Disorders of carbohydrate metabolism and candidate genes for the pathophysiology of polycystic ovary syndrome. A literature review
Elena I. Abashova , Maria I. Yarmolinskaya , Natalia S. Osinovskaya
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (6) : 115 -128.
Disorders of carbohydrate metabolism and candidate genes for the pathophysiology of polycystic ovary syndrome. A literature review
Polycystic ovary syndrome is a common heterogeneous disease with metabolic disorders. In the last decade, the study of polycystic ovary syndrome pathogenesis has been associated with the modern development of molecular genetics, transcriptomics, and sequencing methods. Numerous studies have shown that the study of genetic markers and epigenetic changes in metabolic disorders, oxidative stress, chronic inflammation, and mitochondrial dysfunction in polycystic ovary syndrome is an important direction in the pathogenesis and etiology of the disease. The aim of this literature review was to describe candidate genes involved in the pathophysiology of polycystic ovary syndrome and associated with disorders of carbohydrate metabolism according to modern domestic and foreign literature over the past five years. The candidate gene data presented were assessed based on the main aspects of polycystic ovary syndrome pathophysiology, namely, metabolic dysfunction, androgen and gonadotropin imbalance, and inflammation. The insulin genes (variable number of tandem repeats), such as INS-VNTR, IRS-1, IRS-2, and INSR, adiponectin and calpain-10 genes, as well as CY1A1, CYP11A1, PON1, DENND1A and TCF7L2 genes are associated with metabolic disorders in polycystic ovary syndrome. Genetic variants of genes involved in regulating the expression and mechanism of action of insulin, as well as its receptors and substrates (IRS-1, IRS-2, INSR), have been suggested as possible factors involved in the development and severity of the clinical and metabolic manifestations of polycystic ovary syndrome. The presented data on PPARγ gene (and its coactivator PGC-1α) expression levels in women with polycystic ovary syndrome revealed the presence of PPARγ gene polymorphisms associated with insulin resistance. Thus, the data presented in this review from genome-wide association studies (GWAS) and the study of candidate genes showed that numerous pleiotropic effects cause carbohydrate metabolism disorders in polycystic ovary syndrome. The study of genetic markers and epigenetic changes in the development of metabolic disorders, oxidative stress, chronic inflammation, and mitochondrial dysfunction in polycystic ovary syndrome is an important direction in the pathogenesis of the disease.
polycystic ovary syndrome / phenotypes / insulin resistance / INS-VNTR / IRS / INSR / PPAR-γ / genome-wide association studies
| [1] |
Teede HJ, Tay CT, Laven JJE, et al. Recommendations from the 2023 International Evidence-based Guideline for the assessment and management of polycystic ovary syndrome. J Clin Endocrinol Metab. 2023;108(10):2447–2469. DOI: 10.1210/clinem/dgad463 |
| [2] |
Teede H.J., Tay C.T., Laven J.J.E., et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 2023. Vol. 108. No. 10. P. 2447–2469. DOI: 10.1210/clinem/dgad463 |
| [3] |
Neven ACH, Laven J, Teede HJ, et al. A summary on polycystic ovary syndrome: diagnostic criteria, prevalence, clinical manifestations, and management according to the latest international guidelines. Semin Reprod Med. 2018;36(1):5–12. DOI: 10.1055/s-0038-1668085 |
| [4] |
Neven A.C.H., Laven J., Teede H.J., et al. A summary on polycystic ovary syndrome: diagnostic criteria, prevalence, clinical manifestations, and management according to the latest international guidelines // Semin. Reprod. Med. 2018. Vol. 36. No. 1. P. 5–12. DOI: 10.1055/s-0038-1668085 |
| [5] |
Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47. DOI: 10.1093/humrep/deh098 |
| [6] |
Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS) // Hum. Reprod. 2004. Vol. 19. No. 1. P. 41–47. DOI: 10.1093/humrep/deh098 |
| [7] |
Rossiyskoe obshchestvo akusherov-ginekologov, Rossiyskaya assotsiatsiya endokrinologov. Sindrom polikistoznykh yaichnikov. Klinicheskie rekomendatsii. 2021. (In Russ.) [cited 2023 Nov 5]. Available from: https://roag-portal.ru/recommendations_gynecology |
| [8] |
Российское общество акушеров-гинекологов, Российская ассоциация эндокринологов. Синдром поликистозных яичников. Клинические рекомендации. 2021 [дата обращения 15.09.2023]. Доступ по ссылке: https://roag-portal.ru/recommendations_gynecology |
| [9] |
Broskey NT, Tam CS, Sutton EF, et al. Metabolic inflexibility in women with PCOS is similar to women with type 2 diabetes. Nutr Metab (Lond). 2018;15:75. DOI: 10.1186/s12986-018-0312-9 |
| [10] |
Broskey N.T., Tam C.S., Sutton E.F., et al. Metabolic inflexibility in women with PCOS is similar to women with type 2 diabetes // Nutr. Metab. 2018. Vol. 15. P. 75. DOI: 10.1186/s12986-018-0312-9 |
| [11] |
Hoeger KM, Dokras A, Piltonen T. Update on PCOS: consequences, challenges, and guiding treatment. J Clin Endocrinol Metab. 2021;106(3):e1071–e1083. DOI: 10.1210/clinem/dgaa839 |
| [12] |
Hoeger K.M., Dokras A., Piltonen T. Update on PCOS: consequences, challenges, and guiding treatment // J. Clin. Endocrinol. Metab. 2021. Vol. 106. No. 3. P. e1071–e1083. DOI: 10.1210/clinem/dgaa839 |
| [13] |
Greenwood EA, Pasch LA, Cedars MI, et al. Insulin resistance is associated with depression risk in polycystic ovary syndrome. Fertil Steril. 2018;110(1):27–34. DOI: 10.1016/j.fertnstert.2018.03.009 |
| [14] |
Greenwood E.A., Pasch L.A., Cedars M.I., et al. Insulin resistance is associated with depression risk in polycystic ovary syndrome // Fertil. Steril. 2018. Vol. 110. No. 1. P. 27–34. DOI: 10.1016/j.fertnstert.2018.03.009 |
| [15] |
Abashova EI, Yarmolinskaya MI. Phenotypes of polycystic ovary syndrome in women of reproductive age: clinical picture, diagnosis, therapy strategy. Obstetrics and Gynecology. 2021;(12):4–12. (In Russ.) |
| [16] |
Абашова Е.И., Ярмолинская М.И. Фенотипы СПЯ у женщин репродуктивного возраста: клиника, диагностика, стратегия терапии // Акушерство и гинекология. 2021. № 12. С. 4–12. |
| [17] |
Ollila MM, West S, Keinänen-Kiukaanniemi S, et al. Overweight and obese but not normal weight women with PCOS are at increased risk of type 2 diabetes mellitus-a prospective, population-based cohort study. Hum Reprod. 2017;32(2):423–431. DOI: 10.1093/humrep/dew329 |
| [18] |
Ollila M.M., West S., Keinänen-Kiukaanniemi S., et al. Overweight and obese but not normal weight women with PCOS are at increased risk of type 2 diabetes mellitus-a prospective, population-based cohort study // Hum. Reprod. 2017. Vol. 32. No. 2. P. 423–431. DOI: 10.1093/humrep/dew329 |
| [19] |
Cassar S., Misso M., Shaw C., et al. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod. 2016;31:2619–2631. DOI: 10.1093/humrep/dew243 |
| [20] |
Cassar S., Misso M., Shaw C., et al. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies // Hum. Reprod. 2016. Vol. 31. No. 11. P 2619–2631. DOI: 10.1093/humrep/dew243 |
| [21] |
Kakoly NS, Khomami MB, Joham AE, et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum Reprod Update. 2018:24(4):455–467. DOI: 10.1093/humupd/ dmy007 |
| [22] |
Kakoly N.S., Khomami M.B., Joham A.E., et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression // Hum. Reprod. Update. 2018. Vol. 24. No. 4. P. 455–467. DOI: 10.1093/humupd/ dmy007 |
| [23] |
Abashova EI, Yarmolinskaya MI, Bulgakova OL, et al. Analysis of carbohydrate profile indicators in women of reproductive age with different pcos phenotypes. Problemy reproduktsii. 2022;28(4):31–38. (In Russ.) DOI: 10.17116/repro20222804131 |
| [24] |
Абашова Е.И., Ярмолинская М.И., Булгакова О.Л., и др. Анализ показателей углеводного профиля у женщин репродуктивного возраста с различными фенотипами синдрома поликистозных яичников // Проблемы репродукции. 2022. T. 28. № 4. С. 31-38. DOI: 10.17116/repro20222804131 |
| [25] |
Chernukha GE, Miroshina ED, Kuznetsov SYu, et al. Body mass index, body composition, and metabolic profile of patients with polycystic ovary syndrome. Obstetrics and Gynegology 2021;(10):103–111. (In Russ.) DOI: 10.18565/aig.2021.10.103-111 |
| [26] |
Чернуха Г.Е., Мирошина Е.Д., Кузнецов С.Ю., и др. Индекс массы тела, композиционный состав тела и метаболический профиль пациенток с синдромом поликистозных яичников // Акушерство и гинекология. 2021. № 10. С. 103–111. DOI: 10.18565/aig.2021.10.103-111 |
| [27] |
Andreeva EN, Sheremetyeva EV, Fursenko VA. Obesity – threat to the reproductive potential of Russia. Obesity and metabolism. 2019;16(3):20–28. (In Russ.) DOI: 10.14341/omet10340 |
| [28] |
Андреева Е.Н., Шереметьева Е.В., Фурсенко В.А. Ожирение – угроза репродуктивного потенциала России // Ожирение и метаболизм. 2019. Т. 16. № 3. С. 20–28. DOI: 10.14341/omet10340 |
| [29] |
Persson S, Elenis E, Turkmen S, et al. Higher risk of type 2 diabetes in women with hyperandrogenic polycystic ovary syndrome. Fertil Steril. 2021;116(3):862–871. DOI: 10.1016/j.fertnstert.2021.04.018 |
| [30] |
Persson S., Elenis E., Turkmen S., et al. Higher risk of type 2 diabetes in women with hyperandrogenic polycystic ovary syndrome // Fertil. Steril. 2021. Vol. 116. No. 3. P. 862–871. DOI: 10.1016/j.fertnstert.2021.04.018 |
| [31] |
Lim SS, Hutchison SK, Van Ryswyk E, et al. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;3(3). DOI: 10.1002/14651858.CD007506.pub4 |
| [32] |
Lim S.S., Hutchison S.K., Van Ryswyk E., et al. Lifestyle changes in women with polycystic ovary syndrome // Cochrane Database Syst. Rev. 2019. Vol. 3. No. 3. DOI: 10.1002/14651858.CD007506.pub4 |
| [33] |
Zhu S, Zhang B, Jiang X, et al. Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril. 2019;111(1):168–177. DOI: 10.1016/j.fertnstert.2018.09.013 |
| [34] |
Zhu S., Zhang B., Jiang X., et al. Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis // Fertil. Steril. 2019. Vol. 111. No. 1. P. 168–177. DOI: 10.1016/j.fertnstert.2018.09.013 |
| [35] |
Vink JM, Sadrzadeh S, Lambalk CB, et al. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin. Endocrinol. Metab. 2006;91:2100–2104. DOI: 10.1210/jc.2005-1494 |
| [36] |
Vink J.M., Sadrzadeh S., Lambalk C.B., et al. Heritability of polycystic ovary syndrome in a Dutch twin-family study // J. Clin. Endocrinol. Metab. 2006. Vol. 91. No. 6. P. 2100–2104. DOI: 10.1210/jc.2005-1494 |
| [37] |
Stepto NK, Moreno-Asso A, McIlvenna LC, et al. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Unraveling the conundrum in skeletal muscle? J Clin Endocrinol Metab. 2019;104:5372–5381. DOI: 10.1210/jc.2019-00167 |
| [38] |
Stepto N.K., Moreno-Asso A., McIlvenna L.C., et al. Molecular mechanisms of insulin resistance in Polycystic ovary syndrome. Unraveling the conundrum in skeletal muscle? // J. Clin. Endocrinol. Metab. 2019. Vol. 104. P. 5372–5381. DOI: 10.1210/jc.2019-00167 |
| [39] |
Gilbert EW, Tay CT, Hiam DS, et al. Comorbidities and complications of polycystic ovary syndrome: an overview of systematic reviews. Clin. Endocrinol. 2018;89:683–699. DOI: 10.1111/cen.13828 |
| [40] |
Gilbert E.W., Tay C.T., Hiam D.S., et al. Comorbidities and complications of polycystic ovary syndrome: an overview of systematic reviews // Clin. Endocrinol. 2018. Vol. 89. P. 683–699. DOI: 10.1111/cen.13828 |
| [41] |
Hiam D, Moreno-Asso A, Teede HJ, et al. The genetics of polycystic ovary syndrome: an overview of candidate gene systematic reviews and genome-wide association studies. J Clin Med. 2019;8(10):1606. DOI: 10.3390/jcm8101606 |
| [42] |
Hiam D., Moreno-Asso A., Teede H.J., et al. The genetics of polycystic ovary syndrome: an overview of candidate gene systematic reviews and genome-wide association studies // J. Clin. Med. 2019. Vol. 8. No. 10. P. 1606. DOI: 10.3390/jcm8101606 |
| [43] |
Day FR, Hinds DA, Tung JY, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 2015;6:8464. DOI: 10.1038/ncomms9464 |
| [44] |
Day F.R., Hinds D.A., Tung J.Y., et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome // Nat. Commun. 2015. Vol. 6. P. 8464. DOI: 10.1038/ncomms9464 |
| [45] |
Liu Z, Wang Z, Hao C, et al. Effects of ADIPOQ polymorphisms on PCOS risk: a meta-analysis. Reprod Biol Endocrinol. 2018;16:120. DOI: 10.1186/s12958-018-0439-6 |
| [46] |
Liu Z., Wang Z., Hao C. et al. Effects of ADIPOQ polymorphisms on PCOS risk: a meta-analysis // Reprod. Biol. Endocrinol. 2018. Vol. 16. No. 1. P. 120. DOI: 10.1186/s12958-018-0439-6 |
| [47] |
Yilmaz B, Vellanki P, Ata B, et al. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril. 2018;109:356–364. DOI: 10.1016/j.fertnstert.2017.10.018 |
| [48] |
Yilmaz B., Vellanki P., Ata B., et al. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis // Fertil. Steril. 2018. Vol. 109. No. 2. P. 356–364. DOI: 10.1016/j.fertnstert.2017.10.018 |
| [49] |
Dapas M, Lin FTJ, Nadkarni GN, et al. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: an unsupervised, phenotypic clustering analysis. PLoS Med. 2020;17(6). DOI: 10.1371/journal.pmed.1003132 |
| [50] |
Dapas M., Lin F.T.J.. Nadkarni G.N., et al. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: an unsupervised, phenotypic clustering analysis // PLoS Med. 2020 Vol. 17. No. 6. DOI: 10.1371/journal.pmed.1003132 |
| [51] |
Moran LJ., Norman RJ, Teede HJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends Endocrinol Metab. 2015;26:136–143. DOI: 10.1016/j.tem.2014.12.003 |
| [52] |
Moran L.J., Norman R.J., Teede H.J. Metabolic risk in PCOS: phenotype and adiposity impact // Trends Endocrinol. Metab. 2015. Vol. 26. P. 136–143. DOI: 10.1016/j.tem.2014.12.003 |
| [53] |
Liao D, Yu H, Han L, et al. Association of PON1 gene polymorphisms with polycystic ovarian syndrome risk: a meta-analysis of case-control studies. J Endocrinol Investig. 2018;41:1289–1300. DOI: 10.1007/s40618-018-0866-4 |
| [54] |
Liao D., Yu H., Han L., et al. Association of PON1 gene polymorphisms with polycystic ovarian syndrome risk: a meta-analysis of case-control studies // J. Endocrinol. Investig. 2018. Vol. 41. P. 1289–1300. DOI: 10.1007/s40618-018-0866-4 |
| [55] |
Shi X, Xie X, Jia Y, et al. Associations of insulin receptor and insulin receptor substrates genetic polymorphisms with polycystic ovary syndrome: a systematic review and meta-analysis. J Obstet Gynaecol Res. 2016; 42:844–854. DOI: 10.1111/jog.13002 |
| [56] |
Shi X., Xie X., Jia Y., et al. Associations of insulin receptor and insulin receptor substrates genetic polymorphisms with polycystic ovary syndrome: a systematic review and meta-analysis // J. Obstet. Gynaecol. Res. 2016. Vol. 42. P. 844–854. DOI: 10.1111/jog.13002 |
| [57] |
González F, Considine RV, Abdelhadi OA, et al. Saturated fat ingestion promotes lipopolysaccharide-mediated inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(3):934–946. DOI: 10.1210/jc.2018-01143 |
| [58] |
González F., Considine R.V., Abdelhadi O.A., et al. Saturated fat ingestion promotes lipopolysaccharide-mediated inflammation and insulin resistance in polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 2019. Vol. 104. No. 3. P. 934–946. DOI: 10.1210/jc.2018-01143 |
| [59] |
Tosi F, Villani M, Migazzi M, et al. Insulin-mediated substrate use in women with different phenotypes of PCOS: the role of androgens. J Clin Endocrinol Metab. 2021;106(9):e3414–e3425. DOI: 10.1210/clinem/dgab380 |
| [60] |
Tosi F., Villani M., Migazzi M., et al. Insulin-mediated substrate use in women with different phenotypes of PCOS: the role of androgens // J. Clin. Endocrinol. Metab. 2021. Vol. 106. No. 9. P. e3414–e3425. DOI: 10.1210/clinem/dgab380 |
| [61] |
Dumesic DA, Phan JD, Leung KL, et al. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(6):2171–2183. DOI: 10.1210/jc.2018-02086 |
| [62] |
Dumesic D.A., Phan J.D., Leung K.L., et al. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 2019. Vol. 104. No. 6. P. 2171–2183. DOI: 10.1210/jc.2018-02086 |
| [63] |
Hansen SL, Svendsen PF, Jeppesen JF, et al. Molecular mechanisms in skeletal muscle underlying insulin resistance in women who are lean with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(5):1841–1854. DOI: 10.1210/jc.2018-01771 |
| [64] |
Hansen S.L., Svendsen P.F., Jeppesen J.F., et al. Molecular mechanisms in skeletal muscle underlying insulin resistance in women who are lean with polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 2019. Vol. 104. No. 5. P. 1841–1854. DOI: 10.1210/jc.2018-01771 |
| [65] |
Nilsson E, Benrick A, Kokosar M, et al. Transcriptional and epigenetic changes influencing skeletal muscle metabolism in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2018;103(12):4465–4477. DOI: 10.1210/jc.2018-00935 |
| [66] |
Nilsson E., Benrick A., Kokosar M., et al. Transcriptional and epigenetic changes influencing skeletal muscle metabolism in women with Polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 2018. Vol. 103. No. 12. P. 4465–4477. DOI: 10.1210/jc.2018-00935 |
| [67] |
Zhu S, Li Z, Hu C, et al. Imaging-based body fat distribution in polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol. 2021;12. DOI: 10.3389/fendo.2021.697223 |
| [68] |
Zhu S., Li Z., Hu C., et al. Imaging-based body fat distribution in polycystic ovary syndrome: a systematic review and meta-analysis // Front. Endocrinol. 2021. Vol. 12. DOI: 10.3389/fendo.2021.697223 |
| [69] |
Kokosar M, Benrick A, Perfilyev A, et al. A single bout of electroacupuncture remodels epigenetic and transcriptional changes in adipose tissue in polycystic ovary syndrome. Sci Rep. 2018;8(1):1878. DOI: 10.1038/s41598-017-17919-5 |
| [70] |
Kokosar M., Benrick A., Perfilyev A., et al. A single bout of electroacupuncture remodels epigenetic and transcriptional changes in adipose tissue in polycystic ovary syndrome // Sci. Rep. 2018. Vol. 8. No. 1. P. 1878. DOI: 10.1038/s41598-017-17919-5 |
| [71] |
Polak AM, Adamska A, Krentowska A, et al. Body composition, serum concentrations of androgens and insulin resistance in different polycystic ovary syndrome phenotypes. J Clin Med. 2020;9(3):732. DOI: 10.3390/jcm9030732 |
| [72] |
Polak A.M., Adamska A., Krentowska A., et al. Body composition, serum concentrations of androgens and insulin resistance in different polycystic ovary syndrome phenotypes // J. Clin. Med. 2020. Vol. 9. No. 3. P. 732. DOI: 10.3390/jcm9030732 |
| [73] |
Corbould A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J Endocrinol. 2007;192(3):585–594. DOI: 10.1677/joe.1.07070 |
| [74] |
Corbould A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women // J. Endocrinol. 2007. Vol. 192. No. 3. P. 585–594. DOI: 10.1677/joe.1.07070 |
| [75] |
Puttabyatappa M, Lu C, Martin JD, et al. Developmental programming: impact of prenatal testosterone excess on steroidal machinery and cell differentiation markers in visceral adipocytes of female sheep. Reprod Sci. 2018;25(7):1010–1023. DOI: 10.1177/1933719117746767 |
| [76] |
Puttabyatappa M., Lu C., Martin J.D., et al. Developmental programming: impact of prenatal testosterone excess on steroidal machinery and cell differentiation markers in visceral adipocytes of female sheep // Reprod. Sci. 2018. Vol. 25. No. 7. P. 1010–1023. DOI: 10.1177/1933719117746767 |
| [77] |
Moghetti P, Tosi F, Bonin C, et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–E637. DOI: 10.1210/jc.2012-3908 |
| [78] |
Moghetti P., Tosi F., Bonin C., et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 4. P. E628–E637. DOI: 10.1210/jc.2012-3908 |
| [79] |
Abashova EI, Yarmolinskaya MI, Bulgakova OL, et al. Carbohydrate profile and aromatase ovarian activity in various pcos phenotypes. Zhenskoe zdorov’e i reproduktsiya. 2022;(1(52)). (In Russ.) [cited 2023 Nov 5]. Available from: https://whfordoctors.su/statyi/uglevodnyj-profil-i-aktivnost-aromatazy-ovarialnyh-follikulov-pri-razlichnyh-fenotipah-sindroma-polikistoznyh-jaichnikov/ |
| [80] |
Абашова Е.И., Ярмолинская М.И., Булгакова О.Л., и др. Углеводный профиль и активность ароматазы овариальных фолликулов при различных фенотипах синдрома поликистозных яичников // Женское здоровье и репродукция. 2022. № 1 (52) [дата обращения 15.09.2023]. Доступ по ссылке: https://whfordoctors.su/statyi/uglevodnyj-profil-i-aktivnost-aromatazy-ovarialnyh-follikulov-pri-razlichnyh-fenotipah-sindroma-polikistoznyh-jaichnikov/ |
| [81] |
Hayes MG, Urbanek M, Ehrmann DA, et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun. 2015;6:7502. DOI: 10.1038/ncomms8502 |
| [82] |
Hayes M.G., Urbanek M., Ehrmann D.A., et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations // Nat. Commun. 2015. Vol. 6. DOI: 10.1038/ncomms8502 |
| [83] |
Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–1025. DOI: 10.1038/ng.2384 |
| [84] |
Shi Y., Zhao H., Shi Y., et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome // Nat. Genet. 2012. Vol. 44. No. 9. P. 1020–1025. DOI: 10.1038/ng.2384 |
| [85] |
Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43(1):55–59. DOI: 10.1038/ng.732 |
| [86] |
Chen Z.J., Zhao H., He L., et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3 // Nat. Genet. 2011. Vol. 43. No. 1. P. 55–59. DOI: 10.1038/ng.732 |
| [87] |
Day F, Karaderi T, Jones MR, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria PLoS Genet. 2018;14(12). DOI: 10.1371/journal.pgen.1007813 |
| [88] |
Day F., Karaderi T., Jones M.R., et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria // PLoS Genet. 2018. Vol. 14. No. 12. DOI: 10.1371/journal.pgen.1007813 |
| [89] |
Hwang JY, Lee EJ, Jin Go M, et al. Genome-wide association study identifies GYS2 as a novel genetic factor for polycystic ovary syndrome through obesity-related condition. J Hum Genet. 2012;57(10):660–664. DOI: 10.1038/jhg.2012.92 |
| [90] |
Hwang J.Y., Lee E.J., Jin Go M., et al. Genome-wide association study identifies GYS2 as a novel genetic factor for polycystic ovary syndrome through obesity-related condition // J. Hum. Genet. 2012. Vol. 57. No. 10. P. 660–664. DOI: 10.1038/jhg.2012.92 |
| [91] |
Lee H, Oh JY, Sung YA, et al. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod. 2015;30(3):723–731. DOI: 10.1093/humrep/deu352 |
| [92] |
Lee H., Oh J.Y., Sung Y.A., et al. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome // Hum. Reprod. 2015. Vol. 30. No. 3. P. 723–731. DOI: 10.1093/humrep/deu352 |
| [93] |
Wilkening S, Chen B, Bermejo JL, et al. Is there still a need for candidate gene approaches in the era of genome-wide association studies? Genomics. 2009;93(5):415–419. DOI: 10.1016/j.ygeno.2008.12.011 |
| [94] |
Wilkening S., Chen B., Bermejo J.L., et al. Is there still a need for candidate gene approaches in the era of genome-wide association studies? // Genomics. 2009. Vol. 93. No. 5. P. 415–419. DOI: 10.1016/j.ygeno.2008.12.011 |
| [95] |
Sharma M, Barai RS, Kundu I, et al. PCOSKBR2: a database of genes, diseases, pathways, and networks associated with polycystic ovary syndrome. Sci Rep. 2020;10(1):14738. DOI: 10.1038/s41598-020-71418-8 |
| [96] |
Sharma M., Barai R.S., Kundu I., et al. PCOSKBR2: a database of genes, diseases, pathways, and networks associated with polycystic ovary syndrome // Sci. Rep. 2020. Vol. 10. No. 1. DOI: 10.1038/s41598-020-71418-8 |
| [97] |
Afiqah-Aleng N, Harun S, A-Rahman MRA, et al. PCOSBase: a manually curated database of polycystic ovarian syndrome. Database (Oxford). 2017;2017. DOI: 10.1093/database/bax098 |
| [98] |
Afiqah-Aleng N., Harun S., A-Rahman M.R.A., et al. PCOSBase: a manually curated database of polycystic ovarian syndrome // Database (Oxford). 2017. Vol. 2017. DOI: 10.1093/database/bax098 |
| [99] |
Jesintha Mary M, Vetrivel U, Munuswamy D, et al. PCOSDB: Polycystic ovary syndrome database for manually curated disease associated genes. Bioinformation. 2016;12(1):4–8. DOI: 10.6026/97320630012004 |
| [100] |
Jesintha Mary M., Vetrivel U., Munuswamy D., et al. PCOSDB: Polycystic ovary syndrome Database for manually curated disease associated genes // Bioinformation. 2016. Vol. 12. No. 1. P. 4–8. DOI: 10.6026/97320630012004 |
| [101] |
Chernukha GE, Naidukova AA, Kaprina EK, et al. Molecular genetic predictors of polycystic ovary syndrome and its androgenic phenotypes. Obstetrics and Gynecology. 2021;(4):120–127. (In Russ.) DOI: 10.18565/aig.2021.4.120-127 |
| [102] |
Чернуха Г.Е., Найдукова А.А., Каприна Е.К., и др. Молекулярно-генетические предикторы формирования синдрома поликистозных яичников и его андрогенных фенотипов // Акушерство и гинекология. 2021. № 4. C. 120–127. DOI: 10.18565/aig.2021.4.120-127 |
| [103] |
Beglova AY, Elgina SI, Gordeeva LA. Polymorphism of the CYP11A1, CYP17A1, and CYP19A1 genes in reproductive-aged women with polycystic ovary syndrome. Obstetrics and Gynecology. 2019;(12):148–153. (In Russ.) DOI: 10.18565/aig.2019.12.148-153 |
| [104] |
Беглова А.Ю., Елгина С.И., Гордеева Л.А. Полиморфизм генов CYP11A1, CYP17, CYP19 у женщин репродуктивного возраста с синдромом поликистозных яичников // Акушерство и гинекология. 2019. № 12. C. 148–153. DOI: 10.18565/aig.2019.12.148-153 |
| [105] |
Tabeeva GI, Nemova YI, Naidukova AA, et al. FMR1 gene polymorphism in polycystic ovary syndrome. Obstetrics and Gynecology. 2016;(3):50–57. (In Russ.) DOI: 10.18565/aig.2016.3.50-56 |
| [106] |
Табеева Г.И., Немова Ю.И., Найдукова А.А., и др. Полиморфизм гена FMR1 при синдроме поликистозных яичников // Акушерство и гинекология. 2016. № 3. C. 50–56. DOI: 10.18565/aig.2016.3.50-56 |
| [107] |
Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med. 2010;25(2):119–129. DOI: 10.3904/kjim.2010.25.2.119 |
| [108] |
Choi K., Kim Y.B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes // Korean J. Intern. Med. 2010. Vol. 25. No. 2. P. 119–129. DOI: 10.3904/kjim.2010.25.2.119 |
| [109] |
Xu J, Dun J, Yang J, et al. Letrozole rat model mimics human polycystic ovarian syndrome and changes in insulin signal pathways. Med Sci Monit. 2020;26. DOI: 10.12659/MSM.923073 |
| [110] |
Xu J., Dun J., Yang J., et al. Letrozole rat model mimics human polycystic ovarian syndrome and changes in insulin signal pathways // Med. Sci. Monit. 2020. Vol. 26. DOI: 10.12659/MSM.923073 |
| [111] |
Zeng X, Xie YJ, Liu YT, et al. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214–221. DOI: 10.1016/j.cca.2019.11.003 |
| [112] |
Zeng X., Xie Y.J., Liu Y.T., et al. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity // Clin. Chim. Acta. 2020. Vol. 502. P. 214-221. DOI: 10.1016/j.cca.2019.11.003 |
| [113] |
Shaaban Z, Khoradmehr A, Amiri-Yekta A, et al. Pathophysiologic mechanisms of insulin secretion and signaling-related genes in etiology of polycystic ovary syndrome. Genet Res (Camb). 2021;2021. DOI: 10.1155/2021/7781823 |
| [114] |
Shaaban Z., Khoradmehr A., Amiri-Yekta A., et al. Patho physiologic mechanisms of insulin secretion and signaling-related genes in etiology of polycystic ovary syndrome // Genet. Res. (Camb.). 2021. Vol. 2021. DOI: 10.1155/2021/7781823 |
| [115] |
Franks S, Webber LJ, Goh M, et al. Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries. J Clin Endocrinol Metab. 2008;93(9):3396–3402. DOI: 10.1210/jc.2008-0369 |
| [116] |
Franks S., Webber L.J., Goh M., et al. Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries // J. Clin. Endocrinol. Metab. 2008. Vol. 93. No. 9. P. 3396–3402. DOI: 10.1210/jc.2008-0369 |
| [117] |
Rasool SUA, Ashraf S, Nabi M, et al. Insulin gene VNTR class III allele is a risk factor for insulin resistance in Kashmiri women with polycystic ovary syndrome. Meta Gene. 2019;21. DOI: 10.1016/j.mgene.2019.100597 |
| [118] |
Rasool S.U.A, Ashraf S., Nabi M., et al. Insulin gene VNTR class III allele is a risk factor for insulin resistance in Kashmiri women with polycystic ovary syndrome // Meta Gene. 2019. Vol. 21. DOI: 10.1016/j.mgene.2019.100597 |
| [119] |
Dunaif A, Wu X, Lee A, et al. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab. 2001;281(2):E392–E399. DOI: 10.1152/ajpendo.2001.281.2.E392 |
| [120] |
Dunaif A., Wu X., Lee A., et al. Defects in insulin receptor sig naling in vivo in the polycystic ovary syndrome (PCOS) // Am. J. Physiol. Endocrinol. Metab. 2001. Vol. 281. No. 2. P. E392–E399. DOI: 10.1152/ajpendo.2001.281.2.E392 |
| [121] |
Xing C, Zhang J, Zhao H, et al. Effect of sex hormone-binding globulin on polycystic ovary syndrome: mechanisms, manifestations, genetics, and treatment. Int J Womens Health. 2022;14:91–105. DOI: 10.2147/IJWH.S344542 |
| [122] |
Xing C., Zhang J., Zhao H., et al. Effect of sex hormone-binding globulin on Polycystic ovary syndrome: mechanisms, manifestations, genetics, and treatment // Int. J. Womens Health. 2022. Vol. 14. P. 91–105. DOI: 10.2147/IJWH.S344542 |
| [123] |
Lee MH, Yoon JA, Kim HR, et al. Hyperandrogenic milieu dysregulates the expression of insulin signaling factors and glucose transporters in the endometrium of patients with polycystic ovary syndrome. Reprod Sci. 2019. DOI: 10.1177/1933719119833487 |
| [124] |
Lee M.H., Yoon J.A., Kim H.R., et al. Hyperandrogenic milieu dysregulates the expression of insulin signaling factors and glucose transporters in the endometrium of patients with polycystic ovary syndrome // Reprod. Sci. 2019. Vol. 27. No. 8. P. 1637–1647. DOI: 10.1177/1933719119833487 |
| [125] |
Dakshinamoorthy J, Jain PR, Ramamoorthy T, et al. Association of GWAS identified INSR variants (rs2059807 & rs1799817) with polycystic ovarian syndrome in Indian women. Int J Biol Macromol. 2020;144:663–670. DOI: 10.1016/j.ijbiomac.2019.10.235 |
| [126] |
Dakshinamoorthy J., Jain P.R., Ramamoorthy T., et al. Association of GWAS identified INSR variants (rs2059807 & rs1799817) with polycystic ovarian syndrome in Indian women // Int. J. Biol. Macromol. 2020. Vol. 144. P. 663–670. DOI: 10.1016/j.ijbiomac.2019.10.235 |
| [127] |
Hu M, Zhang Y, Guo X, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. Am J Physiol Endocrinol Metab. 2019;316(5):E794–E809. DOI: 10.1152/ajpendo.00359.2018 |
| [128] |
Hu M., Zhang Y., Guo X., et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production // Am. J. Physiol. Endocrinol. Metab. 2019. Vol. 316. No. 5. P. E794–E809. DOI: 10.1152/ajpendo.00359.2018 |
| [129] |
Huang T, Shu Y, Cai YD. Genetic differences among ethnic groups. BMC Genomics. 2015;16:1093. DOI: 10.1186/s12864-015-2328-0 |
| [130] |
Huang T., Shu Y., Cai Y.D. Genetic differences among ethnic groups // BMC Genomics. 2015. Vol. 16. P. 1093. DOI: 10.1186/s12864-015-2328-0 |
| [131] |
Valkenburg O, Lao O, Schipper I, et al. Genetic ancestry affects the phenotype of normogonadotropic anovulatory (WHOII) subfertility. J Clin Endocrinol Metab. 2011;96(7):E1181–E1187. DOI: 10.1210/jc.2010-2641 |
| [132] |
Valkenburg O., Lao O., Schipper I., et al. Genetic ancestry affects the phenotype of normogonadotropic anovulatory (WHOII) subfertility // J. Clin. Endocrinol. Metab. 2011. Vol. 96. No. 7. P. E1181–E1187. DOI: 10.1210/jc.2010-2641 |
| [133] |
Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum Genomics. 2015;9(1):1. DOI: 10.1186/s40246-014-0023-x |
| [134] |
Mersha T.B., Abebe T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities // Hum. Genomics. 2015. Vol. 9. No. 1. P. 1. DOI: 10.1186/s40246-014-0023-x |
| [135] |
Gao J, Xue JD, Li ZC, et al. The association of DENND1A gene polymorphisms and polycystic ovary syndrome risk: a systematic review and meta-analysis. Arch Gynecol Obstet. 2016;294(5):1073–1080. DOI: 10.1007/s00404-016-4159-x |
| [136] |
Gao J., Xue J.D., Li Z.C., et al. The association of DENND1A gene polymorphisms and polycystic ovary syndrome risk: a systematic review and meta-analysis // Arch. Gynecol. Obstet. 2016. Vol. 294. No. 5. P. 1073–1080. DOI: 10.1007/s00404-016-4159-x |
| [137] |
Shen W, Li T, Hu Y, et al. Calpain-10 genetic polymorphisms and polycystic ovary syndrome risk: a meta-analysis and meta-regression. Gene. 2013;531(2):426–434. DOI: 10.1016/j.gene.2013.08.072 |
| [138] |
Shen W., Li T., Hu Y., et al. Calpain-10 genetic polymorphisms and polycystic ovary syndrome risk: a meta-analysis and meta-regression // Gene. 2013. Vol. 531. No. 2. P. 426–434. DOI: 10.1016/j.gene.2013.08.072 |
| [139] |
Yan MS, Liang GY, Xia BR, et al. Association of insulin gene variable number of tandem repeats regulatory polymorphism with polycystic ovary syndrome. Hum Immunol. 2014;75(10):1047–1052. DOI: 10.1016/j.humimm.2014.09.001 |
| [140] |
Yan M.S., Liang G.Y., Xia B.R., et al. Association of insulin gene variable number of tandem repeats regulatory polymorphism with polycystic ovary syndrome // Hum. Immunol. 2014. Vol. 75. No. 10. P. 1047–1052. DOI: 10.1016/j.humimm.2014.09.001 |
| [141] |
Feng C, Lv PP, Yu TT, et al. The association between polymorphism of INSR and polycystic ovary syndrome: a meta-analysis. Int J Mol Sci. 2015;16(2):2403–2425. DOI: 10.3390/ijms16022403 |
| [142] |
Feng C., Lv P.P., Yu T.T., et al. The association between polymorphism of INSR and polycystic ovary syndrome: a meta-analysis // Int. J. Mol. Sci. 2015. Vol. 16. No. 2. P. 2403–2425. DOI: 10.3390/ijms16022403 |
| [143] |
Psilopatis I, Vrettou K, Nousiopoulou E, et al. The role of peroxisome proliferator-activated receptors in polycystic ovary syndrome. J Clin Med. 2023;12(8):2912. DOI: 10.3390/jcm12082912 |
| [144] |
Psilopatis I., Vrettou K., Nousiopoulou E., et al. The role of peroxisome proliferator-activated receptors in polycystic ovary syndrome // J. Clin. Med. 2023. Vol. 12. No. 8. P. 2912. DOI: 10.3390/jcm12082912 |
| [145] |
Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017;13(3):279–296. DOI: 10.2217/fca-2017-0019 |
| [146] |
Han L., Shen W.J., Bittner S., et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ // Future Cardiol. 2017. Vol. 13. No. 3. P. 279–296. DOI: 10.2217/fca-2017-0019 |
| [147] |
Brunmeir R, Xu F. Functional regulation of PPARs through post-translational modifications. Int J Mol Sci. 2018;19(6):1738. DOI: 10.3390/ijms19061738 |
| [148] |
Brunmeir R., Xu F. Functional regulation of PPARs through post-translational modifications // Int. J. Mol. Sci. 2018. Vol. 19. No. 6. P. 1738. DOI: 10.3390/ijms19061738 |
| [149] |
Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114. DOI: 10.1016/j.metabol.2020.154338 |
| [150] |
Christofides A., Konstantinidou E., Jani C., et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses // Metabolism. 2021. Vol. 114. DOI: 10.1016/j.metabol.2020.154338 |
| [151] |
Panda PK, Rane R, Ravichandran R, et al. Genetics of PCOS: a systematic bioinformatics approach to unveil the proteins responsible for PCOS. Genom Data. 2016;8:52–60. DOI: 10.1016/j.gdata.2016.03.008 |
| [152] |
Panda P.K., Rane R., Ravichandran R., et al. Genetics of PCOS: a systematic bioinformatics approach to unveil the proteins responsible for PCOS // Genom. Data. 2016. Vol. 8. P. 52–60. DOI: 10.1016/j.gdata.2016.03.008 |
| [153] |
Jacob R, Ramachandran C, Jude C, et al. Peroxisome proliferator activated receptor gamma polymorphism Pro12Ala in polycystic ovary syndrome (PCOS) of South Indian population. Asian Pacific Journal of Reproduction. 2016;5(3):210–213. DOI: 10.1016/j.apjr.2016.04.002 |
| [154] |
Jacob R., Ramachandran C., Jude C., et al. Peroxisome proliferator activated receptor gamma polymorphism Pro12Ala in polycystic ovary syndrome (PCOS) of South Indian population // Asian Pacific Journal of Reproduction. 2016. Vol. 5. No. 3. P. 210–213. DOI: 10.1016/j.apjr.2016.04.002 |
| [155] |
Zhang H, Bi Y, Hu C, et al. Association between the Pro12Ala polymorphism of PPAR-γ gene and the polycystic ovary syndrome: a meta-analysis of case-control studies. Gene. 2012;503(1):12–17. DOI: 10.1016/j.gene.2012.04.083 |
| [156] |
Zhang H., Bi Y., Hu C., et al. Association between the Pro12Ala polymorphism of PPAR-γ gene and the polycystic ovary syndrome: a meta-analysis of case-control studies // Gene. 2012. Vol. 503. No. 1. P. 12–17. DOI: 10.1016/j.gene.2012.04.083 |
| [157] |
Giandalia A, Pappalardo MA, Russo GT, et al. Influence of peroxisome proliferator-activated receptor-γ exon 2 and exon 6 and insulin receptor substrate (IRS)-1 Gly972Arg polymorphisms on insulin resistance and beta-cell function in southern mediterranean women with polycystic ovary syndrome. J Clin Transl Endocrinol. 2018;13:1–8. DOI: 10.1016/j.jcte.2018.05.002 |
| [158] |
Giandalia A., Pappalardo M.A., Russo G.T., et al. Influence of peroxisome proliferator-activated receptor-γ exon 2 and exon 6 and insulin receptor substrate (IRS)-1 Gly972Arg polymorphisms on insulin resistance and beta-cell function in southern mediterranean women with polycystic ovary syndrome // J. Clin. Transl. Endocrinol. 2018. Vol. 13. P. 1–8. DOI: 10.1016/j.jcte.2018.05.002 |
| [159] |
Liang J, Lan J, Li M, et al. Associations of leptin receptor and peroxisome proliferator-activated receptor gamma polymorphisms with polycystic ovary syndrome: a meta-analysis. Ann Nutr Metab. 2019;75(1):1–8. DOI: 10.1159/000500996 |
| [160] |
Liang J., Lan J., Li M., Wang F. Associations of leptin receptor and peroxisome proliferator-activated receptor gamma polymorphisms with Polycystic ovary syndrome: a meta-analysis // Ann. Nutr. Metab. 2019. Vol. 75. No. 1. P. 1–8. DOI: 10.1159/000500996 |
| [161] |
Liu Q, Tang B, Zhu Z, et al. A genome-wide cross-trait analysis identifies shared loci and causal relationships of type 2 diabetes and glycaemic traits with polycystic ovary syndrome. Diabetologia. 2022;65(9):1483–1494. DOI: 10.1007/s00125-022-05746-x |
| [162] |
Liu Q., Tang B., Zhu Z., et al. A genome-wide cross-trait analysis identifies shared loci and causal relationships of type 2 diabetes and glycaemic traits with polycystic ovary syndrome // Diabetologia. 2022. Vol. 65. No. 9. P. 1483–1494. DOI: 10.1007/s00125-022-05746-x |
| [163] |
Prasad RB, Kristensen K, Katsarou A, et al. Association of single nucleotide polymorphisms with insulin secretion, insulin sensitivity, and diabetes in women with a history of gestational diabetes mellitus. BMC Med Genomics. 2021;14(1):274. DOI: 10.1186/s12920-021-01123-6 |
| [164] |
Prasad R.B., Kristensen K., Katsarou A., et al. Association of single nucleotide polymorphisms with insulin secretion, insulin sensitivity, and diabetes in women with a history of gestational diabetes mellitus // BMC Med. Genomics. 2021. Vol. 14. No. 1. P. 274. DOI: 10.1186/s12920-021-01123-6 |
| [165] |
Moffett RC, Naughton V. Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides. 2020;125. DOI: 10.1016/j.peptides.2019.170233 |
| [166] |
Moffett R.C., Naughton V. Emerging role of GIP and related gut hormones in fertility and PCOS // Peptides. 2020. Vol. 125. DOI: 10.1016/j.peptides.2019.170233 |
| [167] |
Bell GA, Sundaram R, Mumford SL, et al. Maternal polycystic ovarian syndrome and early offspring development. Hum Reprod. 2018;33(7):1307–1315. DOI: 10.1093/humrep/dey087 |
| [168] |
Bell G.A., Sundaram R., Mumford S.L., et al. Maternal polycystic ovarian syndrome and early offspring development // Hum. Reprod. 2018. Vol. 33. No. 7. P. 1307–1315. DOI: 10.1093/humrep/dey087 |
| [169] |
Chen Y, Guo J, Zhang Q, et al. Insulin resistance is a risk factor for early miscarriage and macrosomia in patients with polycystic ovary syndrome from the first embryo transfer cycle: a retrospective cohort study. Front Endocrinol. 2022;13. DOI: 10.3389/fendo.2022.853473 |
| [170] |
Chen Y., Guo J., Zhang Q., et al. Insulin resistance is a risk factor for early miscarriage and macrosomia in patients with Polycystic ovary syndrome from the first embryo transfer cycle: a retrospective cohort study // Front. Endocrinol. 2022. Vol. 13. DOI: 10.3389/fendo.2022.853473 |
| [171] |
Abashova EI, Yarmolinskaya MI, Bulgakova OL, et al. Analysis of peculiarities of miscarriage in women of reproductive age with different PCOS phenotypes. Russian Journal of Human Reproduction. 2022;28(5):29-38. (In Russ.) DOI: 10.17116/repro20222805129 |
| [172] |
Абашова Е.И., Ярмолинская М.И., Булгакова О.Л., и др. Анализ особенностей невынашивания беременности у женщин репродуктивного возраста с различными фенотипами синдрома поликистозных яичников // Проблемы репродукции. 2022. Т. 28. № 5. P. 29–38. DOI: 10.17116/repro20222805129 |
| [173] |
Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369. DOI: 10.1016/S2213-8587(18)30051-2 |
| [174] |
Ahlqvist E., Storm P., Käräjämäki A., et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables // Lancet Diabetes Endocrinol. 2018 Vol. 6. No. 5. P. 361–369. DOI: 10.1016/S2213-8587(18)30051-2 |
| [175] |
Suzuki K, Hatzikotoulas K, Southam L, et al. Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications. medRxiv. 2023. DOI: 10.1101/2023.03.31.23287839. Preprint |
| [176] |
Suzuki K., Hatzikotoulas K., Southam L., et al. Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications // medRxiv. 2023. DOI: 10.1101/2023.03.31.23287839. Preprint |
| [177] |
Pervjakova N, Moen GH, Borges MC, et al. Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes. Hum Mol Genet. 2022;31(19):3377–3391. DOI: 10.1093/hmg/ddac050 |
| [178] |
Pervjakova N., Moen G.H., Borges M.C., et al. Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes // Hum. Mol. Genet. 2022. Vol. 31. No. 19. P. 3377–3391. DOI: 10.1093/hmg/ddac050 |
| [179] |
Plows JF, Stanley JL, Baker PN, et al. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342. DOI: 10.3390/ijms19113342 |
| [180] |
Plows J.F., Stanley J.L., Baker P.N., et al. The pathophysiology of gestational diabetes mellitus // Int. J. Mol. Sci. 2018. Vol. 19. No. 11. P. 3342. DOI: 10.3390/ijms19113342 |
Eсо-Vector
/
| 〈 |
|
〉 |