Possibilities of an experimental approach in creating fetal growth restriction in animal models

Olesya N. Bespalova , Alexandra A. Blazhenko , Olga V. Pachuliia , Igor Yu. Kogan

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (5) : 118 -129.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (5) : 118 -129. DOI: 10.17816/JOWD607430
Reviews
review-article

Possibilities of an experimental approach in creating fetal growth restriction in animal models

Author information +
History +
PDF

Abstract

The literature review was compiled to assess which animal models of intrauterine development disorders most adequately reflect the pathological processes in the clinic.

Intrauterine growth restriction associated with placental insufficiency is an urgent scientific and practical problem of modern obstetrics and perinatology. According to World Health Organization, this complication occurs in 10% of pregnant women. The etiology and mechanisms of this pathology have been the focus of research for more than decades. Nevertheless, the methods of predicting and preventing this pathology are not very effective, as consensus in diagnostic approaches is only being formed, and there are practically no methods of correction. The results of experimental studies have made a significant contribution to the understanding of the pathophysiological foundations of the placental insufficiency and intrauterine growth restriction development. For this purpose, various laboratory animals are used, most often rats (Rattus norvegicus), chinchillas (Chinchilla lanigera), mice (Mus musculus), rabbits (Oryctolagus cuniculus), and guinea pigs (Cavia porcellus). Each of the above types of experimental animals has its own advantages for studying intrauterine growth restriction. There are three main methods used to simulate intrauterine growth restriction in animals: the surgical method (ligation of blood vessels), the method of placing in a chamber with a reduced oxygen concentration, and the method of lowering the caloric content and amount of food.

Various models of intrauterine growth restriction have been proposed over a long study of the problem. However, these data differ greatly among themselves in the literature. The task of this review was to understand the most effective models and animal species to study fetal growth retardation, as well as ways to create this pregnancy complication.

Keywords

intrauterine growth restriction / hypoxia / placental insufficiency / comparative biology

Cite this article

Download citation ▾
Olesya N. Bespalova, Alexandra A. Blazhenko, Olga V. Pachuliia, Igor Yu. Kogan. Possibilities of an experimental approach in creating fetal growth restriction in animal models. Journal of obstetrics and women's diseases, 2024, 73(5): 118-129 DOI:10.17816/JOWD607430

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chauhan SP, Gupta LM, Hendrix NW, et al; American College of Obstetricians and Gynecologists. Intrauterine growth restriction: comparison of American College of Obstetricians and Gynecologists practice bulletin with other national guidelines. Am J Obstet Gynecol. 2009;200(4):409.e1–409.e4096. doi: 10.1016/j.ajog.2008.11.025

[2]

Chauhan S.P., Gupta L.M., Hendrix N.W., et al; American College of Obstetricians and Gynecologists. Intrauterine growth restriction: comparison of American College of Obstetricians and Gynecologists practice bulletin with other national guidelines // Am J Obstet Gynecol. 2009. Vol. 200, N 4. P. 409.e1–409.e4096. doi: 10.1016/j.ajog.2008.11.025

[3]

Mureșan D, Rotar IC, Stamatian F. The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. Review of the literature. Med Ultrason. 2016;18(1):103–109. doi: 10.11152/mu.2013.2066.181.dop

[4]

Mureșan D., Rotar I.C., Stamatian F. The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. Review of the literature // Med Ultrason. 2016. Vol. 18, N 1. P. 103–109. doi: 10.11152/mu.2013.2066.181.dop

[5]

Figueras F, Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36(2):86–98. doi: 10.1159/000357592

[6]

Figueras F., Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol // Fetal Diagn Ther. 2014. Vol. 36, N 2. P. 86–98. doi: 10.1159/000357592

[7]

Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25(2–3):103–113. doi: 10.1016/j.placenta.2003.10.004

[8]

Charnock-Jones D.S., Kaufmann P., Mayhew T.M. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation // Placenta. 2004. Vol. 25, N 2–3. P. 103–113. doi: 10.1016/j.placenta.2003.10.004

[9]

Burkhardt T, Schäffer L, Schneider C, et al. Reference values for the weight of freshly delivered term placentas and for placental weight-birth weight ratios. Eur J Obstet Gynecol Reprod Biol. 2006;128(1-2):248–252. doi: 10.1016/j.ejogrb.2005.10.032

[10]

Burkhardt T., Schäffer L., Schneider C. et al. Reference values for the weight of freshly delivered term placentas and for placental weight-birth weight ratios // Eur J Obstet Gynecol Reprod Biol. 2006. Vol. 128, N 1–2. P. 248–252. doi: 10.1016/j.ejogrb.2005.10.032

[11]

Salafia CM, Charles AK, Maas EM. Placenta and fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):236–256. doi: 10.1097/00003081-200606000-00007

[12]

Salafia C.M., Charles A.K., Maas E.M. Placenta and fetal growth restriction // Clin Obstet Gynecol. 2006. Vol. 49, N 2. P. 236–256. doi: 10.1097/00003081-200606000-00007

[13]

Constância M, Angiolini E, Sandovici I, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci USA. 2005;102(52):19219–19224. doi: 10.1073/pnas.0504468103

[14]

Constância M., Angiolini E., Sandovici I., et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems // Proc Natl Acad Sci USA. 2005. Vol. 102, N 52. P. 19219–19224. doi: 10.1073/pnas.0504468103

[15]

Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012. doi: 10.1155/2012/179827

[16]

Lager S., Powell T.L. Regulation of nutrient transport across the placenta // J Pregnancy. 2012. Vol. 2012. doi: 10.1155/2012/179827

[17]

Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35(7):730–743. doi: 10.1111/j.1440-1681.2008.04975.x

[18]

Morrison J.L. Sheep models of intrauterine growth restriction: fetal adaptations and consequences // Clin Exp Pharmacol Physiol. 2008. Vol. 35, N 7. P. 730–743. doi: 10.1111/j.1440-1681.2008.04975.x

[19]

Morrison JL, Duffield JA, Muhlhausler BS, et al. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr Nephrol. 2010;25(4):669–677. doi: 10.1007/s00467-009-1407-3

[20]

Morrison J.L., Duffield J.A., Muhlhausler B.S., et al. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity // Pediatr Nephrol. 2010. Vol. 25, N 4. P. 669–677. doi: 10.1007/s00467-009-1407-3

[21]

Konstantinova NN, Pavlova NG. Development of the conception about universe hemodynamic reactions in the functional system: mother-placenta-fetus. Journal Of Obstetrics and Women’s Diseases. 2004;53(1):27–30. EDN: HUAQHJ doi: 10.17816/JOWD86972

[22]

Константинова Н.Н., Павлова Н.Г. Развитие представлений об универсальных гемодинамических реакциях в функциональной системе мать-плацента-плод // Журнал акушерства и женских болезней. 2004. Т. 53, № 1. C. 27–30. EDN: HUAQHJ doi: 10.17816/JOWD86972

[23]

Jones HN, Powell TL, Jansson T. Regulation of placental nutrient transport – a review. Placenta. 2007;28(8-9):763–774. doi: 10.1016/j.placenta.2007.05.002

[24]

Jones H.N., Powell T.L., Jansson T. Regulation of placental nutrient transport – a review // Placenta. 2007. Vol. 28, N 8–9. P. 763–774. doi: 10.1016/j.placenta.2007.05.002

[25]

Marconi AM, Paolini CL. Nutrient transport across the intrauterine growth-restricted placenta. Semin Perinatol. 2008;32(3):178–181. doi: 10.1053/j.semperi.2008.02.007

[26]

Marconi A.M., Paolini C.L. Nutrient transport across the intrauterine growth-restricted placenta // Semin Perinatol. 2008. Vol. 32, N 3. P. 178–181. doi: 10.1053/j.semperi.2008.02.007

[27]

Gude NM, Roberts CT, Kalionis B, et al. Growth and function of the normal human placenta. Thromb Res. 2004;114(5–6):397–407. doi: 10.1016/j.thromres.2004.06.038

[28]

Gude N.M., Roberts C.T., Kalionis B., et al. Growth and function of the normal human placenta // Thromb Res. 2004. Vol. 114, N 5–6. P. 397–407. doi: 10.1016/j.thromres.2004.06.038

[29]

Signorelli P, Avagliano L, Virgili E, et al. Autophagy in term normal human placentas. Placenta. 2011;32(6):482–485. doi: 10.1016/j.placenta.2011.03.005

[30]

Signorelli P., Avagliano L., Virgili E., et al. Autophagy in term normal human placentas // Placenta. 2011. Vol. 32, N 6. P. 482–485. doi: 10.1016/j.placenta.2011.03.005

[31]

Magnusson AL, Powell T, Wennergren M, et al. Glucose metabolism in the human preterm and term placenta of IUGR fetuses. Placenta. 2004;25(4):337–346. doi: 10.1016/j.placenta.2003.08.021

[32]

Magnusson A.L., Powell T., Wennergren M., et al. Glucose metabolism in the human preterm and term placenta of IUGR fetuses // Placenta. 2004. Vol. 25, N 4. P. 337–346. doi: 10.1016/j.placenta.2003.08.021

[33]

Regnault TR, Friedman JE, Wilkening RB, et al. Fetoplacental transport and utilization of amino acids in IUGR – a review. Placenta. 2005;26(Suppl A):S52–S62. doi: 10.1016/j.placenta.2005.01.003

[34]

Regnault T.R., Friedman J.E., Wilkening R.B., et al. Fetoplacental transport and utilization of amino acids in IUGR – a review // Placenta. 2005. Vol. 26, Suppl. A. P. S52–S62. doi: 10.1016/j.placenta.2005.01.003

[35]

Novakovic B, Gordon L, Robinson WP, et al. Glucose as a fetal nutrient: dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation. J Nutr Biochem. 2013;24(1):282–288. doi: 10.1016/j.jnutbio.2012.06.006

[36]

Novakovic B., Gordon L., Robinson W.P., et al. Glucose as a fetal nutrient: dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation // J Nutr Biochem. 2013. Vol. 24, N 1. P. 282–288. doi: 10.1016/j.jnutbio.2012.06.006

[37]

Brown K, Heller DS, Zamudio S, et al. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta. 2011;32(12):1041–1049. doi: 10.1016/j.placenta.2011.09.014

[38]

Brown K., Heller D.S., Zamudio S., et al. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation // Placenta. 2011. Vol. 32, N 12. P. 1041–1049. doi: 10.1016/j.placenta.2011.09.014

[39]

Dandrea J, Wilson V, Gopalakrishnan G, et al. Maternal nutritional manipulation of placental growth and glucose transporter 1 (GLUT-1) abundance in sheep. Reproduction. 2001;122(5):793–800.

[40]

Dandrea J., Wilson V., Gopalakrishnan G., et al. Maternal nutritional manipulation of placental growth and glucose transporter 1 (GLUT-1) abundance in sheep // Reproduction. 2001. Vol. 122, N 5. P. 793–800.

[41]

Larqué E, Ruiz-Palacios M, Koletzko B. Placental regulation of fetal nutrient supply. Curr Opin Clin Nutr Metab Care. 2013;16(3):292–297. doi: 10.1097/MCO.0b013e32835e3674

[42]

Larqué E., Ruiz-Palacios M., Koletzko B. Placental regulation of fetal nutrient supply // Curr Opin Clin Nutr Metab Care. 2013. Vol. 16, N 3. P. 292–297. doi: 10.1097/MCO.0b013e32835e3674

[43]

Barry JS, Anthony RV. The pregnant sheep as a model for human pregnancy. Theriogenology. 2008;69(1):55–67. doi: 10.1016/j.theriogenology.2007.09.021

[44]

Barry J.S., Anthony R.V. The pregnant sheep as a model for human pregnancy // Theriogenology. 2008. Vol. 69, N 1. P. 55–67. doi: 10.1016/j.theriogenology.2007.09.021

[45]

Fowden AL, Ward JW, Wooding FP, et al. Programming placental nutrient transport capacity. J Physiol. 2006;572(Pt 1):5–15. doi: 10.1113/jphysiol.2005.104141

[46]

Fowden A.L., Ward J.W., Wooding F.P., et al. Programming placental nutrient transport capacity // J Physiol. 2006. Vol. 572, Pt. 1. P. 5–15. doi: 10.1113/jphysiol.2005.104141

[47]

Jansson T. Amino acid transporters in the human placenta. Pediatr Res. 2001;49(2):141–147. doi: 10.1203/00006450-200102000-00003

[48]

Jansson T. Amino acid transporters in the human placenta // Pediatr Res. 2001. Vol. 49, N 2. P. 141–147. doi: 10.1203/00006450-200102000-00003

[49]

McMillen IC, Adams MB, Ross JT, et al. Fetal growth restriction: adaptations and consequences. Reproduction. 2001;122(2):195–204. doi: 10.1530/rep.0.1220195

[50]

McMillen I.C., Adams M.B., Ross J.T., et al. Fetal growth restriction: adaptations and consequences // Reproduction. 2001. Vol. 122, N 2. P. 195–204. doi: 10.1530/rep.0.1220195

[51]

Garmasheva NL. Some hemodynamic processes in the functional system mother-placenta-fetus, their regulation in the interests of the fetus. Obstetrics and Gynecology. 1972;(12):33–38. (In Russ.)

[52]

Гармашева Н.Л. Некоторые гемодинамические процессы в функциональной системе мать-плацента-плод, их регуляция в интересах плода // Акушерство и гинекология. 1972. № 12. С. 33–38.

[53]

Mourier E, Tarrade A, Duan J, et al. Non-invasive evaluation of placental blood flow: lessons from animal models. Reproduction. 2017;153(3):R85–R96. doi: 10.1530/REP-16-0428

[54]

Mourier E., Tarrade A., Duan J., et al. Non-invasive evaluation of placental blood flow: lessons from animal models // Reproduction. 2017. Vol. 153, N 3. P. R85–R96. doi: 10.1530/REP-16-0428

[55]

James JL, Carter AM, Chamley LW. Human placentation from nidation to 5 weeks of gestation. Part I: what do we know about formative placental development following implantation? Placenta. 2012;33(5):327–334. doi: 10.1016/j.placenta.2012.01.020

[56]

James J.L., Carter A.M., Chamley L.W. Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? // Placenta. 2012. Vol. 33, N 5. P. 327–334. doi: 10.1016/j.placenta.2012.01.020

[57]

Ahmed A, Perkins J. Angiogenesis and intrauterine growth restriction. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(6):981–998. doi: 10.1053/beog.2000.0139

[58]

Ahmed A., Perkins J. Angiogenesis and intrauterine growth restriction // Baillieres Best Pract Res Clin Obstet Gynaecol. 2000. Vol. 14, N 6. P. 981–998. doi: 10.1053/beog.2000.0139

[59]

Plasencia W, Akolekar R, Dagklis T, et al. Placental volume at 11–13 weeks’ gestation in the prediction of birth weight percentile. Fetal Diagn Ther. 2011;30(1):23–28. doi: 10.1159/000324318

[60]

Plasencia W., Akolekar R., Dagklis T., et al. Placental volume at 11–13 weeks’ gestation in the prediction of birth weight percentile // Fetal Diagn Ther. 2011. Vol. 30, N 1. P. 23–28. doi: 10.1159/000324318

[61]

Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev. 2010;31(5):680–701. doi: 10.1210/er.2009-0038

[62]

Jawerbaum A., White V. Animal models in diabetes and pregnancy // Endocr Rev. 2010. Vol. 31, N 5. P. 680–701. doi: 10.1210/er.2009-0038

[63]

Andersen MD, Alstrup AKO, Duvald CS, et al. Animal models of fetal medicine and obstetrics. In: Bartholomew I, editor. Experimental animal models of human diseases – an effective therapeutic strategy. InTech; 2018. doi: 10.5772/intechopen.74038

[64]

Andersen M.D., Alstrup A.K.O., Duvald C.S., et al. Animal models of fetal medicine and obstetrics. In: Bartholomew I., editor. Experimental animal models of human diseases – an effective therapeutic strategy. InTech, 2018. doi: 10.5772/intechopen.74038

[65]

Grigsby PL. Animal models to study placental development and function throughout normal and dysfunctional human pregnancy. Semin Reprod Med. 2016;34(1):11–16. doi: 10.1055/s-0035-1570031

[66]

Grigsby P.L. Animal models to study placental development and function throughout normal and dysfunctional human pregnancy // Semin Reprod Med. 2016. Vol. 34, N 1. P. 11–16. doi: 10.1055/s-0035-1570031

[67]

Shimoyama M, Smith JR, De Pons J, et al. The Chinchilla Research Resource Database: resource for an otolaryngology disease model. Database (Oxford). 2016;2016. doi: 10.1093/database/baw073

[68]

Shimoyama M., Smith J.R., De Pons J., et al. The Chinchilla Research Resource Database: resource for an otolaryngology disease model // Database [Oxford]. 2016. Vol. 2016. doi: 10.1093/database/baw073

[69]

Altemus M, Redwine LS, Leong YM, et al. Responses to laboratory psychosocial stress in postpartum women. Psychosom Med. 2001;63(5):814–821. doi: 10.1097/00006842-200109000-00015

[70]

Altemus M., Redwine L.S., Leong Y.M., et al. Responses to laboratory psychosocial stress in postpartum women // Psychosom Med. 2001. Vol. 63, N 5. P. 814–821. doi: 10.1097/00006842-200109000-00015

[71]

Jones AK, Wang D, Goldstrohm DA, et al. Tissue-specific responses that constrain glucose oxidation and increase lactate production with the severity of hypoxemia in fetal sheep. Am J Physiol Endocrinol Metab. 2022;322(2):E181–E196. doi: 10.1152/ajpendo.00382.2021

[72]

Jones A.K., Wang D., Goldstrohm D.A., et al. Tissue-specific responses that constrain glucose oxidation and increase lactate production with the severity of hypoxemia in fetal sheep // Am J Physiol Endocrinol Metab. 2022. Vol. 322, N 2. P. E181–E196. doi: 10.1152/ajpendo.00382.2021

[73]

Janot M, Cortes-Dubly ML, Rodriguez S, et al. Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice. Reprod Biol Endocrinol. 2014;12:62. doi: 10.1186/1477-7827-12-62

[74]

Janot M., Cortes-Dubly M.L., Rodriguez S., et al. Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice // Reprod Biol Endocrinol. 2014. Vol. 12. P. 62. doi: 10.1186/1477-7827-12-62

[75]

Parraguez VH, Mamani S, Cofré E, et al. Disturbances in maternal steroidogenesis and appearance of intrauterine growth retardation at high-altitude environments are established from early pregnancy. effects of treatment with antioxidant vitamins. PLoS One. 2015;10(11). doi: 10.1371/journal.pone.0140902

[76]

Parraguez V.H., Mamani S., Cofré E., et al. Disturbances in maternal steroidogenesis and appearance of intrauterine growth retardation at high-altitude environments are established from early pregnancy. effects of treatment with antioxidant vitamins // PLoS One. 2015. Vol. 10. doi: 10.1371/journal.pone.0140902

[77]

Rueda-Clausen CF, Stanley JL, Thambiraj DF, et al. Effect of prenatal hypoxia in transgenic mouse models of preeclampsia and fetal growth restriction. Reprod Sci. 2014;21(4):492–502. doi: 10.1177/1933719113503401

[78]

Rueda-Clausen C.F., Stanley J.L., Thambiraj D.F., et al. Effect of prenatal hypoxia in transgenic mouse models of preeclampsia and fetal growth restriction // Reprod Sci. 2014. Vol. 21, N 4. P. 492–502. doi: 10.1177/1933719113503401

[79]

Vuguin PM. Animal models for small for gestational age and fetal programming of adult disease. Horm Res. 2007;68(3):113–123. doi: 10.1159/000100545

[80]

Vuguin P.M. Animal models for small for gestational age and fetal programming of adult disease // Horm Res. 2007. Vol. 68, N 3. P. 113–123. doi: 10.1159/000100545

[81]

Herrera EA, Alegría R, Farias M, et al. Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs. J Physiol. 2016;594(6):1553–1561. doi: 10.1113/JP271467

[82]

Herrera E.A., Alegría R., Farias M., et al. Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs // J Physiol. 2016. Vol. 594, N 6. P. 1553–1561. doi: 10.1113/JP271467

[83]

Davis MA, Camacho LE, Pendleton AL, et al. Augmented glucose production is not contingent on high catecholamines in fetal sheep with IUGR. J Endocrinol. 2021;249(3):195–207. doi: 10.1530/JOE-21-0071

[84]

Davis M.A., Camacho L.E., Pendleton A.L., et al. Augmented glucose production is not contingent on high catecholamines in fetal sheep with IUGR // J Endocrinol. 2021. Vol. 249, N 3. P. 195–207. doi: 10.1530/JOE-21-0071

[85]

Camacho LE, Davis MA, Kelly AC, et al. Prenatal oxygen and glucose therapy normalizes insulin secretion and action in growth-restricted fetal sheep. Endocrinology. 2022;163(6). doi: 10.1210/endocr/bqac053

[86]

Camacho L.E., Davis M.A., Kelly A.C., et al. Prenatal oxygen and glucose therapy normalizes insulin secretion and action in growth-restricted fetal sheep // Endocrinology. 2022. Vol. 163, N 6. doi: 10.1210/endocr/bqac053

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/