Hormonal status in women with respiratory viral infections during critical periods

Ekaterina V. Vyrupaeva , Natalya V. Semenova , Lubov I. Kolesnikova

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (4) : 95 -105.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (4) : 95 -105. DOI: 10.17816/JOWD626354
Reviews
review-article

Hormonal status in women with respiratory viral infections during critical periods

Author information +
History +
PDF

Abstract

Pregnancy and menopause are critical periods in a woman’s life. Due to physiological changes in the neuroendocrine system regulation, susceptibility to respiratory viral infections increases in these periods, while affecting all organs and systems of the human body.

The aim of this review was to analyze the literature data on the effect of acute respiratory viral infections on neuroendocrine regulation in women during pregnancy and menopause. We reviewed full-text publications in the public domain from the PubMed, eLibrary.ru, and Google Scholar databases with a coverage period of more than twenty years (2000–2023).

Disruptions of the progesterone and estrogen production during infection with the influenza A (H1N1) and influenza B viruses have been shown in experimental studies. Hormonal status changes in pregnant women are detected during infection with the influenza A virus (H3N2) and depend on antiviral antibody titers and the presence of fetoplacental insufficiency. Pregnant women with COVID-19 may experience changes in the brain structure activities, as indicated by a high frequency of those in olfactory sensitivity and psychoemotional disorders. During menopause, infection with the SARS-CoV-2 virus leads to changes in the production of thyroxine, prolactin, estradiol, testosterone, cortisol, 17-hydroxyprogesterone, and dehydroepiandrosterone sulfate.

Keywords

hormones / respiratory viral infections / COVID-19 / influenza / pregnancy / menopause

Cite this article

Download citation ▾
Ekaterina V. Vyrupaeva, Natalya V. Semenova, Lubov I. Kolesnikova. Hormonal status in women with respiratory viral infections during critical periods. Journal of obstetrics and women's diseases, 2024, 73(4): 95-105 DOI:10.17816/JOWD626354

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peretz J, Pekosz A, Lane AP, et al. Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors. Am J Physiol Lung Cell Mol Physiol. 2016;310(5):415–425. doi: 10.1152/ajplung.00398.2015

[2]

Peretz J., Pekosz A., Lane A.P., et al. Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors // Am J Physiol Lung Cell Mol Physiol. 2016. Vol. 310, N 5. P. 415–425. doi: 10.1152/ajplung.00398.2015

[3]

Belokriniczkaya TE, Shapovalov KG. Flu and pregnancy. Moscow: GEOTAR-Media, 2015. [cited 2024 Jan 1]. Режим доступа: https://www.studentlibrary.ru/book/ISBN9785970435946.html (In Russ.)

[4]

Белокриницкая Т.Е., Шаповалов К.Г. Грипп и беременность. Москва; ГЭОТАР-Медиа, 2015. Дата обращения: 31.01.2024. Режим доступа: https://www.studentlibrary.ru/book/ISBN9785970435946.html

[5]

Polyakov VM, Cherevikova IA, Myasishhev NA, et al. Cognitive and emotional impairments associated with COVID-19 (literature review). Acta Biomedica Scientifica. 2022;7(6):71–81. EDN: XGGBIB doi: 10.29413/ABS.2022-7.6.7

[6]

Поляков В.М., Черевикова И.А., Мясищев Н.А., и др. Когнитивные и эмоциональные нарушения, ассоциированные с COVID-19 (обзор литературы) // Acta Biomedica Scientifica. 2022. Т. 7, № 6. С. 71–81. EDN: XGGBIB doi: 10.29413/ABS.2022-7.6.7

[7]

Vyrupaeva EV, Semyonova NV, Rychkova LV, et al. Assessment of the general condition and quality of life of women of post-reproductive age after asymptomatic COVID-19 and 12 months after moderate COVID-19. Acta Biomedica Scientifica. 2022;7(5–1):77–85. EDN: XBDFEZ doi: 10.29413/ABS.2022-7.5-1.9

[8]

Вырупаева Е.В., Семёнова Н.В., Рычкова Л.В., и др. Оценка общего состояния и качества жизни женщин пострепродуктивного возраста, перенесших COVID-19 бессимптомно, и через 12 месяцев после среднетяжелой формы заболевания // Acta Biomedica Scientifica. 2022. Т. 7, № 5-1. С. 77–85. EDN: XBDFEZ doi: 10.29413/ABS.2022-7.5-1.9

[9]

Lanin DV, Zajceva NV, Dolgix OV. Assessment of the general condition and quality of life of women of post-reproductive age after asymptomatic COVID-19 and 12 months after moderate COVID-19. Advances in modern biology. 2011;131(2):122–134. EDN: NTRVIV

[10]

Ланин Д.В., Зайцева Н.В., Долгих О.В. Нейроэндокринные механизмы регуляции функций иммунной системы // Успехи современной биологии. 2011. Т. 131, № 2. С. 122–134. EDN: NTRVIV

[11]

Nikitin DA, Monaxov KN, Sokolovskij EV. The changes of the immune status and hormone profile in adolescents with atopic dermatitis. Bulletin of Dermatology and Venereology. 2000;1:22–24. (In Russ.)

[12]

Никитин Д.А., Монахов К.Н., Соколовский Е.В. Особенности фоновой секреции кортизола у больных атопическим дерматитом // Вестник дерматологии и венерологии. 2000. № 1. С. 22–24.

[13]

Engelmann F, Rivera A, Park B, et al. Impact of estrogen therapy on lymphocyte homeostasis and the response to seasonal influenza vaccine in post-menopausal women. PLoS One. 2016;11(2). doi: 10.1371/journal.pone.0149045

[14]

Engelmann F., Rivera A., Park B., et al. Impact of estrogen therapy on lymphocyte homeostasis and the response to seasonal influenza vaccine in post-menopausal women // PLoS One. 2016. Vol. 11, N 2. doi: 10.1371/journal.pone.0149045

[15]

Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98(1):477–504. doi: 10.1152/physrev.00039.2016

[16]

Dantzer R. Neuroimmune Interactions: from the brain to the immune system and vice versa // Physiol Rew. 2018. Vol. 98, N 1. P. 477–504. doi: 10.1152/physrev.00039.2016

[17]

Quatrini L, Vivier E, Ugolini S. Neuroendocrine regulation of innate lymphoid cells. Immunol Rev. 2018;286(1):120–136. doi: 10.1111/imr.12707

[18]

Quatrini L., Vivier E., Ugolini S. Neuroendocrine regulation of innate lymphoid cells // Immunol Rev. 2018. Vol. 286, N 1. P. 120–136. doi: 10.1111/imr.12707

[19]

Vila-Pérez D, Jordan-García I. Relative adrenal insufficiency in pediatric septic shock. J Pediatr Intensive Care. 2015;4(3):129–137. doi: 10.1055/s-0035-1559821

[20]

Vila-Pérez D., Jordan-García I. Relative adrenal insufficiency in pediatric septic shock // J Pediatr Intensive Care. 2015. Vol. 4, N 3. P. 129–137. doi: 10.1055/s-0035-1559821

[21]

Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–247. doi: 10.1038/nri.2017.1

[22]

Cain D.W., Cidlowski J.A. Immune regulation by glucocorticoids // Nat Rev Immunol. 2017. Vol. 17, N 4. P. 233–247. doi: 10.1038/nri.2017.1

[23]

Meduri GU, Chrousos GP. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front Endocrinol (Lausanne). 2020;11:161. doi: 10.3389/fendo.2020.00161

[24]

Meduri G.U., Chrousos G.P. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections // Front Endocrinol (Lausanne). 2020. Vol. 11. doi: 10.3389/fendo.2020.00161

[25]

Calandra T, Bucala R. Macrophage Migration Inhibitory Factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit Rev Immunol. 2017;37(2–6):359–370. doi: 10.1615/CritRevImmunol.v37.i2-6.90

[26]

Calandra T., Bucala R. Macrophage Migration Inhibitory Factor (MIF): a glucocorticoid counter-regulator within the immune system // Crit Rev Immunol. 2017. Vol. 37, N 2–6. P. 359–370. doi: 10.1615/CritRevImmunol.v37.i2-6.90

[27]

Montesinos MDM, Pellizas CG. Thyroid hormone action on innate immunity. Front Endocrinol (Lausanne). 2019;10:350. doi: 10.3389/fendo.2019.00350

[28]

Montesinos M.D.M., Pellizas C.G. Thyroid hormone action on innate immunity // Front Endocrinol (Lausanne). 2019. Vol. 10. P. 350. doi: 10.3389/fendo.2019.00350

[29]

Skripchenko NV, Zheleznikova GF, Alekseeva LA, et al. Hormones and cytokines as biomarkers of severe infections in children. Infectious diseases. 2022;20(1):107–119. EDN: AZFPKE doi: 10.20953/1729-9225-2022-1-107-119

[30]

Скрипченко Н.В., Железникова Г.Ф., Алексеева Л.А., и др. Гормоны и цитокины как биомаркеры тяжелых инфекций у детей // Инфекционные болезни. 2022. Т. 20, № 1. С. 107–119. EDN: AZFPKE doi: 10.20953/1729-9225-2022-1-107-119

[31]

Cervantes O, Cruz Talavera I, Every E, et al. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev. 2022;308(1):123–148. doi: 10.1111/imr.13078

[32]

Cervantes O., Cruz Talavera I., Every E., et al. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses // Immunol Rev. 2022. Vol. 308, N 1. P. 123–148. doi: 10.1111/imr.13078

[33]

Sholoxov LF, Kolesnikova LI, Protopopova NV, et al. patterns of development of adaptive and disadaptive reactions of the body’s neuroendocrine regulation system in the dynamics of pregnancy in women with varying degrees of risk of developing perinatal pathology. Health. Medical ecology. Science. 2009;4–5(39–40):203–205. (In Russ.) EDN: KVDTTH

[34]

Шолохов Л.Ф., Колесникова Л.И., Протопопова Н.В., и др. Закономерности развития адаптивных и дизадаптивных реакций системы нейроэндокринной регуляции организма в динамике беременности у женщин с различной степенью риска развития перинатальной патологии // Здоровье. Медицинская экология. Наука. 2009. № 4–5 (39–40). С. 203–205. EDN: KVDTTH

[35]

Gülsah G, Arck PC. Sex, immunity and influenz. J Infect Dis. 2014;209(3):93–99. doi: 10.1093/infdis/jiu020

[36]

Gülsah G., Arck P.C. Sex, immunity and influenz // J Infectious Diseases. 2014. Vol. 209, N 3. P. 93–99. doi: 10.1093/infdis/jiu020

[37]

Littauer EQ, Esser ES, Antao OQ, et al. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLoS Pathogens. 2017;13(11). doi: 10.1371/journal.ppat.1006757

[38]

Littauer E.Q., Esser E.S., Antao O.Q., et al. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation // PLoS Pathog. 2017. Vol. 13, N 11. doi: 10.1371/journal.ppat.1006757

[39]

Kim JC, Kim HM, Kang YM, et al. Severe pathogenesis of influenza B virus in pregnant mice. Virology. 2014;448:74–81. doi: 10.1016/j.virol.2013.10.001

[40]

Kim J.C., Kim H.M., Kang Y.M., et al. Severe pathogenesis of influenza B virus in pregnant mice // Virology. 2014. Vol. 448. P. 74–81. doi: 10.1016/j.virol.2013.10.001

[41]

Gorikov IN, Lucenko MT, Andrievskaya IA. The change of hormonal status in women witn influenza virus a(h3n2) in the first trimester of pregnancy. Bulletin of Physiology and Pathology of Respiration. 2016;60:80–84. EDN: WDMVXN doi: 10.12737/20126

[42]

Гориков И.Н., Луценко М.Т., Андриевская И.А. Изменение гормонального статуса у женщин с гриппом А(Н3N2) в первом триместре беременности // Бюллетень физиологии и патологии дыхания. 2016. № 60. С. 80–84. EDN: WDMVXN doi: 10.12737/20126

[43]

Gorikov IN. Fetoplacentar insufficiency in pregnant women with influenza а(н3n2) during third trimester of gestation period. Bulletin of Physiology and Pathology of Respiration. 2007;24:15–19. EDN: HYRLNH

[44]

Гориков И.Н. Фетоплацентарная недостаточность и ее критерии при гриппе А(Н3N2) у женщин в III триместре беременности // Бюллетень физиологии и патологии дыхания. 2007. № 24. С. 15–19. EDN: HYRLNH

[45]

Kosovceva AS, Bairova TA, Rychkova LV, et al. Smell and taste disorders in pregnant women with COVID-19. Acta Biomedica Scientifica. 2022;7(5–1):35–45. EDN: JWQUVY doi: 10.29413/ABS.2022-7.5-1.5

[46]

Косовцева А.С., Баирова Т.А., Рычкова Л.В., и др. Нарушения обоняния и вкуса у беременных, больных COVID-19 // Acta Biomedica Scientifica. 2022. Т. 7, № 5–1. С. 35–45. EDN: JWQUVY doi: 10.29413/ABS.2022-7.5-1.5

[47]

Cherny`x NM, Nosulya EV, Kim IA. The sense of smell in endocrine disorders (a literature review). Russian Rhinology. 2015;23(2):57–61. EDN: UKQXJB doi: 10.17116/rosrino201523257-61

[48]

Черных Н.М., Носуля Е.В., Ким И.А. Состояние обоняния при эндокринных нарушениях (обзор литературы) // Российская ринология. 2015. Т. 23, № 2. С. 57–61. EDN: UKQXJB doi: 10.17116/rosrino201523257-61

[49]

Savovic S, Nincic D, Lemajic S, et al. Olfactory perception in women with physiologically altered hormonal status (during pregnancy and menopause). Med Pregl. 2002;55(9–10):380–383. doi: 10.2298/mpns0210380s

[50]

Savovic S., Nincic D., Lemajic S., et al. Olfactory perception in women with physiologically altered hormonal status (during pregnancy and menopause) // Med Pregl. 2002. Vol. 55, N 9–10. P. 380–383. doi: 10.2298/mpns0210380s

[51]

Alimova XP, Voitova GA. He structural analysis of mental disorders in pregnant women with COVID-19 pneumonia. Obstetrics and Gynecology. 2023;5:100–107. EDN: UMMZVM doi: 10.18565/aig.2022.208

[52]

Алимова Х.П., Воитова Г.А. Структурный анализ нарушений психологического состояния беременных с пневмонией COVID-19 // Акушерство и гинекология. 2023. Т. 5. С. 100–107. EDN: UMMZVM doi: 10.18565/aig.2022.208

[53]

Min W, Liu C, Yang Y, et al. Alterations in hypothalamic-pituitary-adrenal/thyroid (HPA/HPT) axes correlated with the clinical manifestations of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):206–211. doi: 10.1016/j.pnpbp.2012.06.017

[54]

Min W., Liu C., Yang Y., et al. Alterations in hypothalamic-pituitary-adrenal/thyroid (HPA/HPT) axes correlated with the clinical manifestations of depression // Prog Neuropsychopharmacol Biol Psychiatry. 2012. Vol. 39. P. 206–211. doi: 10.1016/j.pnpbp.2012.06.017

[55]

Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–395. doi: 10.31887/DCNS.2006.8.4/ssmith

[56]

Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress // Dialogues Clin Neurosci. 2006. Vol. 8, N 4. P. 383–395. doi: 10.31887/DCNS.2006.8.4/ssmith

[57]

Chojnowska S, Ptaszyńska-Sarosiek I, Kępka A, et al. Salivary biomarkers of stress, anxiety and depression. J Clin Med. 2021;10(3):517. doi: 10.3390/jcm10030517

[58]

Chojnowska S., Ptaszyńska-Sarosiek I., Kępka A., et al. Salivary biomarkers of stress, anxiety and depression // J Clinical Med. 2021. Vol. 10, N 3. P. 517. doi: 10.3390/jcm10030517

[59]

Riis JL, Granger DA, Woo H, et al. Long-term associations between prenatal maternal cortisol and child neuroendocrine-immune regulation. Int J Behav Med. 2020;27(3):267–281. doi: 10.1007/s12529-019-09814-2

[60]

Riis J.L., Granger D.A., Woo H., et al. Long-term associations between prenatal maternal cortisol and child neuroendocrine-immune regulation // Int J Behav Med. 2020. Vol. 27. P. 267–281. doi: 10.1007/s12529-019-09814-2

[61]

Jara LJ, López-Zamora B, Ordoñez-González I, et al. The immune-neuroendocrine system in COVID-19, advanced age and rheumatic diseases. Autoimmun review. 2021;20(11). doi: 10.1016/j.autrev.2021.102946

[62]

Jara L.J., López-Zamora B., Ordoñez-González I., et al. The immune-neuroendocrine system in COVID-19, advanced age and rheumatic diseases // Autoimmun Rev. 2021. Vol. 20, N 11. doi: 10.1016/j.autrev.2021.102946

[63]

Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22. doi: 10.3109/09513590.2013.852531

[64]

Castelo-Branco C., Soveral I. The immune system and aging: a review // Gynecol Endocrinol. 2014. Vol. 30, N 1. P. 16–22. doi: 10.3109/09513590.2013.852531

[65]

Gameiro C, Romao F. Changes in the immune system during menopause and aging. Front Biosci (Elite Ed). 2010;2(4):1299–1303. doi: 10.2741/e190

[66]

Gameiro C., Romao F. Changes in the immune system during menopause and aging // Front Biosci (Elite Ed). 2010. Vol. 2, N 4. P. 1299–1303. doi: 10.2741/e190

[67]

Gersh F, Lavie CJ, O’Keefe JH. Menopause status and coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2021;73(9):2825–2826. doi: 10.1093/cid/ciaa1447

[68]

Gersh F., Lavie C.J., O’Keefe J.H. Menopause status and coronavirus disease 2019 (COVID-19) // Clin Infect Dis. 2021. Vol. 73, N 9. P. 2825–2826. doi: 10.1093/cid/ciaa1447

[69]

Lobo RA, Pickar JH, Stevenson JC, et al. Back to the future: hormone replacement therapy as part of a prevention strategy for women at the onset of menopause. Atherosclerosis. 2016;254:282–290. doi: 10.1016/j.atherosclerosis.2016.10.005

[70]

Lobo R.A., Pickar J.H., Stevenson J.C., et al. Back to the future: hormone replacement therapy as part of a prevention strategy for women at the onset of menopause // Atherosclerosis. 2016. Vol. 254. P. 282–290. doi: 10.1016/j.atherosclerosis.2016.10.005

[71]

Huang B, Cai Y, Li N, et al. Sex-based clinical and immunological differences in COVID-19. BMC Infect Dis. 2021;21(1):647. doi: 10.1186/s12879-021-06313-2

[72]

Huang B., Cai Y., Li N., et al. Sex-based clinical and immunological differences in COVID-19 // BMC Infect Dis. 2021. Vol. 21, N 1. P. 647. doi: 10.1186/s12879-021-06313-2

[73]

Rocca WA, Gazzuola Rocca L, Smith CY et al. Loss of Ovarian Hormones and Accelerated Somatic and Mental Aging. Physiology (Bethesda). 2018;33(6):374–383. doi: 10.1152/physiol.00024.2018

[74]

Rocca W.A., Gazzuola Rocca L., Smith C.Y., et al. Loss of ovarian hormones and accelerated somatic and mental aging // Physiology (Bethesda). 2018. Vol. 33, N 6. P. 374–383. doi: 10.1152/physiol.00024.2018

[75]

Marchenkova LA, Makarova EV. Characteristics of COVID-19 in peri- and postmenopausal women. Role of hormone replacement therapy. Problems of Gynecology, Obstetrics and Perinatology. 2022;21(1):85–90. EDN: ITYCVZ doi: 10.20953/1726-1678-2022-1-85-90

[76]

Марченкова Л.А., Макарова Е.В. Особенности течения COVID-19 у женщин в пери- и постменопаузе. Роль менопаузальной гормональной терапии // Вопросы гинекологии, акушерства и перинатологии. 2022. Т. 21, № 1. С. 85–90. EDN: ITYCVZ doi: 10.20953/1726-1678-2022-1-85-90

[77]

Ding T, Zhang Z, Wang T, et al. Potential influence of menstrual status and sex hormones on female SARS-CoV-2 infection: a crosssectional study from multicentre in Wuhan, China. Clin Infect Dis. 2021;72(9):240–248. doi: 10.1093/cid/ciaa1022

[78]

Ding T., Zhang Z., Wang T., et al. Potential influence of menstrual status and sex hormones on female SARS-CoV-2 infection: a crosssectional study from multicentre in Wuhan, China // Clin Infect Dis. 2021. Vol. 72, N 9. P. 240–248. doi: 10.1093/cid/ciaa1022

[79]

Semyonova NV, Vyrupaeva EV, Kolesnikov SI, et al. Neuroendocrine changes among 45–60 years old women with COVID-19 and 12 months after the disease. Advances in Gerontology. 2023;36(4):477–483. EDN: MUZKMY doi: 10.34922/AE.2023.36.4.004

[80]

Семёнова Н.В., Вырупаева Е.В., Колесников С.И., и др. Нейроэндокринные изменения у женщин 45–69 лет с COVID–19 и через 12 месяцев после заболевания // Успехи геронтологии. 2023. Т. 36, № 4. С. 477–483. EDN: MUZKMY doi: 10.34922/AE.2023.36.4.004

[81]

Wei L, Sun S, Zhang J. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010;88(4):723–730. doi: 10.1139/O10-022

[82]

Wei L., Sun S., Zhang J. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS) // Biochem Cell Biol. 2010. Vol. 88, N 4. P. 723–730. doi: 10.1139/O10-022

[83]

Hadisi N, Abedi H, Shokoohi M., et al. COVID-19 and endocrine system: a cross-sectional study on 60 patients with endocrine abnormality. Cell J. 2022;24(4):182–187. doi: 10.22074/cellj.2022.8079

[84]

Hadisi N., Abedi H., Shokoohi M., et al. COVID-19 and endocrine system: a cross-sectional study on 60 patients with endocrine abnormality // Cell J. 2022. Vol. 24, N 4. P. 182–187. doi: 10.22074/cellj.2022.8079

[85]

Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027–1031. doi: 10.1007/s40618-020-01276-8

[86]

Pal R., Banerjee M. COVID-19 and the endocrine system: exploring the unexplored // J Endocrinol Invest. 2020. Vol. 43, N 7. P. 1027–1031. doi: 10.1007/s40618-020-01276-8

[87]

Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):2–5. doi: 10.1126/sciadv.abc5801

[88]

Brann D.H., Tsukahara T., Weinreb C., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia // Sci Adv. 2020. Vol. 6, N 31. P. 2–5. doi: 10.1126/sciadv.abc5801

[89]

Stein SR, Ramelli SC, Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y

[90]

Stein S.R., Ramelli S.C., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, N 7941. P. 758–763. doi: 10.1038/s41586-022-05542-y

[91]

Mezzulo M, Gambineri A, Dalmazi GD. et al. Steroid reference intervals in women: influence of menopause, age and metabolism. Eur J Endocrinol. 2021;184(3):395–407. doi: 10.1530/EJE-20-1147

[92]

Mezzulo M., Gambineri A., Dalmazi G.D., et al. Steroid reference intervals in women: influence of menopause, age and metabolism // Eur J Endocrinol. 2021. Vol. 184, N 3. P. 395–407. doi: 10.1530/EJE-20-1147

[93]

Hashim M, Athar S, Gaba WH. New onset adrenal insufficiency in a patient with COVID-19. BMJ case reports. 2021;14(1). doi: 10.1136/bcr-2020-237690

[94]

Hashim M., Athar S., Gaba W.H. New onset adrenal insufficiency in a patient with COVID-19 // BMJ case reports. 2021. Vol. 14, N 1. doi: 10.1136/bcr-2020-237690

[95]

Semyonova NV, Vyrupaeva EV, Kolesnikov SI, et al. Endothelin level in climacteric women with comorbidity of the acute phase middle severity COVID-19 with arterial hypertension and type 2 diabetes mellitus. Bulletin of Experimental Biology and Medicine. 2023;176(12):741–745. EDN: WQDDXS doi: 10.47056/0365-9615-2023-176-12-741-745

[96]

Семёнова Н.В., Вырупаева Е.В., Колесников С.И., и др. Уровень эндотелинов при коморбидности острой фазы среднетяжелого течения COVID-19 с артериальной гипертензией и сахарным диабетом 2-го типа у женщин в климактерическом периоде // Бюллетень экспериментальной биологии и медицины. 2023. Т. 176, № 12. С. 741–745. EDN: WQDDXS doi: 10.47056/0365-9615-2023-176-12-741-745

[97]

Semenova NV, Rychkova LV, Darenskaya MA, et al. Superoxide dismutase activity in male and female patients of different age with moderate COVID-19. Bulletin of Experimental Biology and Medicine. 2022;173(1):51–53. doi: 10.1007/s10517-022-05491-6

[98]

Semenova N.V., Rychkova L.V., Darenskaya M.A., et al. Superoxide dismutase activity in male and female patients of different age with moderate COVID-19 // Bull Exp Biol Med. 2022. Vol. 173, N 1. P. 51–53. doi: 10.1007/s10517-022-05491-6

[99]

Lazartigues E, Qadir MMF, Mauvais-Jarvis F. Endocrine significance of SARS-CoV-2’s reliance on ACE2. Endocrinology. 2020;161(9). doi: 10.1210/endocr/bqaa108

[100]

Lazartigues E., Qadir M.M.F., Mauvais-Jarvis F. Endocrine significance of SARS-CoV-2’s reliance on ACE2 // Endocrinology. 2020. Vol. 161, N 9. P. 1–7. doi: 10.1210/endocr/bqaa108

[101]

Auci D, Kaler L, Subramanian S. et al. A new orally bioavailable synthetic androstene inhibits collagen-induced arthritis in the mouse: androstene hormones as regulators of regulatory T cells. Ann NY Acad Sci. 2007;1110:630–640. doi: 10.1196/annals.1423.066

[102]

Auci D., Kaler L., Subramanian S., et al. A new orally bioavailable synthetic androstene inhibits collagen-induced arthritis in the mouse: androstene hormones as regulators of regulatory T cells // Ann NY Acad Sci. 2007. Vol. 1110. P. 630–640. doi: 10.1196/annals.1423.066

[103]

Nasonov EL. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin. Rheumatology Science and Practice. 2020;58(3):245–261. EDN: FFIJMY doi: 10.14412/1995-4484-2020-245-261

[104]

Насонов Е.Л. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин-6 // Научно-практическая ревматология. 2020. Т. 58, № 3. С. 245–261. EDN: FFIJMY doi: 10.14412/1995-4484-2020-245-261

[105]

Timofeeva LA, Aleksandrov YuK, Aleshina TN, et al. Subacute thyroiditis associated with COVID-19. Russian Electronic Journal of Radiology. 2021;11(3):15–24. EDN: RPZLKX doi: 10.21569/2222-7415-2021-11-3-15-24

[106]

Тимофеева Л.А., Александров Ю.К., Алешина Т.Н., и др. Подострый тиреоидит, ассоциированный с COVID-19 // Российский электронный журнал лучевой диагностики. 2021. Т. 11, № 3. С. 15–24. EDN: RPZLKX doi: 10.21569/2222-7415-2021-11-3-15-24

[107]

Klimchuk AV, Beloglazov VA, Yatskov IA, et al. Endocrine disorders in the background of COVID-19 and postcovid syndrome. Obesity and metabolism. 2022;19(2):206–212. EDN: FSBOYF doi: 10.14341/omet12853

[108]

Климчук А.В., Белоглазов В.А., Яцков И.А., и др. Эндокринные нарушения на фоне COVID-19 и при постковидном синдроме // Ожирение и метаболизм. 2022. Т. 19, № 2. C. 206–212. EDN: FSBOYF doi: 10.14341/omet12853

[109]

Zadumina DN, Skvorcov VV, Shtonda DA. Impact of COVID-19 on the endocrine system. Lechashchij Vrach. 2023;3(26):7–13. EDN: ZMACKK doi: 10.51793/OS.2023.26.3.001

[110]

Задумина Д. Н., Скворцов В. В., Штонда Д. А. Влияние новой коронавирусной инфекции на эндокринную систему // Лечащий Врач. 2023. Т. 3, № 26. С. 7–13. EDN: ZMACKK doi: 10.51793/OS.2023.26.3.001

[111]

Semyonova NV, Kolesnikov SI, Vyrupaeva EV, et al. Thyroid status and TNF-alpha in post-reproductive women with COVID-19 and 12 months after the disease. Acta Biomedica Scientifica. 2023;8(2):33–42. EDN: CLSVJE doi: 10.29413/ABS.2023-8.2.4

[112]

Семёнова Н.В., Колесников С.И., Вырупаева Е.В., и др. Тиреоидный статус и ФНО-альфа у женщин в пострепродуктивном периоде с COVID-19 и через 12 месяцев после заболевания // Acta Biomed. Sci. 2023. Т. 8, № 2. С. 33–42. EDN: CLSVJE doi: 10.29413/ABS.2023-8.2.4

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/