Endothelial microvesicles in peripheral blood of pregnant women with preeclampsia

Valentina A. Mikhaylova , Oksana B. Marko , Alina A. Davydova , Olga A. Bakulina , Marina A. Pereviazkina , Edgar R. Mkrtchyan , Roman V. Kapustin , Igor Yu. Kogan , Sergey A. Selkov , Dmitry I. Sokolov

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (5) : 30 -43.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (5) : 30 -43. DOI: 10.17816/JOWD629577
Original study articles
research-article

Endothelial microvesicles in peripheral blood of pregnant women with preeclampsia

Author information +
History +
PDF

Abstract

BACKGROUND: Endothelial dysfunction is the leading pathogenetic factor of preeclampsia. The function of the endothelium may be reflected in its ability to form microvesicles, which are generated by cells through the regulated shedding of the plasma membrane.

AIM: The aim of this study was to evaluate the endothelial microvesicles count in peripheral blood of women with normal pregnancy and pregnancy complications such as gestational arterial hypertension and severe preeclampsia.

MATERIALS AND METHODS: This study included 72 individuals, of whom there were healthy non-pregnant women (n = 21), women with normal pregnancy (n = 20), pregnant women with gestational arterial hypertension (n = 24), and pregnant women with severe preeclampsia (n = 7). To isolate microvesicles from peripheral blood, the differential centrifugation method was used. Microvesicles were treated with antibodies to vascular endothelial growth factor receptors (VEGFR1, VEGFR2), CD41a, CD34, and CD31 conjugated to fluorochromes. The absolute and relative count of microvesicles, as well as the fluorescence intensity, were analyzed using a BD FACSCanto II cytofluorimeter.

RESULTS: In normal pregnancy, the count of microvesicles with the VEGFR1+, VEGFR2+, CD31+, and CD34+ phenotype was increased compared to non-pregnant women. In gestational arterial hypertension compared to normal pregnancy, no differences were found in the endothelial microvesicles count and endothelial marker expression. In severe preeclampsia, the total microvesicles count and endothelial cell derived microvesicles count in the peripheral blood plasma decreased in comparison with normal pregnancy and gestational arterial hypertension. While the expression of endothelial markers such as VEGFR1, VEGFR2, and CD34 in microvesicles membranes in severe preeclampsia increased compared to normal pregnancy and gestational arterial hypertension.

CONCLUSIONS: An increase in the endothelial microvesicles count in normal pregnancy may be associated with an increase in the vascular bed area due to placenta formation. A decrease in the endothelial microvesicles count in severe preeclampsia is associated with damage to the endothelium and disruption of its function. Increased expression of endothelial cell receptors on microvesicles in severe preeclampsia may reflect compensatory reactions of the endothelium during the above damage.

Keywords

microvesicles / endothelium / peripheral blood / pregnancy / gestational hypertension / preeclampsia

Cite this article

Download citation ▾
Valentina A. Mikhaylova, Oksana B. Marko, Alina A. Davydova, Olga A. Bakulina, Marina A. Pereviazkina, Edgar R. Mkrtchyan, Roman V. Kapustin, Igor Yu. Kogan, Sergey A. Selkov, Dmitry I. Sokolov. Endothelial microvesicles in peripheral blood of pregnant women with preeclampsia. Journal of obstetrics and women's diseases, 2024, 73(5): 30-43 DOI:10.17816/JOWD629577

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hodzhaeva ZC, Shmakov RG, Saveleva GM, et al. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical guidelines. Moscow; 2023. (In Russ.) [cited 2024 Apr 17]. Available from: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf

[2]

Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Клинические рекомендации. / под ред. З.С. Ходжаева, Р.Г. Шмакова, Г.М. Савельева, и др. Москва, 2023. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. Дата обращения: 17.04.2024.

[3]

Gaisin IR, Iskhakova AS. Diagnosis and treatment of hypertensive conditions of pregnancy. Arterial Hypertension. 2021;27(2):146–169. EDN: TRZMCA doi: 10.18705/1607-419X-2021-27-2-146-169

[4]

Гайсин И.Р., Исхакова А.С. Диагностика и лечение гипертензивных состояний беременности // Артериальная гипертензия. 2021. Т. 27, № 2. С. 146–169. EDN: TRZMCA doi: 10.18705/1607-419X-2021-27-2-146-169

[5]

Shifman EM, Floka SE, Tihova GP et al. Pathophysiological mechanisms of development of neurological complications of eclampsia: a systematic review. Obstetrics and Gynecology. 2011;(5):10–15. EDN: PFTUHD

[6]

Шифман Е.М., Флока С.Е., Тихова Г.П. и др. Патофизиологические механизмы развития неврологических осложнений эклампсии: систематический обзор // Акушерство и гинекология. 2011. Т. 5. С. 10–15. EDN: PFTUHD

[7]

McDermott M, Miller EC, Rundek T, et al. Preeclampsia: association with posterior reversible encephalopathy syndrome and stroke. Stroke. 2018;49(3):524–530. doi: 10.1161/STROKEAHA.117.018416

[8]

McDermott M., Miller E.C., Rundek T., et al. Preeclampsia: association with posterior reversible encephalopathy syndrome and stroke // Stroke. 2018. Vol. 49, N 3. P. 524–530. doi: 10.1161/STROKEAHA.117.018416

[9]

Kaptilnyy VA, Reyshtat DY. Preeclampsia: definition, new in pathogenesis, guidelines, treatment and prevention. V.F. Snegirev Archives of Obstetrics and Gynecology. 2020;7(1):19–30. EDN: ISNWEG doi: 10.18821/2313-8726-2020-7-1-19-30

[10]

Каптильный В.А., Рейштат, Д.Ю. Преэклампсия: определение, новое в патогенезе, методические рекомендации. лечение и профилактика // Архив акушерства и гинекологии им. В.Ф. Снегирева. 2020. Т. 7, № 1. С. 19–30. EDN: ISNWEG doi: 10.18821/2313-8726-2020-7-1-19-30

[11]

Ulfsdottir H, Grandahl M, Bjork J, et al. The association between pre-eclampsia and neonatal complications in relation to gestational age. Acta Paediatr. 2024;113(3):426–433. doi: 10.1111/apa.17080

[12]

Ulfsdottir H., Grandahl M., Bjork J., et al. The association between pre-eclampsia and neonatal complications in relation to gestational age // Acta Paediatr. 2024. Vol. 113, N 3. P. 426–433. doi: 10.1111/apa.17080

[13]

Sharma DD, Chandresh NR, Javed A, et al. The management of preeclampsia: a comprehensive review of current practices and future directions. Cureus. 2024;16(1). doi: 10.7759/cureus.51512

[14]

Sharma D.D., Chandresh N.R., Javed A., et al. The management of preeclampsia: a comprehensive review of current practices and future directions // Cureus. 2024. Vol. 16, N 1. doi: 10.7759/cureus.51512

[15]

Ristovska EC, Genadieva-Dimitrova M, Todorovska B, et al. The role of endothelial dysfunction in the pathogenesis of pregnancy-related pathological conditions: a review. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2023;44(2):113–137. doi: 10.2478/prilozi-2023-0032

[16]

Ristovska E.C., Genadieva-Dimitrova M., Todorovska B., et al. The role of endothelial dysfunction in the pathogenesis of pregnancy-related pathological conditions: a review // Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2023. Vol. 44, N 2. P. 113–137. doi: 10.2478/prilozi-2023-0032

[17]

Thadhani R, Cerdeira AS, Karumanchi SA. Translation of mechanistic advances in preeclampsia to the clinic: long and winding road. FASEB J. 2024;38(3). doi: 10.1096/fj.202301808R

[18]

Thadhani R., Cerdeira A.S.,Karumanchi S.A. Translation of mechanistic advances in preeclampsia to the clinic: long and winding road // FASEB J. 2024. Vol. 38, N 3. doi: 10.1096/fj.202301808R

[19]

Tong M, Chen Q, James JL, et al. Micro- and nano-vesicles from first trimester human placentae carry flt-1 and levels are increased in severe preeclampsia. Front Endocrinol (Lausanne). 2017;8:174. doi: 10.3389/fendo.2017.00174

[20]

Tong M., Chen Q., James J.L., et al. Micro- and nano-vesicles from first trimester human placentae carry flt-1 and levels are increased in severe preeclampsia // Front Endocrinol (Lausanne). 2017. Vol. 8. P. 174. doi: 10.3389/fendo.2017.00174

[21]

Guan X, Fu Y, Liu Y, et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Front Immunol. 2023;14. doi: 10.3389/fimmu.2023.1156039

[22]

Guan X., Fu Y., Liu Y., et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis // Front Immunol. 2023. Vol. 14. doi: 10.3389/fimmu.2023.1156039

[23]

Wang Z, Zhao G, Zeng M, et al. Overview of extracellular vesicles in the pathogenesis of preeclampsiadagger. Biol Reprod. 2021;105(1):32–39. doi: 10.1093/biolre/ioab060

[24]

Wang Z., Zhao G., Zeng M., et al. Overview of extracellular vesicles in the pathogenesis of preeclampsiadagger // Biol Reprod. 2021. Vol. 105, N 1. P. 32–39. doi: 10.1093/biolre/ioab060

[25]

Paul N, Sultana Z, Fisher JJ, et al. Extracellular vesicles — crucial players in human pregnancy. Placenta. 2023;140:30–38. doi: 10.1016/j.placenta.2023.07.006

[26]

Paul N., Sultana Z., Fisher J.J., et al. Extracellular vesicles — crucial players in human pregnancy // Placenta. 2023. Vol. 140. P. 30–38. doi: 10.1016/j.placenta.2023.07.006

[27]

Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: a scoping review of methodology, rigour and results. J Extracell Vesicles. 2023;12(11). doi: 10.1002/jev2.12377

[28]

Barnes M.V.C., Pantazi P., Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: a scoping review of methodology, rigour and results // J Extracell Vesicles. 2023. Vol. 12, N 11. doi: 10.1002/jev2.12377

[29]

Schwager SC, Reinhart-King CA. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. Curr Top Membr. 2020;86:255–278. doi: 10.1016/bs.ctm.2020.08.004

[30]

Schwager S.C.,Reinhart-King C.A. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation // Curr Top Membr. 2020. Vol. 86. P. 255–278. doi: 10.1016/bs.ctm.2020.08.004

[31]

Mikhailova VA, Ovchinnikova OM, Zainulina MS, et al. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med. 2014;157(6):751–756. EDN: QKBKBP doi: 10.1007/s10517-014-2659-x

[32]

Михайлова В.А., Овчинникова О.М., Зайнулина М.С., и др. Выявление микрочастиц лейкоцитарного происхождения в периферической крови при физиологической беременности и при преэклампсии // Бюллетень экспериментальной биологии и медицины. 2014. Т. 157, № 6. С. 721–727. EDN: QKBKBP

[33]

Gelderman MP, Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol Biol. 2008;484:79–93. doi: 10.1007/978-1-59745-398-1_6

[34]

Gelderman M.P., Simak J. Flow cytometric analysis of cell membrane microparticles // Methods Mol Biol. 2008. Vol. 484. P. 79–93. doi: 10.1007/978-1-59745-398-1_6

[35]

Rakocevic J, Orlic D, Mitrovic-Ajtic O, et al. Endothelial cell markers from clinician’s perspective. Exp Mol Pathol. 2017;102(2):303–313. doi: 10.1016/j.yexmp.2017.02.005

[36]

Rakocevic J., Orlic D., Mitrovic-Ajtic O., et al. Endothelial cell markers from clinician’s perspective // Exp Mol Pathol. 2017. Vol. 102, N 2. P. 303–313. doi: 10.1016/j.yexmp.2017.02.005

[37]

Chen Z, Zhang M, Liu Y, et al. VEGF-A enhances the cytotoxic function of CD4(+) cytotoxic T cells via the VEGF-receptor 1/VEGF-receptor 2/AKT/mTOR pathway. J Transl Med. 2023;21(1):74. doi: 10.1186/s12967-023-03926-w

[38]

Chen Z., Zhang M., Liu Y., et al. VEGF-A enhances the cytotoxic function of CD4(+) cytotoxic T cells via the VEGF-receptor 1/VEGF-receptor 2/AKT/mTOR pathway // J Transl Med. 2023. Vol. 21, N 1. P. 74. doi: 10.1186/s12967-023-03926-w

[39]

Liu X, Li Z, Sun J, et al. Interaction between PD-L1 and soluble VEGFR1 in glioblastoma-educated macrophages. BMC Cancer. 2023;23(1):259. doi: 10.1186/s12885-023-10733-5

[40]

Liu X., Li Z., Sun J., et al. Interaction between PD-L1 and soluble VEGFR1 in glioblastoma-educated macrophages // BMC Cancer. 2023. Vol. 23, N 1. P. 259. doi: 10.1186/s12885-023-10733-5

[41]

Kideryova L, Pytlik R, Benesova K, et al. Endothelial cells (EC) and endothelial precursor cells (EPC) kinetics in hematological patients undergoing chemotherapy or autologous stem cell transplantation (ASCT). Hematol Oncol. 2010;28(4):192–201. doi: 10.1002/hon.941

[42]

Kideryova L., Pytlik R., Benesova K., et al. Endothelial cells (EC) and endothelial precursor cells (EPC) kinetics in hematological patients undergoing chemotherapy or autologous stem cell transplantation (ASCT) // Hematol Oncol. 2010. Vol. 28, N 4. P. 192–201. doi: 10.1002/hon.941

[43]

Genkel V, Dolgushin I, Baturina I, et al. Associations between Circulating VEGFR2(hi)-neutrophils and carotid plaque burden in patients aged 40-64 without established atherosclerotic cardiovascular disease. J Immunol Res. 2022;(2022). doi: 10.1155/2022/1539935

[44]

Genkel V., Dolgushin I., Baturina I., et al. Associations between circulating VEGFR2(hi)-neutrophils and carotid plaque burden in patients aged 40–64 without established atherosclerotic cardiovascular disease // J Immunol Res. 2022. Vol. 2022. doi: 10.1155/2022/1539935

[45]

Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res. 2019;115(9):1425–1434. doi: 10.1093/cvr/cvz132

[46]

Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology // Cardiovasc Res. 2019. Vol. 115, N 9. P. 1425–1434. doi: 10.1093/cvr/cvz132

[47]

Guilhem A, Ciudad M, Aubriot-Lorton MH, et al. Pro-angiogenic changes of T-helper lymphocytes in hereditary hemorrhagic telangiectasia. Front Immunol. 2023;14. doi: 10.3389/fimmu.2023.1321182

[48]

Guilhem A., Ciudad M., Aubriot-Lorton M.H., et al. Pro-angiogenic changes of T-helper lymphocytes in hereditary hemorrhagic telangiectasia // Front Immunol. 2023. Vol. 14. doi: 10.3389/fimmu.2023.1321182

[49]

Choi SM, Park HJ, Choi EA, et al. Cellular heterogeneity of circulating CD4(+)CD8(+) double-positive T cells characterized by single-cell RNA sequencing. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-03013-4

[50]

Choi S.M., Park H.J., Choi E.A., et al. Cellular heterogeneity of circulating CD4(+)CD8(+) double-positive T cells characterized by single-cell RNA sequencing // Sci Rep. 2021. Vol. 11, N 1. doi: 10.1038/s41598-021-03013-4

[51]

Kuzilkova D, Punet-Ortiz J, Aui PM, et al. Standardization of workflow and flow cytometry panels for quantitative expression profiling of surface antigens on blood leukocyte subsets: an HCDM CDmaps initiative. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.827898

[52]

Kuzilkova D., Punet-Ortiz J., Aui P.M., et al. Standardization of workflow and flow cytometry panels for quantitative expression profiling of surface antigens on blood leukocyte subsets: an HCDM CDmaps initiative // Front Immunol. 2022. Vol. 13. doi: 10.3389/fimmu.2022.827898

[53]

Pirabe A, Fruhwirth S, Brunnthaler L, et al. Age-dependent surface receptor expression patterns in immature versus mature platelets in mouse models of regenerative thrombocytopenia. Cells. 2023;12(19). doi: 10.3390/cells12192419

[54]

Pirabe A., Fruhwirth S., Brunnthaler L., et al. Age-dependent surface receptor expression patterns in immature versus mature platelets in mouse models of regenerative thrombocytopenia // Cells. 2023. Vol. 12, N 19. doi: 10.3390/cells12192419

[55]

Arakelian L, Lion J, Churlaud G, et al. Endothelial CD34 expression and regulation of immune cell response in-vitro. Sci Rep. 2023;13(1). doi: 10.1038/s41598-023-40622-7

[56]

Arakelian L., Lion J., Churlaud G., et al. Endothelial CD34 expression and regulation of immune cell response in-vitro // Sci Rep. 2023. Vol. 13, N 1. doi: 10.1038/s41598-023-40622-7

[57]

Pongerard A, Mallo L, Gachet C, et al. Leukodepletion filters-derived CD34+ cells as a cell source to study megakaryocyte differentiation and platelet formation. J Vis Exp. 2021;171. doi: 10.3791/62499

[58]

Pongerard A., Mallo L., Gachet C., et al. Leukodepletion filters-derived CD34+ cells as a cell source to study megakaryocyte differentiation and platelet formation // J Vis Exp. 2021. N 171. doi: 10.3791/62499

[59]

Dragovic RA, Southcombe JH, Tannetta DS, et al. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol Reprod. 2013;89(6):151. doi: 10.1095/biolreprod.113.113266

[60]

Dragovic R.A., Southcombe J.H., Tannetta D.S., et al. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women // Biol Reprod. 2013. Vol. 89, N 6. P. 151. doi: 10.1095/biolreprod.113.113266

[61]

Rousseau M, Belleannee C, Duchez AC, et al. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One. 2015;10(1). doi: 10.1371/journal.pone.0116812

[62]

Rousseau M., Belleannee C., Duchez A.C., et al. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment // PLoS One. 2015. Vol. 10, N 1. P. e0116812. doi: 10.1371/journal.pone.0116812

[63]

Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res. 2012;110(2):356–369. doi: 10.1161/CIRCRESAHA.110.233403

[64]

Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis // Circ Res. 2012. Vol. 110, N 2. P. 356–369. doi: 10.1161/CIRCRESAHA.110.233403

[65]

Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–2448. doi: 10.1182/blood-2007-03-078709

[66]

Deregibus M.C., Cantaluppi V., Calogero R., et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA // Blood. 2007. Vol. 110, N 7. P. 2440–2448. doi: 10.1182/blood-2007-03-078709

[67]

Tokes-Fuzesi M, Ruzsics I, Rideg O, et al. Role of microparticles derived from monocytes, endothelial cells and platelets in the exacerbation of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3749–3757. doi: 10.2147/COPD.S175607

[68]

Tokes-Fuzesi M., Ruzsics I., Rideg O., et al. Role of microparticles derived from monocytes, endothelial cells and platelets in the exacerbation of COPD // Int J Chron Obstruct Pulmon Dis. 2018. Vol. 13. P. 3749–3757. doi: 10.2147/COPD.S175607

[69]

Deng F, Wang S, Zhang L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review. J Cell Mol Med. 2017;21(9):1698–1710. doi: 10.1111/jcmm.13125

[70]

Deng F., Wang S., Zhang L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review // J Cell Mol Med. 2017. Vol. 21, N 9. P. 1698–1710. doi: 10.1111/jcmm.13125

[71]

Wang J, Zhong Y, Ma X, et al. Analyses of endothelial cells and endothelial progenitor cells released microvesicles by using microbead and q-dot based nanoparticle tracking analysis. Sci Rep. 2016;6. doi: 10.1038/srep24679

[72]

Wang J., Zhong Y., Ma X., et al. Analyses of endothelial cells and endothelial progenitor cells released microvesicles by using microbead and q-dot based nanoparticle tracking analysis // Sci Rep. 2016. Vol. 6. doi: 10.1038/srep24679

[73]

Clarke LA, Hong Y, Eleftheriou D, et al. Endothelial injury and repair in systemic vasculitis of the young. Arthritis Rheum. 2010;62(6):1770–1780. doi: 10.1002/art.27418

[74]

Clarke L.A., Hong Y., Eleftheriou D., et al. Endothelial injury and repair in systemic vasculitis of the young // Arthritis Rheum. 2010. Vol. 62, N 6. P. 1770–1780. doi: 10.1002/art.27418

[75]

Bar-Sela G, Cohen I, Avisar A, et al. Circulating blood extracellular vesicles as a tool to assess endothelial injury and chemotherapy toxicity in adjuvant cancer patients. PLoS One. 2020;15(10). doi: 10.1371/journal.pone.0240994

[76]

Bar-Sela G., Cohen I., Avisar A., et al. Circulating blood extracellular vesicles as a tool to assess endothelial injury and chemotherapy toxicity in adjuvant cancer patients // PLoS One. 2020. Vol. 15, N 10. doi: 10.1371/journal.pone.0240994

[77]

Murugesan S, Hussey H, Saravanakumar L, et al. Extracellular vesicles from women with severe preeclampsia impair vascular endothelial function. Anesth Analg. 2022;134(4):713–723. doi: 10.1213/ANE.0000000000005812

[78]

Murugesan S., Hussey H., Saravanakumar L., et al. Extracellular vesicles from women with severe preeclampsia impair vascular endothelial function // Anesth Analg. 2022. Vol. 134, N 4. P. 713–723. doi: 10.1213/ANE.0000000000005812

[79]

Alahari S, Ausman J, Porter T, et al. Fibronectin and JMJD6 signature in circulating placental extracellular vesicles for the detection of preeclampsia. Endocrinology. 2023;164(4). doi: 10.1210/endocr/bqad013

[80]

Alahari S., Ausman J., Porter T., et al. Fibronectin and JMJD6 signature in circulating placental extracellular vesicles for the detection of preeclampsia // Endocrinology. 2023. Vol. 164, N 4. doi: 10.1210/endocr/bqad013

[81]

Levine L, Habertheuer A, Ram C, et al. Syncytiotrophoblast extracellular microvesicle profiles in maternal circulation for noninvasive diagnosis of preeclampsia. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-62193-7

[82]

Levine L., Habertheuer A., Ram C., et al. Syncytiotrophoblast extracellular microvesicle profiles in maternal circulation for noninvasive diagnosis of preeclampsia // Sci Rep. 2020. Vol. 10, N 1. doi: 10.1038/s41598-020-62193-7

[83]

Messerli M, May K, Hansson SR, et al. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta. 2010;31(2):106–112. doi: 10.1016/j.placenta.2009.11.011

[84]

Messerli M., May K., Hansson S.R., et al. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes // Placenta. 2010. Vol. 31, N 2. P. 106–112. doi: 10.1016/j.placenta.2009.11.011

[85]

Condrat CE, Varlas VN, Duica F, et al. Pregnancy-related extracellular vesicles revisited. Int J Mol Sci. 2021;22(8). doi: 10.3390/ijms22083904

[86]

Condrat C.E., Varlas V.N., Duica F., et al. Pregnancy-related extracellular vesicles revisited // Int J Mol Sci. 2021. Vol. 22, N 8. doi: 10.3390/ijms22083904

[87]

Campello E, Spiezia L, Radu CM, et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res. 2015;136(2):427–431. doi: 10.1016/j.thromres.2015.05.029

[88]

Campello E., Spiezia L., Radu C.M., et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia // Thromb Res. 2015. Vol. 136, N 2. P. 427–431. doi: 10.1016/j.thromres.2015.05.029

[89]

Alijotas-Reig J, Palacio-Garcia C, Farran-Codina I, et al. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction. Am J Reprod Immunol. 2012;67(2):140–151. doi: 10.1111/j.1600-0897.2011.01072.x

[90]

Alijotas-Reig J., Palacio-Garcia C., Farran-Codina I., et al. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction // Am J Reprod Immunol. 2012. Vol. 67, N 2. P. 140–151. doi: 10.1111/j.1600-0897.2011.01072.x

[91]

Salem M, Kamal S, El Sherbiny W, et al. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters. Hematology. 2015;20(3):154–159. doi: 10.1179/1607845414Y.0000000178

[92]

Salem M., Kamal S., El Sherbiny W., et al. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters // Hematology. 2015. Vol. 20, N 3. P. 154–159. doi: 10.1179/1607845414Y.0000000178

[93]

Munaut C, Lorquet S, Pequeux C, et al. Differential expression of Vegfr-2 and its soluble form in preeclampsia. PLoS One. 2012;7(3). doi: 10.1371/journal.pone.0033475

[94]

Munaut C., Lorquet S., Pequeux C., et al. Differential expression of Vegfr-2 and its soluble form in preeclampsia // PLoS One. 2012. Vol. 7, N 3. doi: 10.1371/journal.pone.0033475

[95]

Lee DK, Nevo O. Microvascular endothelial cells from preeclamptic women exhibit altered expression of angiogenic and vasopressor factors. Am J Physiol Heart Circ Physiol. 2016;310(11):H1834–H1841. doi: 10.1152/ajpheart.00083.2016

[96]

Lee D.K., Nevo O. Microvascular endothelial cells from preeclamptic women exhibit altered expression of angiogenic and vasopressor factors // Am J Physiol Heart Circ Physiol. 2016. Vol. 310, N 11. P. H1834–H1841. doi: 10.1152/ajpheart.00083.2016

[97]

Abel T, Moodley J, Khaliq OP, et al. Vascular endothelial growth factor receptor 2: molecular mechanism and therapeutic potential in preeclampsia comorbidity with human immunodeficiency virus and severe acute respiratory syndrome coronavirus 2 infections. Int J Mol Sci. 2022;23(22). doi: 10.3390/ijms232213752

[98]

Abel T., Moodley J., Khaliq O.P., et al. Vascular endothelial growth factor receptor 2: molecular mechanism and therapeutic potential in preeclampsia comorbidity with human immunodeficiency virus and severe acute respiratory syndrome coronavirus 2 infections // Int J Mol Sci. 2022. Vol. 23, N 22. doi: 10.3390/ijms232213752

[99]

Shomer E, Katzenell S, Zipori Y, et al. Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function. Hypertension. 2013;62(5):893–908. doi: 10.1161/HYPERTENSIONAHA.113.01494

[100]

Shomer E., Katzenell S., Zipori Y., et al. Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function // Hypertension. 2013. Vol. 62, N 5. P. 893–898. doi: 10.1161/HYPERTENSIONAHA.113.01494

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/