Inflammaging and prognostic markers of endometriosis
Anastasia A. Shteiman , Yulia S. Krylova , Mikhail A. Dokhov , Tatyana S. Zubareva
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (2) : 129 -136.
Inflammaging and prognostic markers of endometriosis
Inflammaging, an age-associated inflammation, is a cellular stress response caused by DNA damage, activation of oncogenes or inactivation of tumor suppressors, oxidative stress, chemotherapy, mitochondrial dysfunction, or epigenetic changes. Damage to macromolecules leads to the cessation of proliferation due to the activation of pathways such as p53/p21CIP1 and p16INK4a/RB. These form the senescence-associated secretory phenotype (SASP), the molecular/cellular manifestations of which in endometrial cells have features similar to those observed in endometriosis. Presently, there are no uniform diagnostic criteria or established molecular markers that can predict the development and course of endometriosis. In this regard, it is relevant to develop new minimally invasive examination methods, statistically based criteria and molecular markers for early diagnosis and prognosis of endometriosis.
This review article is devoted to identifying molecular markers that characterize the pathogenesis of endometriosis during inflaming. The aim of the study was to consider modern ideas about the mechanisms of inflaming and its role in the development of endometriosis to determine possible molecular markers for predicting the course of the pathology. We used the PubMed, Scopus and Google Scholar databases to analyze and systematize the literature over the past ten years. Our review reflects the main molecular mechanisms and prognostic criteria that characterize the development of endometriosis during inflaming.
premature aging / inflammaging / endometriosis / reproductive system / prognostic criteria
| [1] |
Secomandi L, Borghesan M, Velarde M, et al. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update. 2022;28(2):172–189. doi: 10.1093/humupd/dmab038 |
| [2] |
Secomandi L., Borghesan M., Velarde M., et al. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions // Hum Reprod Update. 2022. Vol. 28, N. 2. P. 172–189. doi: 10.1093/humupd/dmab038 |
| [3] |
Lean SC, Derricott H, Jones RL, et al. Advanced maternal age and adverse pregnancy outcomes: a systematic review and meta-analysis. PLoS One. 2017;12(10). doi: 10.1371/journal.pone.0186287 |
| [4] |
Lean S.C., Derricott H., Jones R.L., et al. Advanced maternal age and adverse pregnancy outcomes: a systematic review and meta-analysis // PLoS One. 2017. Vol. 17, N. 12. doi: 10.1371/journal.pone.0186287 |
| [5] |
Frederiksen LE, Ernst A, Brix N., et al. Risk of adverse pregnancy outcomes at advanced maternal age. Obstet Gynecol. 2018;131(3):457–463. doi: 10.1097/AOG.0000000000002504 |
| [6] |
Frederiksen L.E., Ernst A., Brix N., et al. Risk of adverse pregnancy outcomes at advanced maternal age // Obstet Gynecol. 2018. Vol. 131, N. 3. P. 457–463. doi: 10.1097/AOG.0000000000002504 |
| [7] |
Pasquariello R, Ermisch AF, Silva E., et al. Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans. Biol Reprod. 2019;100(4):971–981. doi: 10.1093/biolre/ioy248 |
| [8] |
Pasquariello R., Ermisch A.F., Silva E., et al. Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans // Biol Reprod. 2019. Vol. 100, N. 4. P. 971–981. doi: 10.1093/biolre/ioy248 |
| [9] |
Sultana Z, Maiti K, Dedman L, et al. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am J Obstet Gynecol. 2018;218(2S):S762–S773. doi: 10.1016/j.ajog.2017.11.567 |
| [10] |
Sultana Z., Maiti K., Dedman L., et al. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? // Am J Obstet Gynecol. 2018. Vol. 218, N. 2S. P. S762–S773. doi: 10.1016/j.ajog.2017.11.567 |
| [11] |
Woods L, Perez-Garcia V, Kieckbusch J., et. al. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat Commun. 2017;8(1):352. doi: 10.1038/s41467-017-00308-x |
| [12] |
Woods L., Perez-Garcia V., Kieckbusch J., et al. Decidualisation and placentation defects are a major cause of age-related reproductive declin // Nat Commun. 2017. Vol. 8, N. 1. P. 352. doi: 10.1038/s41467-017-00308-x |
| [13] |
Daan NM, Fauser BC. Menopause prediction and potential implications. Maturitas. 2015;82(3):257–265. doi: 10.1016/j.maturitas.2015.07.019 |
| [14] |
Daan N.M., Fauser B.C. Menopause prediction and potential implications // Maturitas. Vol. 82, N. 3. P. 257–265. doi: 10.1016/j.maturitas.2015.07.019 |
| [15] |
Chow ET, Mahalingaiah S. Cosmetics use and age at menopause: is there a connection? Fertil Steril. 2016;106(4):978–990. doi: 10.1016/j.fertnstert.2016.08.020 |
| [16] |
Chow E.T., Mahalingaiah S. Cosmetics use and age at menopause: is there a connection? // Fertil Steril. 2016. Vol. 106, N. 4. P. 978–990. doi: 10.1016/j.fertnstert.2016.08.020 |
| [17] |
Moslehi N, Mirmiran P, Tehrani FR, et al. Current evidence on associations of nutritional factors with ovarian reserve and timing of menopause: a systematic review. Adv Nutr. 2017;8(4):597–612. doi: 10.3945/an.116.014647 |
| [18] |
Moslehi N., Mirmiran P., Tehrani F.R., et al. Current evidence on associations of nutritional factors with ovarian reserve and timing of menopause: a systematic review // Adv Nutr. 2017. Vol. 8, N. 4. P. 597–612. doi: 10.3945/an.116.014647 |
| [19] |
Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(23–24):1565–1576. doi: 10.1101/gad.343129.120 |
| [20] |
Birch J., Gil J. Senescence and the SASP: many therapeutic avenues // Genes Dev. 2020. Vol. 34, N. 23. P. 1565–1576. doi: 10.1101/gad.343129.120 |
| [21] |
Gorgoulis V, Adams PD, Alimonti A., et. al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005 |
| [22] |
Gorgoulis V., Adams P.D., Alimonti A., et al. Cellular senescence: defining a path forward // Cell. 2019. Vol. 179, N. 4. P. 813–827. doi: 10.1016/j.cell.2019.10.005 |
| [23] |
McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217(1):65–77. doi: 10.1083/jcb.201708092. |
| [24] |
McHugh D., Gil J. Senescence and aging: causes, consequences, and therapeutic avenues // J Cell Biol. 2018. Vol. 217, N. 1. P. 65–77. doi: 10.1083/jcb.201708092 |
| [25] |
Hoare M, Ito Y, Kang TW. Et NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18(9):979–992. doi: 10.1038/ncb3397 |
| [26] |
Hoare M., Ito Y., Kang T., et al. NOTCH1 mediates a switch between two distinct secretomes during senescence // Nat Cell Biol. 2016. Vol. 18, N. 9. P. 979–992. doi: 10.1038/ncb3397 |
| [27] |
Chuprin A, Gal H, Biron-Shental T, et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev. 2013;27(21):2356–2366. doi: 10.1101/gad.227512.113. |
| [28] |
Chuprin A., Gal H., Biron-Shental T., et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence // Genes Dev. 2013. Vol. 27, N. 21. P. 2356–2366. doi: 10.1101/gad.227512.113 |
| [29] |
Biran A, Zada L, Abou Karam P, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–671. doi: 10.1111/acel.12592 |
| [30] |
Biran A., Zada L., Abou Karam P., et al. Quantitative identification of senescent cells in aging and disease // Aging Cell. 2017. Vol. 16, N. 4. P. 661–671. doi: 10.1111/acel.12592 |
| [31] |
Takasugi M, Okada R, Takahashi A, et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:15729. doi: 10.1038/ncomms15728 |
| [32] |
Takasugi M., Okada R., Takahashi A., et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2 // Nat Commun. 2017. Vol. 8. P. 15729. doi: 10.1038/ncomms15728 |
| [33] |
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9. doi: 10.1093/gerona/glu057 |
| [34] |
Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases // J Gerontol A Biol Sci Med Sci. 2014. Vol. 69, N. 1(suppl.). P. 4–9. doi: 10.1093/gerona/glu057 |
| [35] |
Vilas Boas L, Bezerra Sobrinho C, Rahal D, et al. Antinuclear antibodies in patients with endometriosis: a cross-sectional study in 94 patients. Hum Immunol. 2022;83(1):70–73. doi: 10.1016/j.humimm.2021.10.001 |
| [36] |
Vilas B.L., Bezerra S.C., Rahal D., et al. Antinuclear antibodies in patients with endometriosis: a cross-sectional study in 94 patients // Hum Immunol. 2022. Vol. 83, N. 1. P. 70–73. doi: 10.1016/j.humimm.2021.10.001 |
| [37] |
Becker CM, Bokor A, Heikinheimo O, et al. ESHRE Endometriosis Guideline Group. ESHRE guideline: endometriosis. Hum Reprod Open. 2022;2022(2):1–26. doi: 10.1093/hropen/ hoac009 |
| [38] |
Becker C.M., Bokor A., Heikinheimo O., et al. ESHRE Endometriosis Guideline Group. ESHRE guideline: endometriosis // Hum Reprod Open. 2022. Vol. 2022. N. 2. P. 1–26. doi: 10.1093/hropen/ hoac009 |
| [39] |
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med. 2018;124:420–430. doi: 10.1016/j.freeradbiomed.2018.06.016 |
| [40] |
Pomatto L.C.D, Davies K.J.A. Adaptive homeostasis and the free radical theory of ageing // Free Radic Biol Med. 2018. Vol. 124. P. 420–430. doi: 10.1016/j.freeradbiomed.2018.06.016 |
| [41] |
Scutiero G, Iannone P, Bernardi G, et al. Oxidative stress and endometriosis: a systematic review of the literature. Oxid Med Cell Longev. 2017;2017. doi: 10.1155/2017/7265238 |
| [42] |
Scutiero G., Iannone P., Bernardi G., et al. Oxidative stress and endometriosis: a systematic review of the literature // Oxid Med Cell Longev. 2017. Vol. 2017. doi: 10.1155/2017/7265238 |
| [43] |
Van Langendonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis. Fertil Steril. 2002;77(5):861–870. doi: 10.1016/s0015-0282(02)02959-x |
| [44] |
Van Langendonckt A., Casanas-Roux F., Donnez J. Oxidative stress and peritoneal endometriosis // Fertil Steril. 2002. Vol. 77, N. 5. P. 861–870. doi: 10.1016/s0015-0282(02)02959-x |
| [45] |
Pertynska-Marczewska M, Diamanti-Kandarakis E. Aging ovary and the role for advanced glycation end products. Menopause. 2017;24(3):345–351. doi: 10.1097/GME.0000000000000755 |
| [46] |
Pertynska-Marczewska M., Diamanti-Kandarakis E. Aging ovary and the role for advanced glycation end products // Menopause. 2017. Vol. 24, N. 3. P. 345–351. doi: 10.1097/GME.0000000000000755 |
| [47] |
Merhi Z, Du XQ, Charron MJ. Postnatal weaning to different diets leads to different reproductive phenotypes in female offspring following perinatal exposure to high levels of dietary advanced glycation end products. F S Sci. 2022;3(1):95–105. doi: 10.1016/j.xfss.2021.12.001 |
| [48] |
Merhi Z., Du X.Q., Charron M.J. Postnatal weaning to different diets leads to different reproductive phenotypes in female offspring following perinatal exposure to high levels of dietary advanced glycation end products // F S Sci. 2022. Vol. 3, N. 1. P. 95–105. doi: 10.1016/j.xfss.2021.12.001 |
| [49] |
Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140(4):489–504. doi: 10.1530/REP-10-0094 |
| [50] |
Young J.M., McNeilly A.S. Theca: the forgotten cell of the ovarian follicle // Reproduction. 2010. Vol. 140, N. 4. P. 489–504. doi: 10.1530/REP-10-0094 |
| [51] |
Laven JSE. Early menopause results from instead of causes premature general ageing. Reprod Biomed Online. 2022;45(3):421–424. doi: 10.1016/j.rbmo.2022.02.027 |
| [52] |
Laven J.S.E. Early menopause results from instead of causes premature general ageing // Reprod Biomed Online. 2022. Vol. 45, N. 3. P. 421–424. doi: 10.1016/j.rbmo.2022.02.027 |
| [53] |
Laven JSE. Genetics of menopause and primary ovarian insufficiency: time for a paradigm shift? Semin Reprod Med. 2020;38(4):256–262. doi: 10.1055/s-0040-1721796 |
| [54] |
Laven J.S.E. Genetics of menopause and primary ovarian insufficiency: time for a paradigm shift? // Semin Reprod Med. 2020. Vol. 38, N. 4. P. 256–262. doi: 10.1055/s-0040-1721796 |
| [55] |
Ruth KS, Day FR, Hussain J, et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021; 596(7872):393–397. doi: 10.1038/s41586-021-03779-7 |
| [56] |
Ruth K.S., Day F.R., Hussain J., et al. Genetic insights into biological mechanisms governing human ovarian ageing // Nature. 2021. Vol. 596, N. 7872. P. 393–397. doi: 10.1038/s41586-021-03779-7 |
| [57] |
Chico-Sordo L, Córdova-Oriz I, Polonio AM, et al. Reproductive aging and telomeres: are women and men equally affected? Mech Ageing Dev. 2021;198:111541. doi: 10.1016/j.mad.2021.111541 |
| [58] |
Chico-Sordo L., Córdova-Oriz I., Polonio A.M., et al. Reproductive aging and telomeres: Are women and men equally affected? // Mech Ageing Dev. 2021. Vol. 198. doi: 10.1016/j.mad.2021.111541 |
| [59] |
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: implications in human aging. Environ Toxicol Pharmacol. 2021;85:103633. doi: 10.1016/j.etap.2021.103633 |
| [60] |
Fernandes S.G., Dsouza R., Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: implications in human aging // Environ Toxicol Pharmacol. 2021. Vol. 85. doi: 10.1016/j.etap.2021.103633 |
| [61] |
Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2020;63(2):103638. doi: 10.1016/j.ejmg.2019.03.002 |
| [62] |
Keefe D.L. Telomeres and genomic instability during early development // Eur J Med Genet. 2020. Vol. 63, N. 2. doi: 10.1016/j.ejmg.2019.03.002 |
| [63] |
Kosebent EG, Uysal F, Ozturk S. The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse. Exp Gerontol. 2020;138:110975. doi: 10.1016/j.exger.2020.110975 |
| [64] |
Kosebent E.G., Uysal F., Ozturk S. The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse // Exp Gerontol. 2020. Vol. 138. doi: 10.1016/j.exger.2020.110975 |
| [65] |
Sofiyeva N, Ekizoglu S, Gezer A, et al. Oral E. Does telomerase activity have an effect on infertility in patients with endometriosis? Eur J Obstet Gynecol Reprod Biol. 2017; 213:116–122. doi: 10.1016/j.ejogrb.2017.04.027 |
| [66] |
Sofiyeva N., Ekizoglu S., Gezer A., et al. Does telomerase activity have an effect on infertility in patients with endometriosis // Eur J Obstet Gynecol Reprod Biol. 2017. Vol. 213. P. 116–122. doi: 10.1016/j.ejogrb.2017.04.027 |
| [67] |
Milewski Ł, Ścieżyńska A, Ponińska J, et al. Endometriosis is associated with functional polymorphism in the promoter of heme oxygenase 1 (HMOX1) gene. Cells. 2021;10(3):695. doi: 10.3390/cells10030695 |
| [68] |
Milewski Ł., Ścieżyńska A., Ponińska J., et al. Endometriosis is associated with functional polymorphism in the promoter of heme oxygenase 1 (HMOX1) gene // Cells. 2021. Vol. 10, N. 3. P. 695. doi: 10.3390/cells10030695 |
| [69] |
Agarwal SK, Chapron C, Giudice LC, et al. Clinical diagnosis of endometriosis: a call to action. Am J Obstet Gynecol. 2019;220(4):354.e1–354.e12. doi: 10.1016/j.ajog.2018.12.039 |
| [70] |
Agarwal S.K., Chapron C., Giudice L.C., et al. Clinical diagnosis of endometriosis: a call to action // Am J Obstet Gynecol. 2019. Vol. 220, N. 4. P. 3541–3542. doi: 10.1016/j.ajog.2018.12.039 |
| [71] |
Orazov MR, Radzinsky VE, Orekhov RE, et al. Endometriosis-associated infertility: pathogenesis and possibilities of hormone therapy in preparation for IVF. Gynecology, Obstetrics and Perinatology. 2022;21(2):90–98. EDN: BAVAIK doi: 10.20953/1726-1678-2022-2-90-98 |
| [72] |
Оразов М.Р., Радзинский В.Е., Орехов Р.Е., и др. Эндометриоз-ассоциированное бесплодие: патогенез и возможности гормональной терапии в подготовке к ЭКО // Вопросы гинекологии, акушерства и перинатологии. 2022. Т. 21, № 2. С. 90–98. EDN: BAVAIK doi: 10.20953/1726-1678-2022-2-90-98 |
| [73] |
Anastasiu CV, Moga MA, Neculau EA, et al. Biomarkers for the noninvasive diagnosis of endometriosis: state of the artand future perspectives. Int J Mol Sci. 2020;21(5):1750. doi: 10.3390/ijms21051750 |
| [74] |
Anastasiu C.V., Moga M.A., Neculau E.A., et al. Biomarkers for the noninvasive diagnosis of endometriosis: state of the artand future perspectives // Int J Mol Sci. 2020. Vol. 21, N. 5. P. 1750. doi: 10.3390/ijms21051750 |
| [75] |
Adamczyk M, Wender-Ozegowska E, Kedzia M. Epigenetic factors in eutopic endometrium in women with endometriosis and infertility. Int J Mol Sci. 2022;23(7):3804. doi: 10.3390/ijms23073804 |
| [76] |
Adamczyk M., Wender-Ozegowska E., Kedzia M. Epigenetic factors in eutopic endometrium in women with endometriosis and infertility // Int J Mol Sci. 2022. Vol. 23, N. 7. doi: 10.3390/ijms23073804 |
| [77] |
Laganà AS, Garzon S, Götte M, et al. The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci. 2019;20(22):5615. doi: 10.3390/IJMS20225615 |
| [78] |
Laganà A.S., Garzon S., Götte M., et al. The pathogenesis of endometriosis: molecular and cell biology insights // Int J Mol Sci. 2019. Vol. 20, N. 22. P. 5615. doi: 10.3390/IJMS20225615 |
| [79] |
Szukiewicz D, Stangret A, Ruiz-Ruiz C, et al. Estrogen- and progesterone (P4)-mediated epigenetic modifications of endometrial stromal cells (EnSCs) and/or mesenchymal stem/stromal cells (MSCs) in the etiopathogenesis of endometriosis. Stem Cell Rev Reports. 2021;17(4):1174–1193. doi: 10.1007/s12015-020-10115-5 |
| [80] |
Szukiewicz D., Stangret A., Ruiz-Ruiz C., et al. Estrogen- and progesterone (P4)-mediated epigenetic modifications of endometrial stromal cells (EnSCs) and/or mesenchymal stem/stromal cells (MSCs) in the etiopathogenesis of endometriosis // Stem Cell Rev Reports 2021. Vol. 17, N. 4. P. 1174–1193. doi: 10.1007/s12015-020-10115-5 |
| [81] |
Amalinei C, Păvăleanu I, Lozneanu L, et al. Endometriosis — insights into a multifaceted entity. Folia Histochem Cytobiol. 2018;1(2):61–82. doi: 10.5603/FHC.a2018.0013 |
| [82] |
Amalinei C., Păvăleanu I., Lozneanu L., et al. Endometriosis — insights into a multifaceted entity // Folia Histochem Cytobiol. 2018. Vol. 1, N. 2. P. 61–82. doi: 10.5603/FHC.a2018.0013 |
| [83] |
Han SJ, Lee JE, Cho YJ, et al. Genomic function of estrogen receptor β in endometriosis. Endocrinology. 2019;160(11):2495–2516. doi: 10.1210/en.2019-00442 |
| [84] |
Han S.J., Lee J.E., Cho Y.J., et al. Genomic function of estrogen receptor β in endometriosis // Endocrinology. 2019. Vol. 160, N. 11. P. 2495–2516. doi: 10.1210/en.2019-00442 |
| [85] |
McKinnon B, Mueller M, Montgomery G. progesterone resistance in endometriosis:an acquired property? Trends Endocrinol Metab. 2018;29(8):535–548. doi: 10.1016/j.tem.2018.05.006 |
| [86] |
McKinnon B., Mueller M., Montgomery G. Progesterone resistance in endometriosis:an acquired property? // Trends Endocrinol Metab. 2018. Vol. 29, N. 8. P. 535–548. doi: 10.1016/j.tem.2018.05.006 |
| [87] |
Perdaens O, van Pesch V. Molecular mechanisms of immunosenescene and inflammaging: relevance to the immunopathogenesis and treatment of multiple sclerosis. Front Neurol. 2021;12. doi: 10.3389/fneur.2021.811518 |
| [88] |
Perdaens O., van Pesch V. Molecular mechanisms of immunosenescene and inflammaging: relevance to the immunopathogenesis and treatment of multiple sclerosis // Front Neurol. 2021. Vol. 12. P. 811518. doi: 10.3389/fneur.2021.811518 |
| [89] |
Thomas V, Uppoor AS, Pralhad S, et al. Towards a common etiopathogenesis: periodontal disease and endometriosis. J Hum Reprod Sci. 2018;11:269–273. doi: 10.4103/jhrs.JHRS_8_18 |
| [90] |
Thomas V., Uppoor A.S., Pralhad S., et al. Towards a common etiopathogenesis: periodontal disease and endometriosis // J Hum Reprod Sci. 2018. Vol. 11. P. 269–273. doi: 10.4103/jhrs.JHRS_8_18 |
| [91] |
Fukui A, Mai C, Saeki S, et al. Pelvic endometriosis and natural killer cell immunity. Am J Reprod Immunol. 2021;85(4). doi: 10.1111/aji.13342 |
| [92] |
Fukui A., Mai C., Saeki S., et al. Pelvic endometriosis and natural killer cell immunity // Am J Reprod Immunol. 2021. Vol. 85, N. 4. doi: 10.1111/aji.13342 |
| [93] |
Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med. 2021;171:169–190. doi: 10.1016/j.freeradbiomed.2021.05.003 |
| [94] |
Lagoumtzi S.M., Chondrogianni N. Senolytics and senomorphics: natural and synthetic therapeutics in the treatment of aging and chronic diseases // Free Radic Biol Med. 2021. Vol. 171. P. 169–190. doi: 10.1016/j.freeradbiomed.2021.05.003 |
| [95] |
Smolarz B, Szyłło K, Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int J Mol Sci. 2021;22(19):10554. doi: 10.3390/ijms221910554317 |
| [96] |
Smolarz B., Szyłło K., Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (review of literature) // Int J Mol Sci. 2021. Vol. 22, N. 19. P. 10554. doi: 10.3390/ijms221910554317 |
Eсо-Vector
/
| 〈 |
|
〉 |