Endometrial NK cells in repeated implantation failure – quantity and functional markers

Valeria A. Zagaynova , Olesya N. Bespalova , Inna O. Krikheli , Alexander M. Gzgzyan , Tatyana G. Tral , Gulrukhsor Kh. Tolibova , Dmitry I. Sokolov , Igor Yu. Kogan

Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (6) : 41 -54.

PDF
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (6) : 41 -54. DOI: 10.17816/JOWD607392
Original study articles
research-article

Endometrial NK cells in repeated implantation failure – quantity and functional markers

Author information +
History +
PDF

Abstract

BACKGROUND: Alteration in the composition and function of endometrial immune cells, in particular NK cells, are associated with implantation and placentation pathology, which is considered as one of the causes of reproductive losses. However, data regarding abnormalities in the number and activity of NK cells in repeated implantation failures, including depending on the type of infertility, remain ambiguous.

AIM: The aim of this study was to evaluate the number of CD56+ and CD16+ cells and the area of expression of CD107a and NKG2D markers in the endometrium of patients with repeated implantation failure (RIF).

MATERIALS AND METHODS: This prospective comparative study included patients with RIF (main group I, n = 47), who were divided into two subgroups: Ia, patients with primary infertility (n = 29); Ib, patients with secondary infertility (n = 18). Comparison group II included patients with a history of effective ART programs (n = 17). Control group III included healthy fertile women without a history of reproductive loss (n = 12). Endometrial biopsies were obtained on days 19–23 of the menstrual cycle. The expression of CD56+, CD16+, CD107a and NKG2D was assessed by immunohistochemistry.

RESULTS: In the endometrium of patients in groups I and II, as compared to the control group, the number of CD56+ cells was significantly increased (p < 0.001). In patients of subgroup Ia, when compared to the control group, we verified an increase in the number of CD16+ cells (p < 0.05) and a decrease in the expression of CD107a (p < 0.05). In patients in groups I and II, a negative correlation was revealed between the number of CD56+ and CD16+ cells and the number of pregnancies in history (rs = –0.30 and rs = –0.34, p < 0.05), while a positive correlation was found between the expressions of CD56+ and CD107a (rs = 0.66 and rs = 0.75, p < 0.05). In patients in group II, a positive correlation was revealed between the expressions of CD16+ and CD107a (rs = 0.75, p < 0.05). In the endometrial stroma, CD107a expression increased significantly in patients in group I (p < 0.05), while NKG2D expression increased in groups II and III (p < 0.01, p < 0.05) from the early to the middle stage of the secretion phase. In patients of group II, a positive correlation was established between the expressions of CD56+ and NKG2D (rs = 0.68, p < 0.05).

CONCLUSIONS: In the endometrium of patients with primary infertility and RIF, the number of CD56+ and CD16+ cells is increased with a decrease in the expression of their activation marker CD107a, which may be a potential mechanism for impaired implantation. Further studies of the immune profile of the endometrium may help to personalize diagnostic and therapeutic approaches to management of patients with RIF and to increase the chances of pregnancy in ART programs.

Keywords

infertility / assisted reproductive technology / repeated implantation failure / endometrium / NK cells / NK cell activation markers / CD107a / NKG2D

Cite this article

Download citation ▾
Valeria A. Zagaynova, Olesya N. Bespalova, Inna O. Krikheli, Alexander M. Gzgzyan, Tatyana G. Tral, Gulrukhsor Kh. Tolibova, Dmitry I. Sokolov, Igor Yu. Kogan. Endometrial NK cells in repeated implantation failure – quantity and functional markers. Journal of obstetrics and women's diseases, 2023, 72(6): 41-54 DOI:10.17816/JOWD607392

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma J, Gao W, Li D. Recurrent implantation failure: a comprehensive summary from etiology to treatment. Front Endocrinol. 2023;13. DOI: 10.3389/fendo.2022.1061766

[2]

Ma J., Gao W., Li D. Recurrent implantation failure: a comprehensive summary from etiology to treatment // Front. Endocrinol. 2023. Vol. 13. DOI: 10.3389/fendo.2022.1061766

[3]

Lédée N, Petitbarat M, Chevrier L, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75(3):388–401. DOI: 10.1111/aji.12483

[4]

Lédée N., Petitbarat M., Chevrier L.et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization // Am. J. Reprod. Immunol. 2016. Vol. 75. No. 3. P. 388–401. DOI: 10.1111/aji.12483

[5]

Cheloufi M, Kazhalawi A, Pinton A, et al. The endometrial immune profiling may positively affect the management of recurrent pregnancy loss. Front Immunol. 2021;12. DOI: 10.3389/fimmu.2021.656701

[6]

Cheloufi M., Kazhalawi A., Pinton A. et al. The endometrial immune profiling may positively affect the management of recurrent pregnancy loss // Front. Immunol. 2021. Vol. 12. DOI: 10.3389/fimmu.2021.656701

[7]

Lapides L, Klein M, Belušáková V, et al. Uterine natural killer cells in the context of implantation: immunohistochemical analysis of endometrial samples from women with habitual abortion and recurrent implantation failure. Physiol Res. 2022;71(1):S99–S105. DOI: 10.33549/physiolres.935012

[8]

Lapides L., Klein M., Belušáková V., et al. Uterine natural killer cells in the context of implantation: immunohistochemical analysis of endometrial samples from women with habitual abortion and recurrent implantation failure // Physiol. Res. 2022. Vol. 71. No. 1. P. S99–S105. DOI: 10.33549/physiolres.935012

[9]

Zhang J, Dunk CE, Kwan M, et al. Human dNK cell function is differentially regulated by extrinsic cellular engagement and intrinsic activating receptors in first and second trimester pregnancy. Cell Mol Immunol. 2017;14(2):203–213. DOI: 10.1038/cmi.2015.66

[10]

Zhang J., Dunk C.E., Kwan M., et al. Human dNK cell function is differentially regulated by extrinsic cellular engagement and intrinsic activating receptors in first and second trimester pregnancy // Cell Mol. Immunol. 2017. Vol. 14. No. 2. P. 203–213. DOI: 10.1038/cmi.2015.66

[11]

Fraser R, Zenclussen AC. Killer timing: the temporal uterine natural killer cell differentiation pathway and implications for female reproductive health. Front Endocrinol. 2022;13. DOI: 10.3389/fendo.2022.904744

[12]

Fraser R., Zenclussen A.C. Killer timing: the temporal uterine natural killer cell differentiation pathway and implications for female reproductive health // Front. Endocrinol. 2022. Vol. 13. DOI: 10.3389/fendo.2022.904744

[13]

Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016;16(5):310–320. DOI: 10.1038/nri.2016.34

[14]

Björkström N.K., Ljunggren H.G., Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues // Nat. Rev. Immunol. 2016. Vol. 16. No. 5. P. 310–320. DOI: 10.1038/nri.2016.34

[15]

Yang HL, Zhou WJ, Lu H, et al. Decidual stromal cells promote the differentiation of CD56bright CD16– NK cells by secreting IL-24 in early pregnancy. Am J Reprod Immunol. 2019;81(6). DOI: 10.1111/aji.13110

[16]

Yang H.L., Zhou W.J., Lu H., et al. Decidual stromal cells promote the differentiation of CD56bright CD16– NK cells by secreting IL-24 in early pregnancy // Am. J. Reprod. Immunol. 2019. Vol. 81. No. 6. DOI: 10.1111/aji.13110

[17]

Pollheimer J, Vondra S, Baltayeva J, et al. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front Immunol. 2018;9. DOI: 10.3389/fimmu.2018.02597

[18]

Pollheimer J., Vondra S., Baltayeva J., et al. Regulation of placental extravillous trophoblasts by the maternal uterine environment // Front. Immunol. 2018. Vol. 9. DOI: 10.3389/fimmu.2018.02597

[19]

Lash GE, Otun HA, Innes BA, et al. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum Reprod. 2010;25(5):1137–1145. DOI: 10.1093/humrep/deq050

[20]

Lash G.E., Otun H.A., Innes B.A., et al. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age // Hum. Reprod. 2010. Vol. 25. No. 5. P. 1137–1145. DOI: 10.1093/humrep/deq050

[21]

Diniz-da-Costa M, Kong CS, Fishwick KJ, et al. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium. Stem Cells. 2021;39(8):1067–1080. DOI: 10.1002/stem.3367

[22]

Diniz-da-Costa M., Kong C.S., Fishwick K.J., et al. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium // Stem. Cells. 2021. Vol. 39. No. 8. P. 1067–1080. DOI: 10.1002/stem.3367

[23]

Tyshchuk EV, Mikhailova VA, Selkov SA, et al. Natural killer cells: origin, phenotype, function. Medical Immunology (Medi tsinskaya Immunologiya). 2202;23(6):1207–1228. (In Russ.) DOI: 10.15789/1563-0625-NKC-2330

[24]

Тыщук Е.В., Михайлова В.А., Сельков С.А., и др. Естественные киллеры: происхождение, фенотип, функции // Медицинская иммунология. 2021. Т. 23. № 6. С. 1207–1228. DOI: 10.15789/1563-0625-NKC-2330

[25]

Yang Y, Wang W, Weng J, et al. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front Immunol. 2022;13. DOI: 10.3389/fimmu.2022.976289

[26]

Yang Y., Wang W., Weng J., et al. Advances in the study of HLA class Ib in maternal-fetal immune tolerance // Front. Immunol. 2022. Vol. 13. DOI: 10.3389/fimmu.2022.976289

[27]

Dons’koi BV, Osypchuk DV, Chernyshov VP, et al. Expression of natural cytotoxicity receptor NKp46 on peripheral blood natural killer cells in women with a history of recurrent implantation failures. J Obstet Gynaecol Res. 2021;47(3):1009–1015. DOI: 10.1111/jog.14631

[28]

Dons’koi B.V., Osypchuk D.V., Chernyshov V.P., et al. Expression of natural cytotoxicity receptor NKp46 on peripheral blood natural killer cells in women with a history of recurrent implantation failures // J. Obstet. Gynaecol. Res. 2021. Vol. 47. No. 3. P. 1009–1015. DOI: 10.1111/jog.14631

[29]

Zhang Y, Huang C, Lian R, et al. The low cytotoxic activity of peripheral blood NK cells may relate to unexplained recurrent miscarriage. Am J Reprod Immunol. 2021;85(6). DOI: 10.1111/aji.13388

[30]

Zhang Y., Huang C., Lian R., et al. The low cytotoxic activity of peripheral blood NK cells may relate to unexplained recurrent miscarriage // Am. J. Reprod. Immunol. 2021. Vol. 85. No. 6. DOI: 10.1111/aji.13388

[31]

Fukui A, Funamizu A, Fukuhara R, et al. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss. J Obstet Gynaecol Res. 2017;43(11):1678–1686. DOI: 10.1111/jog.13448

[32]

Fukui A., Funamizu A., Fukuhara R., et al. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss // J. Obstet. Gynaecol. Res. 2017. Vol. 43. No. 11. P. 1678–1686. DOI: 10.1111/jog.13448

[33]

Hedlund M, Stenqvist AC, Nagaeva O, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183(1):340–351. DOI: 10.4049/jimmunol.0803477

[34]

Hedlund M., Stenqvist A.C., Nagaeva O., et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function // J. Immunol. 2009. Vol. 183. No. 1. P. 340–351. DOI: 10.4049/jimmunol.0803477

[35]

Abdian Asl A, Vaziri Nezamdoust F, Fesahat F, et al. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study. J Obstet Gynaecol. 2021;41(5):774–778. DOI: 10.1080/01443615.2020.1798906

[36]

Abdian Asl A., Vaziri Nezamdoust F., Fesahat F., et al. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study // J. Obstet. Gynaecol. 2021. Vol. 41. No. 5. P. 774–778. DOI: 10.1080/01443615.2020.1798906

[37]

Deryabin PI, Borodkina AV. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells. Hum Reprod. 2022;37(7):1505–1524. DOI: 10.1093/humrep/deac112

[38]

Deryabin P.I., Borodkina A.V. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells // Hum. Reprod. 2022. Vol. 37. No. 7. P. 1505–1524. DOI: 10.1093/humrep/deac112

[39]

Brighton PJ, Maruyama Y, Fishwick K, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife. 2017;6. DOI: 10.7554/eLife.31274

[40]

Brighton P.J., Maruyama Y., Fishwick K., et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium // Elife. 2017. Vol. 6. DOI: 10.7554/eLife.31274

[41]

Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22. DOI: 10.1016/j.jim.2004.08.008

[42]

Alter G., Malenfant J.M., Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity // J. Immunol. Methods. 2004. Vol. 294. No. 1–2. P. 15–22. DOI: 10.1016/j.jim.2004.08.008

[43]

Zagaynova VA, Kogan IY, Selkov SA, et al. Peripheral blood NK-cells in women with unsuccessful attempts of assisted reproduction: quantity, subpopulation composition and activation markers. Obstetrics and Gynecology. 2022;(9):102–113. (In Russ.) DOI: 10.18565/aig.2022.9.102-113

[44]

Загайнова В.А., Коган И.Ю., Сельков С.А., и др. NK-клетки периферической крови у пациенток с неэффективными протоколами вспомогательных репродуктивных технологий: количество, субпопуляционный состав и маркеры актива ции // Акушерство и гинекология. 2022. № 9. С. 102–113. DOI: 10.18565/aig.2022.9.102-113

[45]

Chiokadze M, Bär C, Pastuschek J, et al. Beyond uterine natural killer cell numbers in unexplained recurrent pregnancy loss: combined analysis of CD45, CD56, CD16, CD57, and CD138. Diagnostics. 2020;10(9):650. DOI: 10.3390/diagnostics10090650

[46]

Chiokadze M., Bär C., Pastuschek J., et al. Beyond uterine natural killer cell numbers in unexplained recurrent pregnancy loss: combined analysis of CD45, CD56, CD16, CD57, and CD138 // Diagnostics. 2020. Vol. 10. No. 9. P. 650. DOI: 10.3390/diagnostics10090650

[47]

Marron K, Walsh D, Harrity C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J Assist Reprod Genet. 2019;36(2):199–210. DOI: 10.1007/s10815-018-1300-8

[48]

Marron K., Walsh D., Harrity C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations // J. Assist. Reprod. Genet. 2019. Vol. 36. No. 2. P. 199–210. DOI: 10.1007/s10815-018-1300-8

[49]

Giuliani E, Parkin KL, Lessey BA, et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–269. DOI: 10.1111/aji.12259

[50]

Giuliani E., Parkin K.L., Lessey B.A., et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis // Am. J. Reprod. Immunol. 2014. Vol. 72. No. 3. P. 262–269. DOI: 10.1111/aji.12259

[51]

Von Woon E, Greer O, Shah N, et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(4):548–582. DOI: 10.1093/humupd/dmac006

[52]

Von Woon E., Greer O., Shah N., et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis // Hum. Reprod. Update. 2022. Vol. 28. No. 4. P. 548–582. DOI: 10.1093/humupd/dmac006

[53]

Kwak-Kim J, Bao S, Lee SK, et al. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol. 2014;72(2):129–140. DOI: 10.1111/aji.12234

[54]

Kwak-Kim J., Bao S., Lee S.K., et al. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress // Am. J. Reprod. Immunol. 2014. Vol. 72. No. 2. P. 129–140. DOI: 10.1111/aji.12234

[55]

Giuliani E, Parkin KL, Lessey BA, et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–269. DOI: 10.1111/aji.12259

[56]

Giuliani E., Parkin K.L., Lessey B.A., et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis // Am. J. Reprod. Immunol. 2014. Vol. 72. No. 3. P. 262–269. DOI: 10.1111/aji.12259

[57]

Glover LE, Crosby D, Thiruchelvam U, et al. Uterine natural killer cell progenitor populations predict successful implantation in women with endometriosis-associated infertility. Am J Reprod Immunol. 2018;79(3). DOI: 10.1111/aji.12817

[58]

Glover L.E., Crosby D., Thiruchelvam U., et al. Uterine natural killer cell progenitor populations predict successful implantation in women with endometriosis-associated infertility // Am. J. Reprod. Immunol. 2018. Vol. 79. No. 3. DOI: 10.1111/aji.12817

[59]

Lash GE, Bulmer JN, Li TC, et al. Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure. J Reprod Immunol. 2016;116:50–59. DOI: 10.1016/j.jri.2016.04.290

[60]

Lash G.E., Bulmer J.N., Li T.C., et al. Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure // J. Reprod. Immunol. 2016. Vol. 116. P. 50–59. DOI: 10.1016/j.jri.2016.04.290

[61]

Puente E, Alonso L, Laganà AS, et al. Chronic endometritis: old problem novel insights and future challenges. Int J Fertil Steril. 2020;13(4):250–256. DOI: 10.22074/ijfs.2020.5779

[62]

Puente E., Alonso L., Laganà A.S., et al. Chronic endometritis: old problem. Novel insights and future challenges // Int. J. Fertil. Steril. 2020. Vol. 13. No. 4. P. 250–256. DOI: 10.22074/ijfs.2020.5779

[63]

Tolibova GKh. Endometrial’naya disfunktsiya u zhenshchin s bes plodiem: patogeneticheskie determinanty i kliniko-morfologiche skaya diagnostika [dissertation]. Saint Petersburg; 2018. (In Russ.) [cited 2023 Oct 2]. Available from: https://ott.ru/files/news/pg/2018_tolibova/dissertatsiia_tolibovoy.pdf

[64]

Толибова Г.Х. Эндометриальная дисфункция у женщин с бесплодием: патогенетические детерминанты и клинико-морфологическая диагностика: дис. ... д-ра мед. наук. Санкт-Петербург, 2018 [дата обращения 02.10.2023]. Доступ по ссылке: https://ott.ru/files/news/pg/2018_tolibova/dissertatsiia_tolibovoy.pdf

[65]

Buzzaccarini G, Vitagliano A, Andrisani A, et al. Chronic endometritis and altered embryo implantation: a unified pathophysiological theory from a literature systematic review. J Assist Reprod Genet. 2020;37(12):2897–2911. DOI: 10.1007/s10815-020-01955-8

[66]

Buzzaccarini G., Vitagliano A., Andrisani A., et al. Chronic endometritis and altered embryo implantation: a unified pathophysiological theory from a literature systematic review // J. Assist. Reprod. Genet. 2020. Vol. 37. No. 12. P. 2897–2911. DOI: 10.1007/s10815-020-01955-8

[67]

Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–353. DOI: 10.1038/s41586-018-0698-6

[68]

Vento-Tormo R., Efremova M., Botting R.A., et al. Single-cell reconstruction of the early maternal-fetal interface in humans // Nature. 2018. Vol. 563. No. 7731. P. 347–353. DOI: 10.1038/s41586-018-0698-6

[69]

Whettlock EM, Woon EV, Cuff AO, et al. Dynamic changes in uterine NK cell subset frequency and function over the menstrual cycle and pregnancy. Front Immunol. 2022;13. DOI: 10.3389/fimmu.2022.880438

[70]

Whettlock E.M., Woon E.V., Cuff A.O., et al. Dynamic changes in uterine NK cell subset frequency and function over the menstrual cycle and pregnancy // Front. Immunol. 2022. Vol. 13. DOI: 10.3389/fimmu.2022.880438

[71]

Veljkovic Vujaklija D, Dominovic M, Gulic T, et al. Granulysin expression and the interplay of granulysin and perforin at the maternal-fetal interface. J Reprod Immunol. 2013;97(2):186–196. DOI: 10.1016/j.jri.2012.11.003

[72]

Veljkovic Vujaklija D., Dominovic M., Gulic T., et al. Granulysin expression and the interplay of granulysin and perforin at the maternal-fetal interface // J. Reprod. Immunol. 2013. Vol. 97. No. 2. P. 186–196. DOI: 10.1016/j.jri.2012.11.003

[73]

Fleming DC, King AE, Williams AR, et al. Hormonal contraception can suppress natural antimicrobial gene transcription in human endometrium. Fertil Steril. 2003;79(4):856–863. DOI: 10.1016/s0015-0282(02)04930-0

[74]

Fleming D.C., King A.E., Williams A.R., et al. Hormonal contraception can suppress natural antimicrobial gene transcription in human endometrium // Fertil. Steril. 2003. Vol. 79. No. 4. P. 856–863. DOI: 10.1016/s0015-0282(02)04930-0

[75]

Zhang Y, Zhao A, Wang X, et al. Expressions of natural cytotoxicity receptors and NKG2D on decidual natural killer cells in patients having spontaneous abortions. Fertil Steril. 2008;90(5):1931–1937. DOI: 10.1016/j.fertnstert.2007.08.009

[76]

Zhang Y., Zhao A., Wang X., et al. Expressions of natural cytotoxicity receptors and NKG2D on decidual natural killer cells in patients having spontaneous abortions // Fertil. Steril. 2008. Vol. 90. No. 5. P. 1931–1937. DOI: 10.1016/j.fertnstert.2007.08.009

[77]

Basu S, Pioli PA, Conejo-Garcia J, et al. Estradiol regulates MICA expression in human endometrial cells. Clin Immunol. 2008;129(2):325–332. DOI: 10.1016/j.clim.2008.07.005

[78]

Basu S., Pioli P.A., Conejo-Garcia J., et al. Estradiol regulates MICA expression in human endometrial cells // Clin. Immunol. 2008. Vol. 129. No. 2. P. 325–332. DOI: 10.1016/j.clim.2008.07.005

[79]

Vinnars MT, Björk E, Nagaev I, et al. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack. Am J Reprod Immunol. 2018;80(1). DOI: 10.1111/aji.12969

[80]

Vinnars M.T., Björk E., Nagaev I., et al. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack // Am. J. Reprod. Immunol. 2018. Vol. 80. No. 1. DOI: 10.1111/aji.12969

[81]

Muter J, Kong CS, Brosens JJ. The role of decidual subpopulations in implantation, menstruation and miscarriage. Front Reprod Health. 2021;3. DOI: 10.3389/frph.2021.804921

[82]

Muter J., Kong C.S., Brosens J.J. The role of decidual subpopulations in implantation, menstruation and miscarriage // Front. Reprod. Health. 2021. Vol. 3. DOI: 10.3389/frph.2021.804921

[83]

Zhang J, Dunk CE, Shynlova O, et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. 2019;39:531–539. DOI: 10.1016/j.ebiom.2018.12.015

[84]

Zhang J., Dunk C.E., Shynlova O., et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia // EBioMedicine. 2019. Vol. 39. P. 531–539. DOI: 10.1016/j.ebiom.2018.12.015

[85]

Jelenčić V, Lenartić M, Wensveen FM, et al. NKG2D: a versatile player in the immune system. Immunol Lett. 2017;189:48–53. DOI: 10.1016/j.imlet.2017.04.006

[86]

Jelenčić V., Lenartić M., Wensveen F.M., et al. NKG2D: a versatile player in the immune system // Immunol. Lett. 2017. Vol. 189. P. 48–53. DOI: 10.1016/j.imlet.2017.04.006

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/