Anatomical and physiological aspects of the mutual influence of circulatory hypoxia of the myometrium and non-progressive labour

Dmitry S. Sudakov , Igor P. Nikolaenkov , Yulia R. Dymarskaya , Anna A. Kuznetsova

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (4) : 119 -134.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (4) : 119 -134. DOI: 10.17816/JOWD623763
Reviews
review-article

Anatomical and physiological aspects of the mutual influence of circulatory hypoxia of the myometrium and non-progressive labour

Author information +
History +
PDF

Abstract

Non-progressive labour occurs in almost 10% of deliveries and is a main reason for unplanned cesarean sections and operative vaginal births using obstetric forceps or vacuum extraction. This article describes the morphological transformation of the myometrium and uterine blood vessels that occurs during pregnancy. It is shown that the myometrium inevitably experiences hypoxia at the microstructural level during each normal or pathological labour. We analyzed recent studies of the mutual influence of myometrial hypoxia and labour dystocia. Experimental and clinical studies showed relationship between the pH values and lactate levels determined in the myometrium on its contractility. Further research is justified, including the study of the pH and lactate values in amniotic fluid in patients with non-progressive labor. Finally, that will allow for clarifying the conditions and timing of labour stimulation with oxytocin and identifying a group of patients for whom oxytocin administration is contraindicated or hopeless.

Keywords

myometrium / uterine blood flow / labor / uterine contractions / hypoxia / non-progressive labour

Cite this article

Download citation ▾
Dmitry S. Sudakov, Igor P. Nikolaenkov, Yulia R. Dymarskaya, Anna A. Kuznetsova. Anatomical and physiological aspects of the mutual influence of circulatory hypoxia of the myometrium and non-progressive labour. Journal of obstetrics and women's diseases, 2024, 73(4): 119-134 DOI:10.17816/JOWD623763

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Béranger R, Chantry AA. Oxytocin administration during spontaneous labor: Guidelines for clinical practice. Chapter 1: Definition and characteristics of normal and abnormal labor. J Gynecol Obstet Hum Reprod. 2017;46(6):469–478. doi: 10.1016/j.jogoh.2017.04.011

[2]

Béranger R., Chantry A.A. Oxytocin administration during spontaneous labor: Guidelines for clinical practice. Chapter 1: Definition and characteristics of normal and abnormal labor // J Gynecol Obstet Hum Reprod. 2017. Vol. 46, N 6. P. 469–478. doi: 10.1016/j.jogoh.2017.04.011

[3]

Selin L, Wennerholm UB, Jonsson M, et al. High-dose versus low-dose of oxytocin for labour augmentation: a randomised controlled trial. Women Birth. 2019;32(4):356–363. doi: 10.1016/j.wombi.2018.09.002

[4]

Selin L., Wennerholm U.B., Jonsson M., et al. High-dose versus low-dose of oxytocin for labour augmentation: a randomised controlled trial // Women Birth. 2019. Vol. 32, N 4. P. 356–363. doi: 10.1016/j.wombi.2018.09.002

[5]

Operative vaginal birth: ACOG Practice Bulletin, N 219. Obstet Gynecol. 2020;135(4):e149–e159. doi: 10.1097/AOG.0000000000003764

[6]

Operative Vaginal Birth: ACOG Practice Bulletin, Number 219 // Obstet Gynecol. 2020. Vol. 135, N 4. P. e149–e159. doi: 10.1097/AOG.0000000000003764

[7]

Hofmeyr GJ, Singata-Madliki M. The second stage of labor. Best Pract Res Clin Obstet Gynaecol. 2020;67:53–64. doi: 10.1016/j.bpobgyn.2020.03.012

[8]

Hofmeyr G.J., Singata-Madliki M. The second stage of labor // Best Pract Res Clin Obstet Gynaecol. 2020. Vol. 67. P. 53–64. doi: 10.1016/j.bpobgyn.2020.03.012

[9]

Spong CY, Berghella V, Wenstrom KD, et al. Preventing the first cesarean delivery: summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, and American College of Obstetricians and Gynecologists Workshop. Obstet Gynecol. 2012;120(5):1181–1193. doi: 10.1097/aog.0b013e3182704880

[10]

Spong C.Y., Berghella V., Wenstrom K.D., et al. Preventing the first cesarean delivery: summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, and American College of Obstetricians and Gynecologists Workshop // Obstet Gynecol. 2012. Vol. 120, N 5. P. 1181–1193. doi: 10.1097/aog.0b013e3182704880

[11]

Savitskiy AG, Savitskiy GA. biomechanics of physiological labor contractions (myometral-hemodynamic concept) scientific review. Medical sciences. 2021;(6):41–53. EDN: DESNAO doi: 10.17513/srms.1216

[12]

Савицкий А.Г., Савицкий Г.А. Биомеханика физиологической родовой схватки (миометрально-гемодинамическая концепция) // Научное обозрение. Медицинские науки. 2021. № 6. С. 41–53. EDN: DESNAO doi: 10.17513/srms.1216

[13]

Romero R. A profile of Emanuel A. Friedman, MD, DMedSci. Am J Obstet Gynecol. 2016;215(4):413–414. doi: 10.1016/j.ajog.2016.07.034

[14]

Romero R. A profile of Emanuel A. Friedman, MD, DMedSci // Am J Obstet Gynecol. 2016. Vol. 215, N 4. P. 413–414. doi: 10.1016/j.ajog.2016.07.034

[15]

Friedman E. The graphic analysis of labor. Am J Obstet Gynecol. 1954;68(6):1568–1575. doi: 10.1016/0002-9378(54)90311-7

[16]

Friedman E. The graphic analysis of labor // Am J Obstet Gynecol. 1954. Vol. 68, N 6. P. 1568–1575. doi: 10.1016/0002-9378(54)90311-7

[17]

Friedman EA. Primigravid labor; a graphicostatistical analysis. Obstet Gynecol. 1955;6(6):567–589. doi: 10.1097/00006250-195512000-00001

[18]

Friedman EA. Primigravid labor: a graphicostatistical analysis // Obstet Gynecol. 1955. Vol. 6, N 6. P. 567–589. doi: 10.1097/00006250-195512000-00001

[19]

Bezhenar VF, Novikov BN, Turlak AS. Professor Ilya Yakovlev (on the 120th anniversary). The Scientific Notes of IPP SPSMU. 2017;24(1):9–14. (In Russ.) EDN: YRMTJN doi: 10.24884/1607-4181-2017-24-1-9-14

[20]

Беженарь В.Ф., Новиков Б.Н., Турлак А.С. Профессор Илья Ильич Яковлев (к 120-летию со дня рождения) // Ученые записки СПбГМУ им. акад. И.П. Павлова. 2017;24(1):9–14. EDN: YRMTJN doi: 10.24884/1607-4181-2017-24-1-9-14

[21]

Yakovlev II. On the structure and physiology of the smooth muscles of the pregnant uterus. Obstetrics and Gynecology. 1965;(2):3–9. (In Russ.)

[22]

Яковлев И.И. О структуре и физиологии гладкой мускулатуры беременной матки // Акушерство и гинекология. 1965. № 2. С. 3–9.

[23]

Yakovlev II. Basic provisions on the function of the “giving birth” uterus. Obstetrics and gynecology. 1963;(5):3–8. (In Russ.)

[24]

Яковлев И.И. Основные положения о функции «рожающей» матки // Акушерство и гинекология. 1963. № 5. С. 3–8.

[25]

Savitskiy AG, Savitskiy GA. “Discoordination labors activity” — longstanding parascietific myth or obstetric reality? Children’s Medicine of the North-West. 2011;2(1):6–15. EDN: OZNJSF

[26]

Савицкий А.Г., Савицкий Г.А. «Дискоординация родовой деятельности» — долгоживущий паранаучный миф или объективная акушерская реальность? // Детская медицина Северо-Запада. 2011. Т. 2, № 1. С. 6–15. EDN: OZNJSF

[27]

Zhelezova ME, Zephirova TP, Yagovkina NE, et al. The influence of duration of labor on perinatal outcomes. Practical medicine. 2017;(7):12–17. EDN: ZFCWWD

[28]

Железова М.Е., Зефирова Т.П., Яговкина Н.Е., и др. Влияние продолжительности родового акта на перинатальные исходы // Практическая медицина. 2017. № 7(108). С. 12–17. EDN: ZFCWWD

[29]

Pachuliia OV, Khalenko VV, Shengeliia MO, et al. Biomechanisms of cervical remodeling and current approaches to maturity assessment. Journal of Obstetrics and Women’s diseases. 2023;72(1):81–95. EDN: SZDEIG doi: 10.17816/JOWD114934

[30]

Пачулия О.В., Халенко В.В., Шенгелия М.О., и др. Биомеханизмы ремоделирования шейки матки и современные подходы к оценке степени ее зрелости // Журнал акушерства и женских болезней. 2023. Т. 72, № 1. C. 81–95. EDN: SZDEIG doi: 10.17816/JOWD114934

[31]

Young RC, Hession RO. Three-dimensional structure of the smooth muscle in the term-pregnant human uterus. Obstet Gynecol. 1999;93(1):94–99. doi: 10.1016/s0029-7844(98)00345-7

[32]

Young R.C., Hession R.O. Three-dimensional structure of the smooth muscle in the term-pregnant human uterus // Obstet Gynecol. 1999. Vol. 93, N 1. P. 94–99. doi: 10.1016/s0029-7844(98)00345-7

[33]

Gilroy A, MacPherson B, Ross L, et al. Atlas of anatomy. Stuttgart: Thieme; 2012. 656 p.

[34]

Gilroy A., MacPherson B., Ross L., et al, Atlas of anatomy. Stuttgart: Thieme, 2012. 656 p.

[35]

Krstic RV; Samusev RP, editor. Atlas of microscopic human anatomy: a textbook for higher education students. Moscow: World and Education; 2010. 608 p. EDN: QKSODN

[36]

Крстич Р.В. Атлас микроскопической анатомии человека: учебное пособие для студентов высших учеб. заведений / под ред. Р.П. Самусева. Москва: Мир и Образование, 2010. 608 с. EDN: QKSODN

[37]

Young RC. Myocytes, myometrium, and uterine contractions. Ann NY Acad Sci. 2007;1101:72–84. doi: 10.1196/annals.1389.038

[38]

Young R.C. Myocytes, myometrium, and uterine contractions // Ann NY Acad Sci. 2007. Vol. 1101. P. 72–84. doi: 10.1196/annals.1389.038

[39]

Weiss S, Jaermann T, Schmid P, et al. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(1):84–90. doi: 10.1002/ar.a.20274

[40]

Weiss S., Jaermann T., Schmid P., et al. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging // Anat Rec A Discov Mol Cell Evol Biol. 2006. Vol. 288, N 1. P. 84–90. doi: 10.1002/ar.a.20274

[41]

Tetlow RL, Richmond I, Manton DJ, et al. Histological analysis of the uterine junctional zone as seen by transvaginal ultrasound. Ultrasound Obstet Gynecol. 1999;14(3):188–193. doi: 10.1046/j.1469-0705.1999.14030188.x

[42]

Tetlow R.L., Richmond I., Manton D.J., et al. Histological analysis of the uterine junctional zone as seen by transvaginal ultrasound // Ultrasound Obstet Gynecol. 1999. Vol. 14, N 3. P. 188–193. doi: 10.1046/j.1469-0705.1999.14030188.x

[43]

Benagiano G, Brosens I. Adenomyosis and endometriosis have a common origin. J Obstet Gynaecol India. 2011;61(2):146–152. doi: 10.1007/s13224-011-0030-y

[44]

Benagiano G., Brosens I. Adenomyosis and endometriosis have a common origin // J Obstet Gynaecol India. 2011. Vol. 61, N 2. P. 146–152. doi: 10.1007/s13224-011-0030-y

[45]

Mogilnaja GM, Simovonik AN. The junctional zone of the uterus and its predictors in the diagnosis of adenomyosis. Crimea Journal of Experimental and Clinical Medicine. 2018;8(1):55–60. EDN: UUXGVK

[46]

Могильная Г.М., Симовоник А.Н. Переходная зона матки и ее предикторы в диагностике аденомиоза // Крымский журнал экспериментальной и клинической медицины. 2018. Т. 8, № 1. С. 55–60. EDN: UUXGVK

[47]

Mogilnaya GM, Kutsenko II, Simovonik AN. The junctional zone of the uterus and adenomyosis. Journal of Anatomy and Histopathology. 2018;7(1):108–117. EDN: YTTOWW doi: 10.18499/2225-7357-2018-7-1-108-117

[48]

Могильная Г.М., Куценко И.И., Симовоник А.Н. Переходная зона матки и аденомиоз // Журнал анатомии и гистопатологии. 2018. Т. 7, № 1. С. 108–117. EDN: YTTOWW doi: 10.18499/2225-7357-2018-7-1-108-117

[49]

Brosens I, Derwig I, Brosens J, et al. The enigmatic uterine junctional zone: the missing link between reproductive disorders and major obstetrical disorders? Hum Reprod. 2010;25(3):569–574. doi: 10.1093/humrep/dep474

[50]

Brosens I., Derwig I., Brosens J., et al. The enigmatic uterine junctional zone: the missing link between reproductive disorders and major obstetrical disorders? // Hum Reprod. 2010. Vol. 25, N 3. P. 569–574. doi: 10.1093/humrep/dep474

[51]

Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16(6):725–744. doi: 10.1093/humupd/dmq016

[52]

Aguilar H.N., Mitchell B.F. Physiological pathways and molecular mechanisms regulating uterine contractility // Hum Reprod Update. 2010. Vol. 16, N 6. P. 725–744. doi: 10.1093/humupd/dmq016

[53]

Wray S, Prendergast C. The myometrium: from excitation to contractions and labour. Adv Exp Med Biol. 2019;1124:233–263. doi: 10.1007/978-981-13-5895-1_10

[54]

Wray S., Prendergast C. The myometrium: from excitation to contractions and labour // Adv Exp Med Biol. 2019. Vol. 1124. P. 233–263. doi: 10.1007/978-981-13-5895-1_10

[55]

Farrer-Brown G, Beilby JO, Tarbit MH. The blood supply of the uterus. 1. Arterial vasculature. J Obstet Gynaecol Br Commonw. 1970;77(8):673–681. doi: 10.1111/j.1471-0528.1970.tb03592.x

[56]

Farrer-Brown G., Beilby J.O., Tarbit M.H. The blood supply of the uterus. 1. Arterial vasculature // J Obstet Gynaecol Br Commonw. 1970. Vol. 77, N 8. P. 673–681. doi: 10.1111/j.1471-0528.1970.tb03592.x

[57]

Farrer-Brown G, Beilby JO, Tarbit MH. The blood supply of the uterus. 2. Venous pattern. J Obstet Gynaecol Br Commonw. 1970;77(8):682–689. doi: 10.1111/j.1471-0528.1970.tb03593.x

[58]

Farrer-Brown G., Beilby J.O., Tarbit M.H. The blood supply of the uterus. 2. Venous pattern // J Obstet Gynaecol Br Commonw. 1970. Vol. 77, N 8. P. 682–689. doi: 10.1111/j.1471-0528.1970.tb03593.x

[59]

Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263. doi: 10.1016/s0002-9378(16)33500-1

[60]

Noyes R.W., Hertig A.T., Rock J. Dating the endometrial biopsy // Am J Obstet Gynecol. 1975. Vol. 122, N 2. P. 262–263. doi: 10.1016/s0002-9378(16)33500-1

[61]

Tolibova GX, Tral TG, Kogan IYu, et al. Endometrium. Atlas. Moscow: Status Praesens 2022. EDN: GMDUEO

[62]

Толибова Г.Х., Траль Т.Г., Коган И.Ю., и др. Эндометрий. Атлас. Москва: Медиабюро Статус презенс, 2022. 184 с. EDN: GMDUEO

[63]

Tolibova GX, Tral TG, Kogan IYu, et al. Endometrium. Atlas. Moscow: Status Praesens, 2023. 248 p. (In Russ.) EDN: NPIEWV doi: 10.29039/978-5-907217-78-9

[64]

Толибова Г.Х., Траль Т.Г., Коган И.Ю., и др. Эмбриональные потери. Атлас. Москва: StatusPraesens, 2023. 248 с. EDN: NPIEWV doi: 10.29039/978-5-907217-78-9

[65]

Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–958. doi: 10.1016/j.placenta.2005.12.006

[66]

Pijnenborg R., Vercruysse L., Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies // Placenta. 2006. Vol. 27, N 9–10. P. 939–958. doi: 10.1016/j.placenta.2005.12.006

[67]

Osol G, Moore LG. Maternal uterine vascular remodeling during pregnancy. Microcirculation. 2014;21(1):38–47. doi: 10.1111/micc.12080

[68]

Osol G., Moore L.G. Maternal uterine vascular remodeling during pregnancy // Microcirculation. 2014. Vol. 21, N 1. P. 38–47. doi: 10.1111/micc.12080

[69]

Soares MJ, Chakraborty D, Kubota K, et al. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014;58(2–4):247–259. doi: 10.1387/ijdb.140083ms

[70]

Soares M.J., Chakraborty D., Kubota K., et al. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy // Int J Dev Biol. 2014. Vol. 58, N 2–4. P. 247–259. doi: 10.1387/ijdb.140083ms

[71]

Burton GJ, Woods AW, Jauniaux E, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–482. doi: 10.1016/j.placenta.2009.02.009

[72]

Burton G.J., Woods A.W., Jauniaux E., et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy // Placenta. 2009. Vol. 30, N 6. P. 473–482. doi: 10.1016/j.placenta.2009.02.009

[73]

Jaggar JH, Wellman GC, Heppner TJ, et al. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–587. doi: 10.1046/j.1365-201X.1998.00462.x

[74]

Jaggar J.H., Wellman G.C., Heppner T.J., et al. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone // Acta Physiol Scand. 1998. Vol. 164, N 4. P. 577–587. doi: 10.1046/j.1365-201X.1998.00462.x

[75]

Rosenfeld CR, Roy T, DeSpain K, et al. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy. J Soc Gynecol Investig. 2005;12(6):402–408. doi: 10.1016/j.jsgi.2005.04.009

[76]

Rosenfeld C.R., Roy T., DeSpain K., et al. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy // J Soc Gynecol Investig. 2005. Vol. 12, N 6. P. 402–408. doi: 10.1016/j.jsgi.2005.04.009

[77]

Hu XQ, Song R, Romero M, et al. Pregnancy increases Ca2+ sparks/spontaneous transient outward currents and reduces uterine arterial myogenic tone. Hypertension. 2019;73(3):691–702. doi: 10.1161/HYPERTENSIONAHA.118.12484

[78]

Hu X.Q., Song R., Romero M., et al. Pregnancy increases Ca2+ sparks/spontaneous transient outward currents and reduces uterine arterial myogenic tone // Hypertension. 2019. Vol. 73, N 3. P. 691–702. doi: 10.1161/HYPERTENSIONAHA.118.12484

[79]

Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105–113. doi: 10.1093/bja/aeh163

[80]

Galley H.F., Webster N.R. Physiology of the endothelium // Br J Anaesth. 2004. Vol. 93, N 1. P. 105–113. doi: 10.1093/bja/aeh163

[81]

Wray S, Alruwaili M, Prendergast C. Hypoxia and reproductive health: hypoxia and labour. Reproduction. 2021;161(1):F67–F80. doi: 10.1530/REP-20-0327

[82]

Wray S., Alruwaili M., Prendergast C. Hypoxia and reproductive health: hypoxia and labour // Reproduction. 2021. Vol. 161, N 1. P. F67–F80. doi: 10.1530/REP-20-0327

[83]

Jenkins HN, Rivera-Gonzalez O, Gibert Y, et al. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev. 2020;21(12):e13086. doi: 10.1111/obr.13086

[84]

Jenkins H.N., Rivera-Gonzalez O., Gibert Y., et al. Endothelin-1 in the pathophysiology of obesity and insulin resistance // Obes Rev. 2020. Vol. 21, N 12. P. e13086. doi: 10.1111/obr.13086

[85]

Vanhoutte PM, Tang EH. Endothelium-dependent contractions: when a good guy turns bad! J Physiol. 2008;586(22):5295–5304. doi: 10.1113/jphysiol.2008.161430

[86]

Vanhoutte P.M., Tang E.H. Endothelium-dependent contractions: when a good guy turns bad! // J Physiol. 2008. Vol. 586, N 22. P. 5295–5304. doi: 10.1113/jphysiol.2008.161430

[87]

Faber-Swensson AP, O’Callaghan SP, Walters WA. Endothelial cell function enhancement in a late normal human pregnancy. Aust N Z J Obstet Gynaecol. 2004;44(6):525–529. doi: 10.1111/j.1479-828X.2004.00302.x

[88]

Faber-Swensson A.P., O’Callaghan S.P., Walters W.A. Endothelial cell function enhancement in a late normal human pregnancy // Aust NZ J Obstet Gynaecol. 2004. Vol. 44, N 6. P. 525–529. doi: 10.1111/j.1479-828X.2004.00302.x

[89]

Titov VN. Anatomical and functional basis of endothelium-dependent vasodilation, nitric oxide and endothelin. Russian Journal of Cardiology. 2008;(1):71–85. (In Russ.) EDN: IJVIIF

[90]

Титов В.Н. Анатомические и функциональные основы эндотелий-зависимой вазодилатации, оксид азота и эндотелин // Российский кардиологический журнал. 2008. № 1. С. 71–85. EDN: IJVIIF

[91]

Nelson SH, Steinsland OS, Wang Y, et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res. 2000;87(5):406–411. doi: 10.1161/01.res.87.5.406

[92]

Nelson S.H., Steinsland O.S., Wang Y., et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy // Circ Res. 2000. Vol. 87, N 5. P. 406–411. doi: 10.1161/01.res.87.5.406

[93]

Vanhoutte PM, Shimokawa H, Feletou M, et al. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. doi: 10.1111/apha.12646

[94]

Vanhoutte P.M., Shimokawa H., Feletou M., et al. Endothelial dysfunction and vascular disease – a 30th anniversary update // Acta Physiol (Oxf). 2017. Vol. 219, N 1. P. 22–96. doi: 10.1111/apha.12646

[95]

Davies SC, Machin SJ. Prostacyclin (PGI2). Intensive Care Med. 1983; 9(2):49–52. doi: 10.1007/BF01699256

[96]

Davies S.C., Machin S.J. Prostacyclin (PGI2) // Intensive Care Med. 1983. Vol. 9, N 2. P. 49–52. doi: 10.1007/BF01699256

[97]

Luksha L, Agewall S, Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis. 2009; 202(2):330–344. doi: 10.1016/j.atherosclerosis.2008.06.008

[98]

Luksha L., Agewall S., Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease // Atherosclerosis. 2009. Vol. 202, N 2. P. 330–344. doi: 10.1016/j.atherosclerosis.2008.06.008

[99]

Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011;109(11):1259–1268. doi: 10.1161/CIRCRESAHA.111.240242

[100]

Mustafa A.K., Sikka G., Gazi S.K., et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels // Circ Res. 2011. Vol. 109, N 11. P. 1259–1268. doi: 10.1161/CIRCRESAHA.111.240242

[101]

Prendergast C. Maternal phenotype: how does age, obesity and diabetes affect myometrial function? Curr Opin Physiol. 2020;13:108–116. doi: 10.1016/j.cophys.2019.10.016

[102]

Prendergast C. Maternal phenotype: how does age, obesity and diabetes affect myometrial function? // Curr Opin Physiol. 2020. Vol. 13. P. 108–116. doi: 10.1016/j.cophys.2019.10.016

[103]

Ailamazyan EK, Kuzminykh TU. Evolution of views on operative delivery. Journal of Obstetrics and Women’s Diseases. 2022;71(6):97–105. EDN: EPUCIM doi: 10.17816/JOWD119829

[104]

Айламазян Э.К., Кузьминых Т.У. Эволюция взглядов на оперативное родоразрешение // Журнал акушерства и женских болезней. 2022. Т. 71, № 6. С. 97–105. EDN: EPUCIM doi: 10.17816/JOWD119829

[105]

Al-Qahtani S, Heath A, Quenby S, et al. Diabetes is associated with impairment of uterine contractility and high Caesarean section rate. Diabetologia. 2012;55(2):489–498. doi: 10.1007/s00125-011-2371-6

[106]

Al-Qahtani S., Heath A., Quenby S., et al. Diabetes is associated with impairment of uterine contractility and high Caesarean section rate // Diabetologia. 2012. Vol. 55, N 2. P. 489–498. doi: 10.1007/s00125-011-2371-6

[107]

Chirayath HH, Wareing M, Taggart MJ, et al. Endothelial dysfunction in myometrial arteries of women with gestational diabetes. Diabetes Res Clin Pract. 2010;89(2):134–140. doi: 10.1016/j.diabres.2010.03.022

[108]

Chirayath H.H., Wareing M., Taggart M.J., et al. Endothelial dysfunction in myometrial arteries of women with gestational diabetes // Diabetes Res Clin Pract. 2010. Vol. 89, N 2. P. 134–140. doi: 10.1016/j.diabres.2010.03.022

[109]

Kapustin RV, Arzhanova ON, Sokolov DI, et al. Estimation of the plasma concentration of endothelin-1 and sicam-1 in pregnant women with gestational diabetes mellitus. Obstetrics and Gynecology. 2013;(5):36–41. EDN: QLHTBZ

[110]

Капустин Р.В., Аржанова О.Н., Соколов Д.И., и др. Оценка концентрации эндотелина-1 и SICAM-1 в плазме крови у беременных с гестационным сахарным диабетом // Акушерство и гинекология. 2013. № 5. С. 36–41. EDN: QLHTBZ

[111]

Hayward CE, Cowley EJ, Mills TA, et al. Maternal obesity impairs specific regulatory pathways in human myometrial arteries. Biol Reprod. 2014;90(3):65. doi: 10.1095/biolreprod.113.112623

[112]

Hayward C.E., Cowley E.J., Mills T.A., et al. Maternal obesity impairs specific regulatory pathways in human myometrial arteries // Biol Reprod. 2014. Vol. 90, N 3. P. 65. doi: 10.1095/biolreprod.113.112623

[113]

Prendergast C, Wray S. Human myometrial artery function and endothelial cell calcium signalling are reduced by obesity: can this contribute to poor labour outcomes? Acta Physiol (Oxf). 2019;227(4):e13341. doi: 10.1111/apha.13341

[114]

Prendergast C., Wray S. Human myometrial artery function and endothelial cell calcium signalling are reduced by obesity: can this contribute to poor labour outcomes? // Acta Physiol (Oxf). 2019. Vol. 227, N 4. P. e13341. doi: 10.1111/apha.13341

[115]

Seryogina DS, Nikolayenkov IP, Kuzminykh TU. Obesity represents a strong pathogenetic link with the pathology of pregnancy and childbirth. Journal of Obstetrics and Women’s Diseases. 2020;69(2):73–82. EDN: LRLYCV doi: 10.17816/JOWD69273-82

[116]

Серегина Д.С., Николаенков И.П., Кузьминых Т.У. Ожирение — ведущее патогенетическое звено патологического течения беременности и родов // Журнал акушерства и женских болезней. 2020. Т. 69, № 2. C. 73–82. EDN: LRLYCV doi: 10.17816/JOWD69273-82

[117]

Acromite MT, Mantzoros CS, Leach RE, et al. Androgens in preeclampsia. Am J Obstet Gynecol. 1999;180(1):60–63. doi: 10.1016/s0002-9378(99)70150-x

[118]

Acromite M.T., Mantzoros C.S., Leach R.E., et al. Androgens in preeclampsia // Am J Obstet Gynecol. 1999. Vol. 180, N 1. P. 60–63. doi: 10.1016/s0002-9378(99)70150-x

[119]

Pepene CE. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome. Clin Endocrinol (Oxf). 2012;76(1):119–125. doi: 10.1111/j.1365-2265.2011.04171.x

[120]

Pepene C.E. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome // Clin Endocrinol (Oxf). 2012. Vol. 76, N 1. P. 119–125. doi: 10.1111/j.1365-2265.2011.04171.x

[121]

Nikolayenkov IP, Kuzminykh TU, Tarasova MA, et al. Features of the course of pregnancy in women with polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2020;69(5):105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112

[122]

Николаенков И.П., Кузьминых Т.У., Тарасова М.А., и др. Особенности течения беременности у пациенток с синдромом поликистозных яичников // Журнал акушерства и женских болезней. 2020. Т. 69, № 5. C. 105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112

[123]

Lavrova OV, Shapovalova EA, Dymarskaya YR, et al. Operative delivery in pregnant women with asthma. Journal of Obstetrics and Women’s Diseases. 2019;68(4):19–26. EDN: PHGBRI doi: 10.17816/JOWD68419-26

[124]

Лаврова О.В., Шаповалова Е.А., Дымарская Ю.Р., и др. Оперативное родоразрешение беременных, страдающих бронхиальной астмой // Журнал акушерства и женских болезней. 2019. Т. 68, № 4. C. 19–26. EDN: PHGBRI doi: 10.17816/JOWD68419-26

[125]

Andersen MR, Uldbjerg N, Stender S, et al. Maternal smoking and impaired endothelium-dependent nitric oxide-mediated relaxation of uterine small arteries in vitro. Am J Obstet Gynecol. 2011;204(2):177.e1–177.e1777. doi: 10.1016/j.ajog.2010.09.006

[126]

Andersen M.R., Uldbjerg N., Stender S., et al. Maternal smoking and impaired endothelium-dependent nitric oxide-mediated relaxation of uterine small arteries in vitro // Am J Obstet Gynecol. 2011. Vol. 204, N 2. P. 177.e1–177.e1777. doi: 10.1016/j.ajog.2010.09.006

[127]

Hu XQ, Xiao D, Zhu R, et al. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries. Hypertension. 2012;60(1):214–222. doi: 10.1161/HYPERTENSIONAHA.112.196097

[128]

Hu X.Q., Xiao D., Zhu R., et al. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries // Hypertension. 2012. Vol. 60, N 1. P. 214–222. doi: 10.1161/HYPERTENSIONAHA.112.196097

[129]

Xiao D, Hu XQ, Huang X, et al. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PLoS One. 2013;8(9). doi: 10.1371/journal.pone.0073731

[130]

Xiao D., Hu X.Q., Huang X., et al. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress // PLoS One. 2013. Vol. 8, N 9. P. e73731. doi: 10.1371/journal.pone.0073731

[131]

Lye SJ, Ou C-W, Teoh T-G, et al. The molecular basis of labour and tocolysis. Fetal and Maternal Medicine Review. 1998;10(3):121–136. doi: 10.1017/S096553959800031X

[132]

Lye S.J., Ou C.-W., Teoh T.-G., et al. The molecular basis of labour and tocolysis // Fetal and Maternal Medicine Review. 1998. Vol. 10, N 3. P. 121–136. doi: 10.1017/S096553959800031X

[133]

Beyer EC, Kistler J, Paul DL, et al. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol. 1989;108(2):595–605. doi: 10.1083/jcb.108.2.595

[134]

Beyer E.C., Kistler J., Paul D.L., et al. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues // J Cell Biol. 1989. Vol. 108, N 2. P. 595–605. doi: 10.1083/jcb.108.2.595

[135]

Hutchings G, Gevaert T, Deprest J, et al. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells. Reprod Biol Endocrinol. 2008;6:43. doi: 10.1186/1477-7827-6-43

[136]

Hutchings G., Gevaert T., Deprest J., et al. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells // Reprod Biol Endocrinol. 2008. Vol. 6. P. 43. doi: 10.1186/1477-7827-6-43

[137]

Ermoshenko BG, Dorofeeva IV, Shubich MG. Structural and functional bases of coordination of contractile activity of the myometrium during childbirth (conducting system of the uterus). Russian Bulletin of Obstetrician-Gynecologist. (In Russ.) 2003;3(5):21–27. EDN: ZCAJFX

[138]

Ермошенко Б.Г., Дорофеева И.В., Шубич М.Г. Структурно-функциональные основы координации сократительной деятельности миометрия в родах (проводящая система матки) // Российский вестник акушера-гинеколога. 2003. Т. 3, № 5. C. 21–27. EDN: ZCAJFX

[139]

Garfield RE, Sims S, Daniel EE. Gap junctions: their presence and necessity in myometrium during parturition. Science. 1977;198(4320):958–960. doi: 10.1126/science.929182

[140]

Garfield R.E., Sims S., Daniel E.E. Gap junctions: their presence and necessity in myometrium during parturition // Science. 1977. Vol. 198, N 4320. P. 958–960. doi: 10.1126/science.929182

[141]

Risek B, Guthrie S, Kumar N, et al. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol. 1990;110(2):269–282. doi: 10.1083/jcb.110.2.269

[142]

Risek B., Guthrie S., Kumar N., et al. Modulation of gap junction transcript and protein expression during pregnancy in the rat // J Cell Biol. 1990. Vol. 110, N 2. P. 269–282. doi: 10.1083/jcb.110.2.269

[143]

Meyer RA, Laird DW, Revel JP, et al. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992;119(1):179–189. doi: 10.1083/jcb.119.1.179

[144]

Meyer R.A., Laird D.W., Revel J.P., et al. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies // J Cell Biol. 1992. Vol. 119, N 1. P. 179–189. doi: 10.1083/jcb.119.1.179

[145]

Konovalov PV, Gorshkov AN, Ovsyannikov FA, et al. Remodeling of the myometrium with connective tissue dysplasia in women with uterine inertia. Translational medicine. 2015;(6):39–46. (In Russ.) EDN: VWHUHH

[146]

Коновалов П.В., Горшков А.Н., Овсянников Ф.А., и др. Ремоделирование миометрия при соединительнотканной дисплазии у женщин со слабостью родовой деятельности // Трансляционная медицина. 2015. № 6. С. 39–46. EDN: VWHUHH

[147]

Savitskiy AG, Savitskiy GA. Biomechanics of physiological labor contractions (the dominant version of the teaching). Medical sciences. 2021;(3):62–68. EDN: PDYJZE DOI: 10.17513/srms.1192

[148]

Савицкий А.Г., Савицкий Г.А. Биомеханика физиологической родовой схватки (доминирующая версия учения) // Научное обозрение. Медицинские науки. 2021. № 3. С. 62–68. EDN: PDYJZE doi: 10.17513/srms.1192

[149]

Lutton EJ, Lammers WJEP, James S, et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat. J Physiol. 2018;596(14):2841–2852. doi: 10.1113/JP275688

[150]

Lutton E.J., Lammers W.J.E.P., James S., et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat // J Physiol. 2018. Vol. 596, N 14. P. 2841–2852. doi: 10.1113/JP275688

[151]

Shmigol AV, Eisner DA, Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol. 1998;511(Pt 3):803–811. doi: 10.1111/j.1469-7793.1998.803bg.x

[152]

Shmigol A.V., Eisner D.A., Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus // J Physiol. 1998. Vol. 511, Pt. 3. P. 803–811. doi: 10.1111/j.1469-7793.1998.803bg.x

[153]

Mitchell JA, Lye SJ. Regulation of connexin43 expression by c-fos and c-jun in myometrial cells. Cell Commun Adhes. 2001;8(4–6):299–302. doi: 10.3109/15419060109080741

[154]

Mitchell J.A., Lye S.J. Regulation of connexin43 expression by c-fos and c-jun in myometrial cells // Cell Commun Adhes. 2001. Vol. 8, N 4–6. P. 299–302. doi: 10.3109/15419060109080741

[155]

Chwalisz K, Garfield RE. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide. Ann NY Acad Sci. 1997;828:238–253. doi: 10.1111/j.1749-6632.1997.tb48545.x

[156]

Chwalisz K., Garfield R.E. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide // Ann NY Acad Sci. 1997. Vol. 828. P. 238–253. doi: 10.1111/j.1749-6632.1997.tb48545.x

[157]

Challis JRG. Characteristics of parturition. In: Dugoff L, Louis J. Maternalfetal medicine: principles and practice. Philadelphia: Saunders Co.; 1998. P. 484–497.

[158]

Challis J.R.G. Characteristics of parturition. In: Dugoff L., Louis J. Maternalfetal medicine: principles and practice. Philadelphia: Saunders Co., 1998. P. 484–497.

[159]

Kuzminykh TU, Borisova VY, Nikolayenkov IP, et al. Role of biologically active molecules in uterine contractile activity. Journal of Obstetrics and Women’s Diseases. 2019;68(1):21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27

[160]

Кузьминых Т.У., Борисова В.Ю., Николаенков И.П., и др. Роль биологически активных молекул в развитии сократительной деятельности матки // Журнал акушерства и женских болезней. 2019. Т. 68, № 1. С. 21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27

[161]

Larcombe-McDouall J, Buttell N, Harrison N, et al. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J Physiol. 1999;518 (Pt 3):783–790. doi: 10.1111/j.1469-7793.1999.0783p.x

[162]

Larcombe-McDouall J., Buttell N., Harrison N., et al. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle // J Physiol. 1999. Vol. 518, Pt. 3. P. 783–790. doi: 10.1111/j.1469-7793.1999.0783p.x

[163]

Jones NW, Raine-Fenning NJ, Jayaprakasan K, et al. Changes in myometrial ‘perfusion’ during normal labor as visualized by three-dimensional power Doppler angiography. Ultrasound Obstet Gynecol. 2009;33(3):307–312. doi: 10.1002/uog.6303

[164]

Jones N.W., Raine-Fenning N.J., Jayaprakasan K., et al. Changes in myometrial ‘perfusion’ during normal labor as visualized by three-dimensional power Doppler angiography // Ultrasound Obstet Gynecol. 2009. Vol. 33, N 3. P. 307–312. doi: 10.1002/uog.6303

[165]

Sato M, Noguchi J, Mashima M, et al. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor. Placenta. 2016;45:32–36. doi: 10.1016/j.placenta.2016.06.018

[166]

Sato M., Noguchi J., Mashima M., et al. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor // Placenta. 2016. Vol. 45. P. 32–36. doi: 10.1016/j.placenta.2016.06.018

[167]

Alotaibi M, Arrowsmith S, Wray S. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses. Proc Natl Acad Sci USA. 2015;112(31):9763–9768. doi: 10.1073/pnas.1503497112

[168]

Alotaibi M., Arrowsmith S., Wray S. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses // Proc Natl Acad Sci USA. 2015. Vol. 112, N 31. P. 9763–9768. doi: 10.1073/pnas.1503497112

[169]

Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997;16(17):5464–5471. doi: 10.1093/emboj/16.17.5464

[170]

Duprat F., Lesage F., Fink M., et al. TASK, a human background K+ channel to sense external pH variations near physiological pH // EMBO J. 1997. Vol. 16, N 17. P. 5464–5471. doi: 10.1093/emboj/16.17.5464

[171]

Shvetsova AA, Gaynullina DK, Tarasova OS. TASK-1 channels: functional role in arterial smooth muscle cells. Bulletin of Moscow University. Series 16. Biology. 2022;77(2):76–88. EDN: EHRSTY (In Russ.)

[172]

Швецова А.А., Гайнуллина Д.К., Тарасова О.С. Каналы TASK-1: функциональная роль в гладкомышечных клетках артерий // Вестник Московского университета. Серия 16. Биология. 2022. Т. 77, № 2. С. 76–88. EDN: EHRSTY

[173]

Yuill K, Ashmole I, Stanfield PR. The selectivity filter of the tandem pore potassium channel TASK-1 and its pH-sensitivity and ionic selectivity. Pflugers Arch. 2004;448(1):63–69. doi: 10.1007/s00424-003-1218-5

[174]

Yuill K., Ashmole I., Stanfield P.R. The selectivity filter of the tandem pore potassium channel TASK-1 and its pH-sensitivity and ionic selectivity // Pflugers Arch. 2004. Vol. 448, N 1. P. 63–69. doi: 10.1007/s00424-003-1218-5

[175]

Morton MJ, O’Connell AD, Sivaprasadarao A, et al. Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2. Pflugers Arch. 2003;445(5):577–583. doi: 10.1007/s00424-002-0901-2

[176]

Morton M.J., O’Connell A.D., Sivaprasadarao A., et. Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2 // Pflugers Arch. 2003. Vol. 445, N 5. P. 577–583. doi: 10.1007/s00424-002-0901-2

[177]

Hong SJ, Kim BK, Shin DH, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314(20):2155–2163. doi: 10.1001/jama.2015.15454

[178]

Hong S.J., Kim B.K., Shin D.H., et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial // JAMA. 2015. Vol. 314, N 20. P. 2155–2163. doi: 10.1001/jama.2015.15454

[179]

Kyeong KS, Hong SH, Kim YC, et al. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels. Korean J Physiol Pharmacol. 2016;20(5):547–556. doi: 10.4196/kjpp.2016.20.5.547

[180]

Kyeong K.S., Hong S.H., Kim Y.C., et al. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels // Korean J Physiol Pharmacol. 2016. Vol. 20, N 5. P. 547–556. doi: 10.4196/kjpp.2016.20.5.547

[181]

Jones K, Shmygol A, Kupittayanant S, et al. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflugers Arch. 2004;448(1):36–43. doi: 10.1007/s00424-003-1224-7

[182]

Jones K., Shmygol A., Kupittayanant S., et al. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes // Pflugers Arch. 2004. Vol. 448, N 1. P. 36–43. doi: 10.1007/s00424-003-1224-7

[183]

Monir-Bishty E, Pierce SJ, Kupittayanant S, et al. The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG. 2003;110(12):1050–1056.

[184]

Monir-Bishty E., Pierce S.J., Kupittayanant S., et al. The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium // BJOG. 2003. Vol. 110, N 12. P. 1050–1056.

[185]

Bugg GJ, Riley MJ, Johnston TA, et al. Hypoxic inhibition of human myometrial contractions in vitro: implications for the regulation of parturition. Eur J Clin Invest. 2006;36(2):133–140. doi: 10.1111/j.1365-2362.2006.01600.x

[186]

Bugg G.J., Riley M.J., Johnston T.A., et al. Hypoxic inhibition of human myometrial contractions in vitro: implications for the regulation of parturition // Eur J Clin Invest. 2006. Vol. 36, N 2. P. 133–140. doi: 10.1111/j.1365-2362.2006.01600.x

[187]

Badran M, Abuyassin B, Ayas N, et al. Intermittent hypoxia impairs uterine artery function in pregnant mice. J Physiol. 2019;597(10):2639–2650. doi: 10.1113/JP277775

[188]

Badran M., Abuyassin B., Ayas N., et al. Intermittent hypoxia impairs uterine artery function in pregnant mice // J Physiol. 2019. Vol. 597, N 10. P. 2639–2650. doi: 10.1113/JP277775

[189]

Gourdin MJ, Bree B, De Kock M. The impact of ischaemia-reperfusion on the blood vessel. Eur J Anaesthesiol. 2009;26(7):537–547. doi: 10.1097/EJA.0b013e328324b7c2

[190]

Gourdin M.J., Bree B., De Kock M. The impact of ischaemia-reperfusion on the blood vessel // Eur J Anaesthesiol. 2009. Vol. 26, N 7. P. 537–547. doi: 10.1097/EJA.0b013e328324b7c2

[191]

Kirby LS, Kirby MA, Warren JW, et al. Increased innervation and ripening of the prepartum murine cervix. J Soc Gynecol Investig. 2005;12(8):578–585. doi: 10.1016/j.jsgi.2005.08.006

[192]

Kirby L.S., Kirby M.A., Warren J.W., et al. Increased innervation and ripening of the prepartum murine cervix // J Soc Gynecol Investig. 2005. Vol. 12, N 8. P. 578–585. doi: 10.1016/j.jsgi.2005.08.006

[193]

Quenby S, Pierce SJ, Brigham S, et al. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004;103(4):718–723. doi: 10.1097/01.AOG.0000118306.82556.43

[194]

Quenby S., Pierce S.J., Brigham S., et al. Dysfunctional labor and myometrial lactic acidosis // Obstet Gynecol. 2004. Vol. 103, N 4. P. 718–723. doi: 10.1097/01.AOG.0000118306.82556.43

[195]

Wiberg-Itzel E, Pembe AB, Järnbert-Pettersson H, et al. Lactate in amniotic fluid: predictor of labor outcome in oxytocin-augmented primiparas’ deliveries. PLoS One. 2016;11(10):e0161546. doi: 10.1371/journal.pone.0161546

[196]

Wiberg-Itzel E., Pembe A.B., Järnbert-Pettersson H., et al. Lactate in amniotic fluid: predictor of labor outcome in oxytocin-augmented primiparas’ deliveries // PLoS One. 2016. Vol. 11, N 10. P. e0161546. doi: 10.1371/journal.pone.0161546

[197]

Wiberg-Itzel E, Pembe AB, Wray S, et al. Level of lactate in amniotic fluid and its relation to the use of oxytocin and adverse neonatal outcome. Acta Obstet Gynecol Scand. 2014;93(1):80–85. doi: 10.1111/aogs.12261

[198]

Wiberg-Itzel E., Pembe A.B., Wray S., et al. Level of lactate in amniotic fluid and its relation to the use of oxytocin and adverse neonatal outcome // Acta Obstet Gynecol Scand. 2014. Vol. 93, N 1. P. 80–85. doi: 10.1111/aogs.12261

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/