847

[20]

Francavilla R., Cristofori F., Tripaldi M.E., et al. Intervention for dysbiosis in children born by C-Section // Ann Nutr Metab. 2018. Vol. 73, Suppl. S3. P. 33–39. doi: 10.1159/000490847

[21]

Galazzo G, van Best N, Bervoets L, et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology. 2020;158(6):1584–1596. doi: 10.1053/j.gastro.2020.01.024

[22]

Galazzo G., van Best V.O.L., Bervoets L., et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood // Gastroenterology. 2020. Vol. 158, N 6. P. 1584–1596. doi: 10.1053/j.gastro.2020.01.024

[23]

Sassin AM, Johnson GJ, Goulding AN, et al. Crucial nuances in understanding (mis)associations between the neonatal microbiome and cesarean delivery. Trends Mol Med. 2022;28(10):806–822. doi: 10.1016/j.molmed.2022.07.005

[24]

Sassin A.M., Johnson G.J., Goulding A.N., et al. Crucial nuances in understanding (mis)associations between the neonatal microbiome and cesarean delivery // Trends Mol. Med. 2022. Vol. 28, N 10. P. 806–822. doi: 10.1016/j.molmed.2022.07.005

[25]

Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab. 2016;69(Suppl 2):42–51. doi: 10.1159/000452818

[26]

Donovan S.M., Comstock S.S. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. // Ann Nutr Metab. 2016. Vol. 69, Suppl. 2. P. 42–51. doi: 10.1159/000452818

[27]

Moossavi S, Sepehri S, Robertson B. Composition and variation of the human milk microbiota are influenced by maternal and early life factors. Cell Host Microbe. 2019;25(2):324–335. doi: 10.1016/j.chom.2019.01.011

[28]

Moossavi S., Sepehri S., Robertson B. Composition and variation of the human milk microbiota are influenced by maternal and early life factors // Cell Host Microbe. 2019. Vol. 25, N 2. P. 324–335. doi: 10.1016/j.chom.2019.01.011

[29]

Williams JE, Carrothers JM, Lackey KA, et al. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother-infant dyads during the first six months postpartum. J Nutr. 2019;149(6):902–914. doi: 10.1093/jn/nxy299

[30]

Williams J.E., Carrothers J.M., Lackey K.A., et al. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother-infant dyads during the first six months postpartum // J Nutr. 2019. Vol. 149, N 6. P. 902–914. doi: 10.1093/jn/nxy299

[31]

Hunt KM, Foster JA, Forney LJ. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6(6):e21313. doi: 10.1371/journal.pone.0021313

[32]

Hunt K.M., Foster J.A., Forney L.J. Characterization of the diversity and temporal stability of bacterial communities in human milk // PLoS One. 2011. Vol. 6, N 6. P. e21313. doi: 10.1371/journal.pone.0021313

[33]

Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes. 2017;8(2):143–171. doi: 10.1080/19490976.2016.1278104

[34]

Davis E.C., Wang M., Donovan S.M. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function // Gut Microbes. 2017. Vol. 8, N 2. P. 143–171. doi: 10.1080/19490976.2016.1278104

[35]

Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169. doi: 10.1038/s41467-018-06473-x

[36]

Ho N.T., Li F., Lee-Sarwar K.A., et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations // Nat Commun. 2018. Vol. 9, N 1. P. 4169. doi: 10.1038/s41467-018-06473-x

[37]

Yang R, Gao R, Cui S, et al. Dynamic signatures of gut microbiota and influences of delivery and feeding modes during the first 6 months of life. Physiol Genomics. 2019;51(8):368–378. doi: 10.1152/physiolgenomics.00026.2019

[38]

Yang R., Gao R., Cui S., et al. Dynamic signatures of gut microbiota and influences of delivery and feeding modes during the first 6 months of life // Physiol Genomics. 2019. Vol. 51, N 8. P. 368–378. doi: 10.1152/physiolgenomics.00026.2019

[39]

Kapourchali FR, Cresci GAM. Early-life gut microbiome-the importance of maternal and infant factors in its establishment. Nutr Clin Pract. 2020;35(3):386–405. doi: 10.1002/ncp.10490

[40]

Kapourchali F.R., Cresci G.A.M. Early-life gut microbiome-the importance of maternal and infant factors in its establishment // Nutr Clin Pract. 2020. Vol. 35, N 3. P. 386–405. doi: 10.1002/ncp.10490

[41]

Isacco CG, Ballini A, Vito DD, et al. Probiotics in health and immunity: a first step toward understanding the importance of microbiota system in translational medicine. London: IntechOpen; 2019. doi: 10.5772/intechopen.88601

[42]

Isacco C.G., Ballini A., Vito D.D., et al. Probiotics in health and immunity: a first step toward understanding the importance of microbiota system in translational medicine. London: IntechOpen, 2019. doi: 10.5772/intechopen.88601

[43]

Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869

[44]

Callahan B.J., McMurdie P.J., Rosen M.J., et al. DADA2: high-resolution sample inference from Illumina amplicon data // Nat Methods. 2016. Vol. 13, N 7. P. 581–583. doi: 10.1038/nmeth.3869

[45]

Qiong W, Garrity MG, Tiedje MJ, et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07

[46]

Qiong W., Garrity M.G., Tiedje M.J., et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy // Appl Environ Microbiol. 2007. Vol. 73, N 16. Р. 5261–5267. doi: 10.1128/AEM.00062-07

[47]

Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219

[48]

Quast C., Pruesse E., Yilmaz P., et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools // Nucleic Acids Res. 2013. Vol. 41, P. D590–D596. doi: 10.1093/nar/gks1219

[49]

Zimmermann P, Curtis N. Factors influencing the intestinal microbiome during the first year of life. Pediatr Infect Dis J. 2018 37(12):e315–e335. doi: 10.1097/INF.0000000000002103

[50]

Zimmermann P., Curtis N. Factors influencing the intestinal microbiome during the first year of life // Pediatr Infect Dis J. 2018. Vol. 12, N 3. P. e315–e335. doi: 10.1097/INF.0000000000002103

[51]

Hong P-Y, Lee BW, Aw M, et al. Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One. 2010;5(4):e9964. doi: 10.1371/journal.pone.0009964

[52]

Hong P.-Y., Lee B.W., Aw M., et al. Comparative analysis of fecal microbiota in infants with and without eczema // PLoS One. 2010. Vol. 5, N 4. P. e9964. doi: 10.1371/journal.pone.0009964

[53]

Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–572. doi: 10.1002/hep.24423

[54]

Chen Y., Yang F., Lu H., et al. Characterization of fecal microbial communities in patients with liver cirrhosis // Hepatology. 2011. Vol. 54, N 2. P. 562–572. doi: 10.1002/hep.24423

[55]

Million M, Maraninchi M, Henry M, et al.: Obesity associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012;36(6):817–825. doi: 10.1038/ijo.2011.153

[56]

Million M., Maraninchi M., Henry M., et al. Obesity associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii // Int J Obes (Lond). 2012. Vol. 36, N 6. P. 817–825. doi: 10.1038/ijo.2011.153

[57]

Sher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. doi: 10.7554/eLife.01202

[58]

Sher J.U., Sczesnak A., Longman R.S., et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis // Elife. 2013. Vol. 2. P. e01202. doi: 10.7554/eLife.01202

[59]

Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in health children: a casecontrol study. BMC Med. 2013;11:46. doi: 10.1186/1741-7015-11-46

[60]

Murri M., Leiva I., Gomez-Zumaquero J.M., et al. Gut microbiota in children with type 1 diabetes differs from that in health children: a casecontrol study // BMC Med. 2013. Vol. 11. P. 46. doi: 10.1186/1741-7015-11-46

[61]

Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig) a plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med. 2004;200(6):805–809. doi: 10.1084/jem.20041069

[62]

Wilson E., Butcher E.C. CCL28 controls immunoglobulin (Ig) a plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate // J Exp Med. 2004. Vol. 200, N 6. P. 805–809. doi: 10.1084/jem.20041069

[63]

Usami K, Niimi K, Matsuo A, et al. The gut microbiota induces Peyer’s-patch-dependent secretion of maternal IgA into milk. Cell Rep. 2021. 36(10):109655. doi: 10.1016/j.celrep.2021.109655

[64]

Usami K., Niimi K., Matsuo A., et al. The gut microbiota induces Peyer’s-patch-dependent secretion of maternal IgA into milk // Cell Rep. 2021. Vol. 36, N 10. P. 109655. doi: 10.1016/j.celrep.2021.109655

[65]

Ding MF, Yang B, Ross RP, et al. Crosstalk between sIgA-coated bacteria in infant gut and early-life health. Trends Microbiol. 2021. 29(8):725–735. doi: 10.1016/j.tim.2021.01.012

[66]

Ding M.F., Yang B., Ross R.P., et al. Crosstalk between sIgA-Coated bacteria in infant gut and early-life health // Trends Microbiol. 2021. Vol. 29, N 8. P. 725–735. doi: 10.1016/j.tim.2021.01.012

[67]

Pammi M, Cope J, Tarr PI, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome. 2017;5(1):31. doi: 10.1186/s40168-017-0248-8

[68]

Pammi M., Cope J., Tarr P.I., et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis // Microbiome. 2017. Vol. 5, N 1. P. 31. doi: 10.1186/s40168-017-0248-8

[69]

Dunne-Castagna VP, Taft DH. Mother’s touch: milk IgA and protection from necrotizing enterocolitis. Cell Host Microbe. 2019;26(2):147–148. doi: 10.1016/j.chom.2019.07.013

[70]

Dunne-Castagna V.P., Taft D.H. Mother’s touch: milk iga and protection from necrotizing enterocolitis // Cell Host Microbe. 2019. Vol. 26, N 2. P. 147–148. doi: 10.1016/j.chom.2019.07.013

[71]

Donaldson GP, Ladinsky MS, Yu KB, et al. Gut microbiota utilize immunoglobulin a for mucosal colonization. Science. 2018;360(6390):795–800. doi: 10.1126/science.aaq0926

[72]

Donaldson G.P., Ladinsky M.S., Yu K.B., et al. Gut microbiota utilize immunoglobulin a for mucosal colonization // Science. 2018. Vol. 360, N 6390. P. 795–800. doi: 10.1126/science.aaq0926

[73]

Peterson DA, McNulty NP, Guruge JL, et al. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–339. doi: 10.1016/j.chom.2007.09.013.140

[74]

Peterson D.A., McNulty N.P., Guruge J.L., et al. IgA response to symbiotic bacteria as a mediator of gut homeostasis // Cell Host Microbe. 2007. Vol. 2, N 5. P. 328–339. doi: 10.1016/j.chom.2007.09.013.140

[75]

Zimmermann J, Macpherson AJ. Breast milk modulates transgenerational immune inheritance. Cell. 2020;181(6):1202–1204. doi: 10.1016/j.cell.2020.05.030

[76]

Zimmermann J., Macpherson A.J. Breast milk modulates transgenerational immune inheritance // Cell. 2020. Vol. 181, N 6. P. 1202–1204. doi: 10.1016/j.cell.2020.05.030

[77]

Pustotina OA, Seliverstov AA. Influence of the breast milk microbiome on the health of the mother and newborn. Medical council. 2019;(13):36–40. EDN: RPGRGT doi: 10.21518/2079-701X-2019-13-36-40

[78]

Пустотина О.А., Селиверстов А.А. Влияние микробиома грудного молока на здоровье матери и новорожденного // Медицинский совет. 2019. № 13. С. 36–40. EDN: RPGRGT doi: 10.21518/2079-701X-2019-13-36-40

[79]

Smirnova NN, Havkin AI, Kuprienko NB, et al. Bacteria and viruses of breast milk. Questions of children’s dietetics. 2022;20(2):74–82. EDN: BBIKOO doi: 10.20953/1727-5784-2022-2-74-82

[80]

Смирнова Н.Н., Хавкин А.И., Куприенко Н.Б., и др. Бактерии и вирусы грудного молока // Вопросы детской диетологии. 2022. Т. 20, № 2. С. 74–82. EDN: BBIKOO doi: 10.20953/1727-5784-2022-2-74-82

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF (714KB)

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/