The role of umbilical-portal venous hemodynamics in fetal macrosomia pathogenesis in pregnancy complicated by diabetes mellitus

Elizaveta V. Shelaeva , Ekaterina V. Kopteeva , Elena N. Alekseenkova , Roman V. Kapustin , Igor Yu. Kogan

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (3) : 89 -104.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (3) : 89 -104. DOI: 10.17816/JOWD629597
Original study articles
research-article

The role of umbilical-portal venous hemodynamics in fetal macrosomia pathogenesis in pregnancy complicated by diabetes mellitus

Author information +
History +
PDF

Abstract

BACKGROUND: During pregnancy complicated by diabetes mellitus, the risks of developing fetal macrosomia and other perinatal complications increase. Redistribution of blood flow in the fetal umbilical-portal venous system may be an important but poorly understood compensatory mechanism that affects macrosomic fetal growth.

AIM: The aim of this study was to determine the features of the fetal umbilical-portal venous hemodynamics in pregnant women with various types of diabetes mellitus and the absence of carbohydrate metabolism disorders, taking into account the gestational age and the macrosomic fetal growth.

MATERIALS AND METHODS: In this prospective cohort study, 86 pregnant women with pregestational diabetes mellitus, 44 pregnant women with gestational diabetes mellitus and 58 patients without carbohydrate metabolism disorders underwent ultrasound examinations from 30+0 to 41+3 weeks of gestation. During ultrasound, we performed Doppler assessment of venous hemodynamic parameters in the vessels of the umbilical-portal venous system, with volumetric blood flow calculated for each vessel. Additionally, the total liver volumetric blood flow and ductus venosus shunt fraction were calculated.

RESULTS: The presence of fetal macrosomia in patients from the pregestational diabetes mellitus group is associated with an increase in the volumetric blood flow of the umbilical vein by 89.5 ml/min (p = 0.003) and the left portal vein by 33.3 ml/min (p = 0.008), as well as the total volumetric blood flow of the fetal liver by 95.7 ml/min (p = 0.001) compared with normal-weight fetuses. At the same time, the ductus venosus shunt fraction decreased in macrosomic fetuses by 3.83% (p = 0.001). In the gestational diabetes mellitus and control groups, despite the tendency for these parameters to increase in fetuses with macrosomia, the differences did not reach statistical significance. With a left portal vein volume flow threshold of 94.51 ml/min, the sensitivity and specificity for predicting large births were 84.46 and 72.09%, respectively.

CONCLUSIONS: Pregestational diabetes mellitus in the mother is associated with a priority redistribution of blood flow to the fetal liver and is accompanied by a decrease in the ductus venosus shunt fraction. The severity of these hemodynamic changes increases in the presence of fetal macrosomia, which confirms the role of liver perfusion in the regulation of fetal growth in uncomplicated pregnancy and maternal diabetes mellitus.

Keywords

diabetes mellitus / fetal macrosomia / volumetric blood flow / Doppler ultrasound / fetal liver / umbilical-portal venous system / ductus venosus

Cite this article

Download citation ▾
Elizaveta V. Shelaeva, Ekaterina V. Kopteeva, Elena N. Alekseenkova, Roman V. Kapustin, Igor Yu. Kogan. The role of umbilical-portal venous hemodynamics in fetal macrosomia pathogenesis in pregnancy complicated by diabetes mellitus. Journal of obstetrics and women's diseases, 2024, 73(3): 89-104 DOI:10.17816/JOWD629597

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nguyen MT, Ouzounian JG. Evaluation and management of fetal macrosomia. Obstet Gynecol Clin North Am. 2021;48(2):387–399. doi: 10.1016/j.ogc.2021.02.008

[2]

Nguyen M.T., Ouzounian J.G. Evaluation and management of fetal macrosomia // Obstet Gynecol Clin North Am. 2021. Vol. 48, N. 2. P. 387–399. doi: 10.1016/j.ogc.2021.02.008

[3]

Macrosomia: ACOG Practice Bulletin, No. 216. Obstet Gynecol. 2020;135(1):e18–e35. doi: 10.1097/AOG.0000000000003606

[4]

Macrosomia: ACOG Practice Bulletin, Number 216 // Obstet Gynecol. 2020. Vol. 135, N. 1. P. E18–E35. doi: 10.1097/AOG.0000000000003606

[5]

Persson M, Norman M, Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study. Diabetes Care. 2009;32(11):2005–2009. doi: 10.2337/dc09-0656

[6]

Persson M., Norman M., Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study // Diabetes Care. 2009. Vol. 32, N. 11. P. 2005–2009. doi: 10.2337/dc09-0656

[7]

Mackin ST, Nelson SM, Wild SH, et al. Factors associated with stillbirth in women with diabetes. Diabetologia. 2019;62(10):1938–1947. doi: 10.1007/s00125-019-4943-9

[8]

Mackin S.T., Nelson S.M., Wild S.H., et al. Factors associated with stillbirth in women with diabetes // Diabetologia. 2019. Vol. 62, N. 10. P. 1938–1947. doi: 10.1007/s00125-019-4943-9

[9]

Cesnaite G, Domza G, Ramasauskaite D, et al. The accuracy of 22 fetal weight estimation formulas in diabetic pregnancies. Fetal Diagn Ther. 2020;47(1):54–59. doi: 10.1159/000500452

[10]

Cesnaite G., Domza G., Ramasauskaite D., et al. The accuracy of 22 fetal weight estimation formulas in diabetic pregnancies // Fetal Diagn Ther. 2020. Vol. 47, N. 1. P. 54–59. doi: 10.1159/000500452

[11]

Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183. doi: 10.1016/j.diabres.2021.109119

[12]

Sun H., Saeedi P., Karuranga S., et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 // Diabetes Res Clin Pract. 2022. Vol. 183. doi: 10.1016/j.diabres.2021.109119

[13]

Chaoui R, Heling KS, Karl K. Ultrasound of the fetal veins part 1: the intrahepatic venous system. Ultraschall Med. 2014;35(3):208–228. doi: 10.1055/s-0034-1366316

[14]

Chaoui R., Heling K.S., Karl K. Ultrasound of the fetal veins part 1: the intrahepatic venous system // Ultraschall Med. 2014. Vol. 35, N. 3. P. 208–228. doi: 10.1055/s-0034-1366316

[15]

Kiserud T, Kessler J, Ebbing C, et al. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol. 2006;28(2):143–149. doi: 10.1002/uog.2784

[16]

Kiserud T., Kessler J., Ebbing C., et al. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise // Ultrasound Obstet Gynecol. 2006. Vol. 28, N. 2. P. 143–149. doi: 10.1002/uog.2784

[17]

Kessler J, Rasmussen S, Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol. 2007;30(5):757–764. doi: 10.1002/uog.5146

[18]

Kessler J., Rasmussen S., Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation // Ultrasound Obstet Gynecol. 2007. Vol. 30, N. 5. P. 757–764. doi: 10.1002/uog.5146

[19]

Kessler J, Rasmussen S, Godfrey K, et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res. 2008;63(3):315–320. doi: 10.1203/pdr.0b013e318163a1de

[20]

Kessler J., Rasmussen S., Godfrey K., et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe // Pediatr Res. 2008. Vol. 63, N. 3. P. 315–320. doi: 10.1203/pdr.0b013e318163a1de

[21]

Kessler J, Rasmussen S, Godfrey K, et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses. Am J Obstet Gynecol. 2011;204(5):429.e1–429.e4297. doi: 10.1016/j.ajog.2010.12.038

[22]

Kessler J., Rasmussen S., Godfrey K., et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses // Am J Obstet Gynecol. 2011. Vol. 204, N. 5. P. 429.e1–429.e4297. doi: 10.1016/j.ajog.2010.12.038

[23]

Lund A, Ebbing C, Rasmussen S, et al. Maternal diabetes alters the development of ductus venosus shunting in the fetus. Acta Obstet Gynecol Scand. 2018;97(8):1032–1040. doi: 10.1111/aogs.13363

[24]

Lund A., Ebbing C., Rasmussen S., et al. Maternal diabetes alters the development of ductus venosus shunting in the fetus // Acta Obstet Gynecol Scand. 2018. Vol. 97, N. 8. P. 1032–1040. doi: 10.1111/aogs.13363

[25]

Lund A, Ebbing C, Rasmussen S, et al. Altered development of fetal liver perfusion in pregnancies with pregestational diabetes. PLoS One. 2019;14(3). doi: 10.1371/journal.pone.0211788

[26]

Lund A., Ebbing C., Rasmussen S., et al. Altered development of fetal liver perfusion in pregnancies with pregestational diabetes // PLoS One. 2019. Vol. 14, N. 3. doi: 10.1371/journal.pone.0211788

[27]

Ebbing C, Rasmussen S, Kiserud T. Fetal hemodynamic development in macrosomic growth. Ultrasound Obstet Gynecol. 2011;38(3):303–308. doi: 10.1002/uog.9046

[28]

Ebbing C., Rasmussen S., Kiserud T. Fetal hemodynamic development in macrosomic growth // Ultrasound Obstet Gynecol. 2011. Vol. 38, N. 3. P. 303–308. doi: 10.1002/uog.9046

[29]

Kiserud T, Hellevik LR, Hanson MA. Blood velocity profile in the ductus venosus inlet expressed by the mean/maximum velocity ratio. Ultrasound Med Biol. 1998;24(9):1301–1306. doi: 10.1016/s0301-5629(98)00131-8

[30]

Kiserud T., Hellevik L.R., Hanson M.A. Blood velocity profile in the ductus venosus inlet expressed by the mean/maximum velocity ratio // Ultrasound Med Biol. 1998. Vol. 24, N. 9. P. 1301–1306. doi: 10.1016/s0301-5629(98)00131-8

[31]

Nedergaard J, Cannon B. Brown adipose tissue: development and function. In: Polin R.A., Abman S.H., Rowitch D.H., et al, editors. Fetal and Neonatal Physiology. 2017:354–363. doi: 10.1016/B978-0-323-35214-7.00035-4

[32]

Nedergaard J., Cannon B. Brown adipose tissue: development and function. In: Polin R.A., Abman S.H., Rowitch D.H., et al, editors. Fetal and neonatal physiology. Elsevier; 2017. P. 354–363.e4. doi: 10.1016/B978-0-323-35214-7.00035-4

[33]

Ikenoue S, Waffarn F, Ohashi M, et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity. Am J Obstet Gynecol. 2017;217(2):204.e1–204.e8. doi: 10.1016/j.ajog.2017.04.022

[34]

Ikenoue S., Waffarn F., Ohashi M., et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity // Am J Obstet Gynecol. 2017. Vol. 217, N. 2. P. 204.e1–204.e8. doi: 10.1016/j.ajog.2017.04.022

[35]

Godfrey KM, Haugen G, Kiserud T, et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One. 2012;7(8). doi: 10.1371/journal.pone.0041759

[36]

Godfrey K.M., Haugen G., Kiserud T., et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development // PLoS One. 2012. Vol. 7, N. 8. doi: 10.1371/journal.pone.0041759

[37]

Alekseenkova EN, Babakov VN, Selkov SA, et al. Maternal insulin-like growth factors and insulin-like growth factor-binding proteins for macrosomia prediction in diabetic and nondiabetic pregnancy: a prospective study. Int J Gynaecol Obstet. 2023;162(2):605–613. doi: 10.1002/ijgo.14696

[38]

Alekseenkova E.N., Babakov V.N., Selkov S.A., et al. Maternal insulin-like growth factors and insulin-like growth factor-binding proteins for macrosomia prediction in diabetic and nondiabetic pregnancy: a prospective study // Int J Gynaecol Obstet. 2023. Vol. 162, N. 2. P. 605–613. doi: 10.1002/ijgo.14696

[39]

Tchirikov M, Kertschanska S, Stürenberg HJ, et al. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta. 2002;23(Suppl.A):S153–S158. doi: 10.1053/plac.2002.0810

[40]

Tchirikov M., Kertschanska S., Stürenberg H.J., et al. Liver blood perfusion as a possible instrument for fetal growth regulation // Placenta. 2002. Vol. 23, Suppl. A. P. S153–S158. doi: 10.1053/plac.2002.0810

[41]

Tchirikov M, Schröder HJ, Hecher K. Ductus venosus shunting in the fetal venous circulation: regulatory mechanisms, diagnostic methods and medical importance. Ultrasound Obstet Gynecol. 2006;27(4). doi: 10.1002/uog.2747

[42]

Tchirikov M., Schröder H.J., Hecher K. Ductus venosus shunting in the fetal venous circulation: regulatory mechanisms, diagnostic methods and medical importance // Ultrasound Obstet Gynecol. 2006. Vol. 27, N. 4. P. 452–461. doi: 10.1002/uog.2747

[43]

Tchirikov M, Kertschanska S, Schröder HJ. Obstruction of ductus venosus stimulates cell proliferation in organs of fetal sheep. Placenta. 2001;22(1):24–31. doi: 10.1053/plac.2000.0585

[44]

Tchirikov M., Kertschanska S., Schröder H.J. Obstruction of ductus venosus stimulates cell proliferation in organs of fetal sheep // Placenta. 2001. Vol. 22, N. 1. P. 24–31. doi: 10.1053/plac.2000.0585

[45]

Cox LA, Schlabritz-Loutsevitch N, Hubbard GB, et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale. J Physiol. 2006;572(1):59–66. doi: 10.1113/jphysiol.2006.105726

[46]

Cox L.A., Schlabritz-Loutsevitch N., Hubbard G.B., et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale // J Physiol. 2006. Vol. 572, Pt. 1. P. 59–66. doi: 10.1113/jphysiol.2006.105726

[47]

Haugen G, Bollerslev J, Henriksen T. Human fetoplacental and fetal liver blood flow after maternal glucose loading: a cross-sectional observational study. Acta Obstet Gynecol Scand. 2014;93(8):778–785. doi: 10.1111/aogs.12419

[48]

Haugen G., Bollerslev J., Henriksen T. Human fetoplacental and fetal liver blood flow after maternal glucose loading: a cross-sectional observational study // Acta Obstet Gynecol Scand. 2014. Vol. 93, N. 8. P. 778–785. doi: 10.1111/aogs.12419

[49]

Kiserud T, Eik-Nes SH, Blaas HG, et al. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet. 1991;338(8780):1412–1414. doi: 10.1016/0140-6736(91)92720-m

[50]

Kiserud T., Eik-Nes S.H., Blaas H.G., et al. Ultrasonographic velocimetry of the fetal ductus venosus // Lancet. 1991. Vol. 338, N. 8780. P. 1412–1414. doi: 10.1016/0140-6736(91)92720-m

[51]

Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1):147–153. doi: 10.1016/s0002-9378(00)70504-7

[52]

Kiserud T., Rasmussen S., Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus // Am J Obstet Gynecol. 2000. Vol. 182, N. 1. P. 147–153. doi: 10.1016/s0002-9378(00)70504-7

[53]

Kessler J, Rasmussen S, Godfrey K, et al. Fetal growth restriction is associated with prioritization of umbilical blood flow to the left hepatic lobe at the expense of the right lobe. Pediatr Res. 2009;66(1):113–117. doi: 10.1203/PDR.0b013e3181a29077

[54]

Kessler J., Rasmussen S., Godfrey K., et al. Fetal growth restriction is associated with prioritization of umbilical blood flow to the left hepatic lobe at the expense of the right lobe // Pediatr Res. 2009. Vol. 66, N. 1. P. 113–117. doi: 10.1203/PDR.0b013e3181a29077

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/