AT-rich interactive domain-containing protein 1A (ARID1A) expression in placentas with late fetal growth restriction
Tatiana G. Tral , Sofia R. Yusenko , Gulrukhsor Kh. Tolibova , Igor Yu. Kogan
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (2) : 99 -108.
AT-rich interactive domain-containing protein 1A (ARID1A) expression in placentas with late fetal growth restriction
BACKGROUND: Fetal growth restriction, which is considered as a multifactorial pathology, is a critical problem in obstetrics. The role of mitochondrial dysfunction in the pathogenesis of fetal growth restriction is not yet clear. However, it is known that it leads to oxidative stress, damage to cells and tissues, and dysfunction of key mechanisms for maintaining energy balance, the outcome of which may be the development of placental insufficiency. It is likely that AT-rich interactive domain-containing protein 1A (ARID1A) is involved in the development and function of the human placenta and may be an important marker in the development of fetal growth restriction.
AIM: The aim of this study was to evaluate ARID1A protein expression in the placental villous tree in late fetal growth restriction.
MATERIALS AND METHODS: This study included 50 placentas from children born at full-term gestation (37–40 weeks). The main study group consisted of placentas with late fetal growth restriction and without major extragenital pathology (n = 35). The control group comprised 15 placentas without fetal growth restriction (n = 15). Histological (n = 50) and immunohistochemical examinations of placentas (15 placentas in the main group and 10 placentas in the control group) using primary monoclonal antibodies to ARID1A were performed.
RESULTS: In the study group with fetal growth restriction, chronic placental insufficiency was verified in all cases, dissociated chronic placental insufficiency (25 cases; 71.4%) being predominant, of which 23 cases (92%) were compensated, including 16 cases (69.6%) with moderate circulatory disorders. Hypoplastic chronic placental insufficiency was diagnosed in ten cases (28.6%) and was subcompensated with the presence of pronounced circulatory disorders. In the arteries of the stem villi, the ARID1A protein expression area did not differ between the study groups (p = 0.096), while in the veins in the stem villi with fetal growth restriction, we verified a decrease compared to control (p = 0.05). In the vascular bed of the villi with subcompensated dissociated chronic placental insufficiency, ARID1A protein expression was higher compared to hypoplastic chronic placental insufficiency (p = 0.041).
CONCLUSIONS: Chronic placental insufficiency combined with fetal growth restriction is a serious complication of pregnancy with the development of structural and functional abnormalities and dysregulation of placental mechanisms. The ARIDA1A protein expression data obtained, depending on the degree of compensation for chronic placental insufficiency, may indicate the activation of compensatory metabolic mechanisms to maintain the functional activity of the placenta and preserve the viability of the fetus.
fetal growth restriction / chronic placental insufficiency / ARID1A protein
| [1] |
Burlutskaya AV, Shadrin SA, Starova AV. Physical development of children born with intrauterine development delay. Effective pharmacotherapy. 2019;15(43):20–24. EDN: LFJSXU doi: 10.33978/2307-3586-2019-15-43-20-24 |
| [2] |
Бурлуцкая А.В., Шадрин С.А., Статова А.В. Физическое развитие детей, рожденных с задержкой внутриутробного развития // Эффективная фармакотерапия. 2019. Т. 15, № 43. С. 20–24. EDN: LFJSXU doi: 10.33978/2307-3586-2019-15-43-20-24 |
| [3] |
Savchev S, Figueras F, Sanz-Cortes M, et al. Evaluation of anoptimal gestational age cut-off for the definition of early- andlate-onset fetal growth restriction. Fetal Diagn Ther. 2014;36(2):99–105. doi: 10.1159/000355525 |
| [4] |
Savchev S., Figueras F., Sanz-Cortes M., et al. Evaluation of anoptimal gestational age cut-off for the definition of early-andlate-onset fetal growth restriction // Fetal Diagn Ther. 2014. Vol. 36, N. 2. Р. 99–105. doi: 10.1159/000355525 |
| [5] |
Monaghan C, Thilaganathan B. Fetal Growth Restriction (FGR): how the differences between early and late FGR impact on clinical management? J Fetal Med. 2016;3(3):101–107. doi: 10.1007/s40556-016-0098-7 |
| [6] |
Monaghan C., Thilaganathan B. Fetal Growth Restriction (FGR): how the differences between early and late FGR impact on clinical management? // J Fetal Med. 2016. Vol. 3, N. 3. P. 101–107. doi: 10.1007/s40556-016-0098-7 |
| [7] |
Ignatko IV, Denisova YuV, Filippova YuA, et al. Differential diagnosis of early and late forms of fetal developmental delay syndrome. Ural Medical Journal. 2020;(12):91–97. EDN: LVFMBP doi: 10.25694/URMJ.2020.12.22 |
| [8] |
Игнатко И.В., Денисова Ю.В., Филиппова Ю.А, и др. Дифференциальная диагностика ранней и поздней форм синдрома задержки развития плода // Уральский медицинский журнал. 2020. № 12(195) С. 91–97. EDN: LVFMBP doi: 10.25694/URMJ.2020.12.22 |
| [9] |
Murki S, Sharma D Intrauterine growth retardation — a review article. J Neonatal Biol. 2014;3(3). doi: 10.4172/2167-0897.1000135 |
| [10] |
Murki S., Sharma D. Intrauterine growth retardation — a review article // J Neonatal Biol. 2014. Vol. 3, N. 3. doi: 10.4172/2167-0897.1000135 |
| [11] |
Kesavan K, Devaskar SU. Intrauterine growth restriction: postnatal monitoring and outcomes. Pediatr Clin North Am. 2019;66(2):403–423. doi: 10.1016/j.pcl.2018.12.009 |
| [12] |
Kesavan K., Devaskar S.U. Intrauterine growth restriction: postnatal monitoring and outcomes // Pediatr Clin North Am. 2019 Vol. 66, N. 2. P. 403–423. doi: 10.1016/j.pcl.2018.12.009 |
| [13] |
Goryunova AG, Simonova MS, Murashko AV. Fetal growth retardation syndrome and placenta adaptation. Archive of obstetrics and gynecology named after V.F. Snegirev. 2016;3(2):76–80. EDN: WFPXJP doi: 10.18821/2313-8726-2016-3-2-76-80 |
| [14] |
Горюнова А.Г., Симонова М.С., Мурашко А.В. Синдром задержки роста плода и адаптация плаценты // Архив акушерства и гинекологии им. В.Ф. Снегирева. 2016. Т. 3, № 2. С. 76–80. EDN: WFPXJP doi: 10.18821/2313-8726-2016-3-2-76-80 |
| [15] |
Sidorenko VN, Kukhta IS, Baranovskaya EO, et al. Insufficient fetal growth: modern possibilities of prenatal diagnosis in the practice of an obstetrician-gynecologist. Medical Journal. 2022;(2):143–150. EDN: WEPBUI doi: 10.51922/1818-426X.2022.2.143 |
| [16] |
Сидоренко В.Н., Кухта И.С., Барановская Е.О., и др. Недостаточный рост плода: современные возможности пренатальной диагностики в практике врача акушера-гинеколога // Медицинский журнал. 2022. № 2(80). С. 143–150. EDN: WEPBUI doi: 10.51922/1818-426X.2022.2.143 |
| [17] |
Figueras F, Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36(2):86–98. doi: 10.1159/000357592 |
| [18] |
Figueras F., Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol // Fetal Diagn Ther. 2014. Vol. 36, N. 2. P. 86–98. doi: 10.1159/000357592 |
| [19] |
Schreurs CA, Mol BW, de Boer MA. Re: consensus definition for placental fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2017;49(1):159. doi: 10.1002/uog.17321 |
| [20] |
Schreurs C.A., Mol B.W., de Boer M.A. Re: consensus definition for placental fetal growth restriction: a Delphi procedure // Ultrasound Obstet Gynecol. 2017. Vol. 49, N. 1. P. 159. doi: 10.1002/uog.17321 |
| [21] |
Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp Cell Res. 2017;359(1):195–204. doi: 10.1016/j.yexcr.2017.07.029 |
| [22] |
Zhou X., Han T.L., Chen H., et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia // Exp Cell Res. 2017. Vol. 359, N. 1. P. 195–204. doi: 10.1016/j.yexcr.2017.07.029 |
| [23] |
Bashmakova NV, Tsyvyan PB, Chistyakova GN, et al. The role of endothelial dysfunction in the occurrence of fetal growth retardation syndrome. Russian bulletin of obstetrician-gynecologist. 2017;17(3):21–26. EDN: YSPMRD doi: 10.17116/rosakush201717321-26 |
| [24] |
Башмакова Н.В. Цывьян П.Б., Чистякова Г.Н., и др. Роль дисфункции эндотелия в возникновении синдрома задержки роста плода // Российский вестник акушера-гинеколога. 2017. Т. 17, № 3. С. 21–26. EDN: YSPMRD doi: 10.17116/rosakush201717321-26 |
| [25] |
Thilaganathan B. Placental syndromes: getting to the heart of the matter. Ultrasound Obstet Gynecol. 2017;49(1):7–9. doi: 10.1002/uog.17378 |
| [26] |
Thilaganathan B. Placental syndromes: getting to the heart of the matter // Ultrasound Obstet Gynecol. 2017. Vol. 49, N. 1. P. 7–9. doi: 10.1002/uog.17378 |
| [27] |
Mecacci F, Avagliano L, Lisi F, et al. Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? Reprod Sci. 2021;28(9):2422–2435. doi: 10.1007/s43032-020-00393-2 |
| [28] |
Mecacci F., Avagliano L., Lisi F., et al. Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? // Reprod Sci. 2021. Vol. 28, N. 9. P. 2422–2435. doi: 10.1007/s43032-020-00393-2 |
| [29] |
Osol G, Ko NL, Mandalà M. Plasticity of the maternal vasculature during pregnancy. Annu Rev Physiol. 2019;81:89–111. doi: 10.1146/annurev-physiol-020518-114435 |
| [30] |
Osol G., Ko N.L., Mandalà M. Plasticity of the maternal vasculature during pregnancy // Annu Rev Physiol. 2019. Vol. 81. P. 89–111. doi: 10.1146/annurev-physiol-020518-114435 |
| [31] |
Sosnina AK, Tral TG, Krylova YS. Functional morphology of the placenta villosa tree in full-term single pregnancy achieved by methods of assisted reproductive technologies. Journal of Obstetrics and women’s diseases. 2016;65(3):43–51. EDN: WDNBUZ doi: 10.17816/JOWD65343-51 |
| [32] |
Соснина А.К., Траль Т.Г., Крылова Ю.С. Функциональная морфология виллезного дерева плацент при доношенной одноплодной беременности, достигнутой методами вспомогательных репродуктивных технологий // Журнал акушерства и женских болезней. 2016. Т. 65, № 3. C. 43–51. EDN: WDNBUZ doi: 10.17816/JOWD65343-51 |
| [33] |
Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698–713. doi: 10.5858/arpa.2015-0225-CC |
| [34] |
Khong T.Y., Mooney E.E., Ariel I., et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement // Arch Pathol Lab Med. 2016. Vol. 140, N. 7. P. 698–713. doi: 10.5858/arpa.2015-0225-CC |
| [35] |
Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55. doi: 10.3389/fendo.2019.00055 |
| [36] |
Malhotra A., Allison B.J., Castillo-Melendez M., et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact // Front Endocrinol. 2019 Vol. 7, N. 10. P. 55. doi: 10.3389/fendo.2019.00055 |
| [37] |
Bendix I, Miller SL, Winterhager E. Editorial: causes and consequences of intrauterine growth restriction. Front Endocrinol. 2020;11:205. doi: 10.3389/fendo.2020.00205 |
| [38] |
Bendix I., Miller S.L., Winterhager E. Editorial: causes and consequences of intrauterine growth restriction // Frontiers in endocrinology. 2020. Vol. 11. P. 205. doi: 10.3389/fendo.2020.00205 |
| [39] |
Nesterova EA, Putilova NV, Tretyakova TB, et al. The role of the genetically determined nature of fetal hemostasis largely leads to the formation of placental insufficiency. Obstetrics and gynecology. 2017;(9):56–62. EDN: ZHDBKN doi: 10.18565/aig.2017.9.58-62 |
| [40] |
Нестерова Э.А., Путилова Н.В., Третьякова Т.Б., и др. Роль генетически детерминированной природы гемостаза плода в значительной степени приводит к формированию плацентарной недостаточности // Акушерство и гинекология. 2017. № 9. С. 56–62. EDN: ZHDBKN doi: 10.18565/aig.2017.9.58-62 |
| [41] |
Skripnichenko YuP, Baranov II, Vysokykh MYu. Determination of the level of mitochondrial DNA in the blood for predicting pregnancy complications. Obstetrics and Gynecology. 2018;(2):44–49. EDN: YPUFZV doi: 10.18565/aig.2018.2.44-49 |
| [42] |
Скрипниченко Ю.П., Баранов И.И., Высоких М.Ю. Определение уровня митохондриальной ДНК в крови для прогнозирования осложнений беременности // Акушерство и гинекология. 2018. № 2. С. 44–49. EDN: YPUFZV doi: 10.18565/aig.2018.2.44-49 |
| [43] |
Fantone S, Mazzucchelli R, Giannubilo SR, et al. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem Cell Biol. 2020;154(3):339–346. doi: 10.1007/s00418-020-01892-8 |
| [44] |
Fantone S., Mazzucchelli R., Giannubilo S.R., et al. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia // Histochem Cell Biol. 2020. Vol. 154, N. 3. P. 339–346. doi: 10.1007/s00418-020-01892-8 |
| [45] |
Insufficient fetal growth requiring the provision of medical care to the mother (fetal growth retardation) [cited 15.02.2024]. Available from: https://drive.google.com/file/u/0/d/1obB33Yu9x-mjsoPidNnDFTwkFyhc-JhG/view. (In Russ.) |
| [46] |
Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Режим доступа: https://drive.google.com/file/u/0/d/1obB33Yu9x-mjsoPidNnDFTwkFyhc-JhG/view. Дата обращения: 15.02.2024. |
| [47] |
Arzhanova ON, Paykacheva YuM, Ruleva AV. et al. Causes of obstetric complications in patients after assisted reproductive technologies. Journal of obstetrics and women’s diseases. 2017;66(3):25–33. EDN: YZBNPB doi: 10.17816/JOWD66325-33 |
| [48] |
Aржанова О.Н., Пайкачева Ю.М., Рулёва А.В., и др. Причины акушерских осложнений у пациенток после вспомогательных репродуктивных технологий // Журнал акушерства и женских болезней. 2017. Т. 66, № 3. C. 25–33. EDN: YZBNPB doi: 10.17816/JOWD66325-33 |
| [49] |
Yusenko SR, Tral TG, Tolibova GKh, et al. Placental morphology in chronic placental insufficiency and fetal growth restriction. Gynecology, Obstetrics and Perinatology. 2022;21(3):95–101. EDN: VETYIF doi: 10.20953/1726-1678-2022-3-95-101 |
| [50] |
Юсенко С.Р., Траль Т.Г., Толибова Г.Х., и др. Морфологические особенности плацент при хронической плацентарной недостаточности и задержке роста плода // Вопросы гинекологии, акушерства и перинатологии. 2022. Т. 21, № 3. С. 95–101. EDN: VETYIF doi: 10.20953/1726-1678-2022-3-95-101 |
| [51] |
Unterscheider J, O’Donoghue K, Malone FD. Guidelines on fetal growth restriction: a comparison of recent national publications. Am J Perinatol. 2015;32(4):307–315. doi: 10.1055/s-0034-1387927 |
| [52] |
Unterscheider J., O’Donoghue K., Malone F.D. Guidelines on fetal growth restriction: a comparison of recent national publications // Am J Perinatol. 2015. Vol. 32, N. 4. P. 307–315. doi: 10.1055/s-0034-1387927 |
| [53] |
Sanchez-Aranguren L, Nadeem S. Bioenergetics adaptations and redox homeostasis in pregnancy and related disorders. Mol Cell Biochem. 2021;476(11):4003–4018. doi: 10.1007/s11010-021-04215-0 |
| [54] |
Sanchez-Aranguren L., Nadeem S. Bioenergetics adaptations and redox homeostasis in pregnancy and related disorders // Mol Cell Biochem. 2021. Vol. 476, N. 11. P. 4003–4018. doi: 10.1007/s11010-021-04215-0 |
| [55] |
Wang X, Khatri S, Broaddus R, et al. Deletion of arid1a in reproductive tract mesenchymal cells reduces fertility in female mice. Biol Reprod. 2016;94(4):93. doi: 10.1095/biolreprod.115.133637 |
| [56] |
Wang X., Khatri S., Broaddus R., et al. Deletion of arid1a in reproductive tract mesenchymal cells reduces fertility in female mice // Biol Reprod. 2016. Vol. 94, N. 4. P. 93. doi: 10.1095/biolreprod.115.133637 |
| [57] |
Jin M, Xu S, Li J, et al. Role of ARID1A in the regulation of human trophoblast migration and invasion. Reprod Sci. 2022;29(8):2363–2373. doi: 10.1007/s43032-021-00686-0 |
| [58] |
Jin M., Xu S., Li J., et al. Role of ARID1A in the regulation of human trophoblast migration and invasion // Reprod Sci. 2022. Vol. 29, N. 8. P. 2363–2373. doi: 10.1007/s43032-021-00686-0 |
Eсо-Vector
/
| 〈 |
|
〉 |