Premature ovarian insufficiency: Genetic causes and treatment options. A literature review
Valentina M. Denisova , Maria I. Yarmolinskaya , Karina A. Zakurayeva
Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (3) : 75 -91.
Premature ovarian insufficiency: Genetic causes and treatment options. A literature review
Premature ovarian insufficiency is a syndrome characterized by hypergonadotropic ovarian insufficiency and the reduction of ovarian function before age 40. This leads to reproductive failures, metabolic changes, and a decrease in quality of life. Currently, occult and initial forms of premature ovarian insufficiency, which have their own diagnostic features and management tactics, can be figured out. The frequency of this syndrome is between 1.1 and 3.7% and the tendency for incidence to increase can be seen. This article is a literature review of the data available in the PubMed database (2005–2020), with international clinical guidelines taken into consideration. The genetic causes of premature ovarian insufficiency, clinical signs of this pathology and treatments options for such patients are included into the review. In addition, some features of assisted reproductive technology within this group are described.
premature ovarian insufficiency / genetic causes / poor response
| [1] |
European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, Anderson R, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. DOI: 10.1093/humrep/dew027 |
| [2] |
European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L., Davies M., Anderson R. et al. ESHRE Guideline: management of women with premature ovarian insufficiency // Hum. Reprod. 2016. Vol. 31, No. 5. P. 926–937. DOI: 10.1093/humrep/dew027 |
| [3] |
Ossewaarde ME, Bots ML, Verbeek AL, et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology. 2005;16(4):556–562. DOI: 10.1097/01.ede.0000165392.35273.d4 |
| [4] |
Ossewaarde M.E., Bots M.L., Verbeek A.L. et al. Age at menopause, cause-specific mortality and total life expectancy // Epidemiology. 2005. Vol. 16. No. 4. P. 556–562. DOI: 10.1097/01.ede.0000165392.35273.d4 |
| [5] |
Panay N, Anderson RA, Nappi RE, et al. Premature ovarian insufficiency: An International Menopause Society White Paper. Climacteric. 2020;23(5):426–446. DOI: 10.1080/13697137.2020.1804547 |
| [6] |
Panay N., Anderson R.A., Nappi R.E. et al. Premature ovarian insufficiency: an International Menopause Society White Paper // Climacteric. 2020. Vol. 23. No. 5. P. 426–446. DOI: 10.1080/13697137.2020.1804547 |
| [7] |
Torrealday S, Kodaman P, Pal L. Premature Ovarian Insufficiency — an update on recent advances in understanding and management. F1000Res. 2017;6:2069. DOI: 10.12688/f1000research.11948.1 |
| [8] |
Torrealday S., Kodaman P., Pal L. Premature Ovarian Insufficiency — an update on recent advances in understanding and management // F1000Res. 2017. Vol. 6. P. 2069. DOI: 10.12688/f1000research.11948.1 |
| [9] |
Tucker EJ, Grover SR, Bachelot A, et al. premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–635. DOI: 10.1210/er.2016-1047. |
| [10] |
Tucker E.J., Grover S.R., Bachelot A. et al. Premature Ovarian Insufficiency: New perspectives on genetic cause and phenotypic spectrum // Endocr. Rev. 2016. Vol. 37. No. 6. P. 609–635. DOI: 10.1210/er.2016-1047 |
| [11] |
Voican A, Bachelot A, Bouligand J, et al. NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency. J Clin Endocrinol Metab. 2013;98(5):E1017–E1021. DOI: 10.1210/jc.2012-4111 |
| [12] |
Voican A., Bachelot A., Bouligand J. et al. NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 5. P. E1017–E1021. DOI: 10.1210/jc.2012-4111 |
| [13] |
Janse F, de With LM, Duran KJ, et al. Limited contribution of NR5A1 (SF-1) mutations in women with primary ovarian insufficiency (POI). Fertil Steril. 2012;97(1):141–6.e2. DOI: 10.1016/j.fertnstert.2011.10.032 |
| [14] |
Janse F., de With L.M., Duran K.J. et al. Limited contribution of NR5A1 (SF-1) mutations in women with primary ovarian insufficiency (POI) // Fertil. Steril. 2012. Vol. 97. No. 1. P. 141–6.e2. DOI: 10.1016/j.fertnstert.2011.10.032 |
| [15] |
Lourenço D, Brauner R, Lin L, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–1210. DOI: 10.1056/NEJMoa0806228 |
| [16] |
Lourenço D., Brauner R., Lin L. et al. Mutations in NR5A1 associated with ovarian insufficiency // N. Engl. J. Med. 2009. Vol. 360. No. 12. P. 1200–1210. DOI: 10.1056/NEJMoa0806228 |
| [17] |
Jaillard S, Sreenivasan R, Beaumont M, et al. Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility. Maturitas. 2020;131:78–86. DOI: 10.1016/j.maturitas.2019.10.011 |
| [18] |
Jaillard S., Sreenivasan R., Beaumont M. et al. Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility // Maturitas. 2020. Vol. 131. P. 78–86. DOI: 10.1016/j.maturitas.2019.10.011 |
| [19] |
Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001;27(2):159–166. DOI: 10.1038/84781 |
| [20] |
Crisponi L., Deiana M., Loi A. et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome // Nat. Genet. 2001. Vol. 27. No. 2. P. 159–166. DOI: 10.1038/84781 |
| [21] |
Fraser IS, Shearman RP, Smith A, Russell P. An association among blepharophimosis, resistant ovary syndrome, and true premature menopause. Fertil Steril. 1988;50(5):747–751. DOI: 10.1016/s0015-0282(16)60309-6 |
| [22] |
Fraser I.S., Shearman R.P., Smith A., Russell P. An association among blepharophimosis, resistant ovary syndrome, and true premature menopause // Fertil. Steril. 1988. Vol. 50. No. 5. P. 747–751. DOI: 10.1016/s0015-0282(16)60309-6 |
| [23] |
Nicolino M, Bost M, David M, Chaussain JL. Familial blepharophimosis: an uncommon marker of ovarian dysgenesis. J Pediatr Endocrinol Metab. 1995;8(2):127–133. DOI: 10.1515/jpem.1995.8.2.127 |
| [24] |
Nicolino M., Bost M., David M., Chaussain J.L. Familial blepharophimosis: an uncommon marker of ovarian dysgenesis // J. Pediatr. Endocrinol. Metab. 1995. Vol. 8. No. 2. P. 127–133. DOI: 10.1515/jpem.1995.8.2.127 |
| [25] |
Uhlenhaut NH, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139(6):1130–1142. DOI: 10.1016/j.cell.2009.11.021 |
| [26] |
Uhlenhaut N.H., Jakob S., Anlag K. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation // Cell. 2009. Vol. 139. No. 6. P. 1130–1142. DOI: 10.1016/j.cell.2009.11.021 |
| [27] |
Méduri G, Bachelot A, Duflos C, et al. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: Case Report. Hum Reprod. 2010;25(1):235–243. DOI: 10.1093/humrep/dep355 |
| [28] |
Méduri G., Bachelot A., Duflos C. et al. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: Case Report // Hum. Reprod. 2010. Vol. 25. No. 1. P. 235–243. DOI: 10.1093/humrep/dep355 |
| [29] |
Caburet S, Arboleda VA, Llano E, et al. Mutant cohesin in premature ovarian failure. N Engl J Med. 2014;370(10):943–949. DOI: 10.1056/NEJMoa1309635 |
| [30] |
Caburet S., Arboleda V.A., Llano E. et al. Mutant cohesin in premature ovarian failure // N. Engl. J. Med. 2014. Vol. 370. No. 10. P. 943–949. DOI: 10.1056/NEJMoa1309635 |
| [31] |
Xiao WJ, He WB, Zhang YX, et al. In-frame variants in STAG3 gene cause premature ovarian insufficiency. Front Genet. 2019;10:1016. DOI: 10.3389/fgene.2019.01016 |
| [32] |
Xiao W.J., He W.B., Zhang Y.X. et al. In-frame variants in STAG3 gene cause premature ovarian insufficiency // Front. Genet. 2019. Vol. 10. P. 1016. DOI: 10.3389/fgene.2019.01016 |
| [33] |
Lacombe A, Lee H, Zahed L, et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet. 2006;79(1):113–119. DOI: 10.1086/505406 |
| [34] |
Lacombe A., Lee H., Zahed L. et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure // Am. J. Hum. Genet. 2006. Vol. 79. No. 1. P. 113–119. DOI: 10.1086/505406 |
| [35] |
Bolcun-Filas E, Hall E, Speed R, et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet. 2009;5(2):e1000393. Corrected and republished from: PLoS Genet. 2009;5(4). DOI: 10.1371/journal.pgen.1000393 |
| [36] |
Bolcun-Filas E., Hall E., Speed R. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair // PLoS Genet. 2009. Vol. 5. No. 2. P. e1000393. Corrected and republished from: PLoS Genet. 2009. Vol. 5. No. 4. DOI: 10.1371/journal.pgen.1000393 |
| [37] |
de Vries L, Behar DM, Smirin-Yosef P, et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab. 2014;99(10):E2129–E2132. DOI: 10.1210/jc.2014-1268 |
| [38] |
de Vries L., Behar D.M., Smirin-Yosef P. et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2014. Vol. 99. No. 10. P. E2129–E2132. DOI: 10.1210/jc.2014-1268 |
| [39] |
de Vries FA, de Boer E, van den Bosch M, et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 2005;19(11):1376–1389. DOI: 10.1101/gad.329705 |
| [40] |
de Vries F.A., de Boer E., van den Bosch M. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation // Genes. Dev. 2005. Vol. 19. No. 11. P. 1376–1389. DOI: 10.1101/gad.329705 |
| [41] |
Bolcun-Filas E, Costa Y, Speed R, et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol. 2007;176(6):741–747. DOI: 10.1083/jcb.200610027 |
| [42] |
Bolcun-Filas E., Costa Y., Speed R. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination // J. Cell. Biol. 2007. Vol. 176. No. 6. P. 741–747. DOI: 10.1083/jcb.200610027 |
| [43] |
Hamer G, Wang H, Bolcun-Filas E, et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J Cell Sci. 2008;121(Pt 15):2445–2451. DOI: 10.1242/jcs.033233 |
| [44] |
Hamer G., Wang H., Bolcun-Filas E. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex // J. Cell. Sci. 2008. Vol. 121. Pt. 15. P. 2445–2451. DOI: 10.1242/jcs.033233 |
| [45] |
Wang J, Zhang W, Jiang H, Wu BL; Primary Ovarian Insufficiency Collaboration. Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med. 2014;370(10):972–974. DOI: 10.1056/NEJMc1310150 |
| [46] |
Wang J., Zhang W., Jiang H., Wu B.L.; Primary Ovarian Insufficiency Collaboration. Mutations in HFM1 in recessive primary ovarian insufficiency // N. Engl. J. Med. 2014. Vol. 370. No. 10. P. 972–974. DOI: 10.1056/NEJMc1310150 |
| [47] |
Zangen D, Kaufman Y, Zeligson S, et al. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet. 2011;89(4):572–579. DOI: 10.1016/j.ajhg.2011.09.006 |
| [48] |
Zangen D., Kaufman Y., Zeligson S. et al. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription // Am. J. Hum. Genet. 2011. Vol. 89. No. 4. P. 572–579. DOI: 10.1016/j.ajhg.2011.09.006 |
| [49] |
Weinberg-Shukron A, Renbaum P, Kalifa R, et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest. 2015;125(11):4295–4304. DOI: 10.1172/JCI83553 |
| [50] |
Weinberg-Shukron A., Renbaum P., Kalifa R. et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis // J. Clin. Invest. 2015. Vol. 125. No. 11. P. 4295–4304. DOI: 10.1172/JCI83553 |
| [51] |
Senger S, Csokmay J, Akbar T, et al. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis. Development. 2011;138(10):2133–2142. Corrected and republished from: Development. 2011;138(12):2631. DOI: 10.1242/dev.057372 |
| [52] |
Senger S., Csokmay J., Akbar T. et al. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis // Development. 2011. Vol. 138. No. 10. P. 2133–2142. Corrected and republished from: Development. 2011. Vol. 138. No. 12. P. 2631. DOI: 10.1242/dev.057372 |
| [53] |
Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–1753. DOI: 10.1126/science.7792600 |
| [54] |
Savitsky K., Bar-Shira A., Gilad S. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase // Science. 1995. Vol. 268. No. 5218. P. 1749–1753. DOI: 10.1126/science.7792600 |
| [55] |
Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86(1):159–171. DOI: 10.1016/s0092-8674(00)80086-0 |
| [56] |
Barlow C., Hirotsune S., Paylor R. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia // Cell. 1996. Vol. 86. No. 1. P. 159–171. DOI: 10.1016/s0092-8674(00)80086-0 |
| [57] |
Liu H, Wei X, Sha Y, et al. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. J Ovarian Res. 2020;13(1):114. DOI: 10.1186/s13048-020-00716-6 |
| [58] |
Liu H., Wei X., Sha Y. et al. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention // J. Ovarian. Res. 2020. Vol. 13. No. 1. P 114. DOI: 10.1186/s13048-020-00716-6 |
| [59] |
Lutzmann M, Grey C, Traver S, et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell. 2012;47(4):523–534. DOI: 10.1016/j.molcel.2012.05.048 |
| [60] |
Lutzmann M., Grey C., Traver S. et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination // Mol. Cell. 2012. Vol. 47. No. 4. P. 523–534. DOI: 10.1016/j.molcel.2012.05.048 |
| [61] |
AlAsiri S, Basit S, Wood-Trageser MA, et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015;125(1):258–262. DOI: 10.1172/JCI78473 |
| [62] |
AlAsiri S., Basit S., Wood-Trageser M.A. et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability // J. Clin. Invest. 2015. Vol. 125. No. 1. P. 258–262. DOI: 10.1172/JCI78473 |
| [63] |
Wood-Trageser MA, Gurbuz F, Yatsenko SA, et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet. 2014;95(6):754–762. DOI: 10.1016/j.ajhg.2014.11.002 |
| [64] |
Wood-Trageser M.A., Gurbuz F., Yatsenko S.A. et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability // Am. J. Hum. Genet. 2014. Vol. 95. No. 6. P. 754–762. DOI: 10.1016/j.ajhg.2014.11.002 |
| [65] |
Fauchereau F, Shalev S, Chervinsky E, et al. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency. Clin Genet. 2016;89(5):603–607. DOI: 10.1111/cge.12736 |
| [66] |
Fauchereau F., Shalev S., Chervinsky E. et al. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency // Clin. Genet. 2016. Vol. 89. No. 5. P. 603–607. DOI: 10.1111/cge.12736 |
| [67] |
Goldberg Y, Halpern N, Hubert A, et al. Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure. Cancer Genet. 2015;208(12):621–624. DOI: 10.1016/j.cancergen.2015.10.001 |
| [68] |
Goldberg Y., Halpern N., Hubert A. et al. Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure // Cancer Genet. 2015. Vol. 208. No. 12. P. 621–624. DOI: 10.1016/j.cancergen.2015.10.001 |
| [69] |
Guo T, Zheng Y, Li G, et al. Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency. Fertil Steril. 2020;113(4):845–852. DOI: 10.1016/j.fertnstert.2019.11.015 |
| [70] |
Guo T., Zheng Y., Li G. et al. Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency // Fertil. Steril. 2020. Vol. 113. No. 4. P. 845–852. DOI: 10.1016/j.fertnstert.2019.11.015 |
| [71] |
Qin Y, Guo T, Li G, et al. CSB-PGBD3 mutations cause premature ovarian failure. PLoS Genet. 2015;11(7):e1005419. DOI: 10.1371/journal.pgen.1005419 |
| [72] |
Qin Y., Guo T., Li G. et al. CSB-PGBD3 mutations cause premature ovarian failure // PLoS Genet. 2015. Vol. 11. No. 7. P. e1005419. DOI: 10.1371/journal.pgen.1005419 |
| [73] |
Santos MG, Machado AZ, Martins CN, et al. Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. Biomed Res Int. 2014;2014:787465. DOI: 10.1155/2014/787465 |
| [74] |
Santos M.G., Machado A.Z., Martins C.N. et al. Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency // Biomed. Res. Int. 2014. Vol. 2014. P. 787465. DOI: 10.1155/2014/787465 |
| [75] |
Wu X, Wang B, Dong Z, et al. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency. Cell Death Dis. 2013;4(10):e825. DOI: 10.1038/cddis.2013.368 |
| [76] |
Wu X., Wang B., Dong Z. et al. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency // Cell. Death. Dis. 2013. Vol. 4. No. 10. P. e825. DOI: 10.1038/cddis.2013.368 |
| [77] |
Mansouri MR, Schuster J, Badhai J, et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17(23):3776–3783. DOI: 10.1093/hmg/ddn274 |
| [78] |
Mansouri M.R., Schuster J., Badhai J. et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure // Hum. Mol. Genet. 2008. Vol. 17. No. 23. P. 3776–3783. DOI: 10.1093/hmg/ddn274 |
| [79] |
Ratts VS, Flaws JA, Kolp R, et al. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology. 1995;136(8):3665–3668. DOI: 10.1210/endo.136.8.7628407 |
| [80] |
Ratts V.S., Flaws J.A., Kolp R. et al. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad // Endocrinology. 1995. Vol. 136. No. 8. P. 3665–3668. DOI: 10.1210/endo.136.8.7628407 |
| [81] |
França MM, Mendonca BB. Genetics of primary ovarian insufficiency in the next-generation sequencing era. J Endocr Soc. 2019;4(2):bvz037. DOI: 10.1210/jendso/bvz037 |
| [82] |
França M.M., Mendonca BB. Genetics of primary ovarian insufficiency in the next-generation sequencing era // J. Endocr. Soc. 2019. Vol. 4. No. 2. P. bvz037. DOI: 10.1210/jendso/bvz037 |
| [83] |
Kasippillai T, MacArthur DG, Kirby A, et al. Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency. J Clin Endocrinol Metab. 2013;98(9):E1534–E1539. DOI: 10.1210/jc.2013-1102. |
| [84] |
Kasippillai T., MacArthur D.G., Kirby A. et al. Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 9. P. E1534–E1539. DOI: 10.1210/jc.2013-1102 |
| [85] |
Peng J, Li Q, Wigglesworth K, et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci USA. 2013;110(8):E776–E785. DOI: 10.1073/pnas.1218020110 |
| [86] |
Peng J., Li Q., Wigglesworth K. et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. No. 8. P. E776–E785. DOI: 10.1073/pnas.1218020110 |
| [87] |
Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004;75(1):106–111. DOI: 10.1086/422103 |
| [88] |
Di Pasquale E., Beck-Peccoz P., Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene // Am. J. Hum. Genet. 2004. Vol. 75. No. 1. P 106–111. DOI: 10.1086/422103 |
| [89] |
Santos M, Cordts EB, Peluso C, et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency. J Assist Reprod Genet. 2019;36(10):2163–2169. DOI: 10.1007/s10815-019-01548-0 |
| [90] |
Santos M., Cordts E.B., Peluso C. et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency // J. Assist. Reprod. Genet. 2019. Vol. 36. No. 10. P. 2163–2169. DOI: 10.1007/s10815-019-01548-0 |
| [91] |
Dixit H, Rao LK, Padmalatha V, et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2005;12(6):749–754. DOI: 10.1097/01.gme.0000184424.96437.7a |
| [92] |
Dixit H., Rao L.K., Padmalatha V. et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure // Menopause. 2005. Vol. 12. No. 6. P. 749–754. DOI: 10.1097/01.gme.0000184424.96437.7a |
| [93] |
Laissue P, Christin-Maitre S, Touraine P, et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–744. DOI: 10.1530/eje.1.02135 |
| [94] |
Laissue P., Christin-Maitre S., Touraine P. et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure // Eur. J. Endocrinol. 2006. Vol. 154. No. 5. P. 739–744. DOI: 10.1530/eje.1.02135 |
| [95] |
Kovanci E, Rohozinski J, Simpson JL, et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil Steril. 2007;87(1):143–146. DOI: 10.1016/j.fertnstert.2006.05.079 |
| [96] |
Kovanci E., Rohozinski J., Simpson J.L. et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure // Fertil. Steril. 2007. Vol. 87. No. 1. P. 143–146. DOI: 10.1016/j.fertnstert.2006.05.079 |
| [97] |
Qin Y, Choi Y, Zhao H, et al. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576–581. DOI: 10.1086/519496 |
| [98] |
Qin Y., Choi Y., Zhao H. et al. NOBOX homeobox mutation causes premature ovarian failure // Am. J. Hum. Genet. 2007. Vol. 81. No. 3. P. 576–581. DOI: 10.1086/519496 |
| [99] |
Bouilly J, Bachelot A, Broutin I, et al. Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort. Hum Mutat. 2011;32(10):1108–1113. DOI: 10.1002/humu.21543 |
| [100] |
Bouilly J., Bachelot A., Broutin I. et al. Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort // Hum. Mutat. 2011. Vol. 32. No. 10. P. 1108–1113. DOI: 10.1002/humu.21543 |
| [101] |
Bayram Y, Gulsuner S, Guran T, et al. Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism. J Clin Endocrinol Metab. 2015;100(5):E808–E814. DOI: 10.1210/jc.2015-1150 |
| [102] |
Bayram Y., Gulsuner S., Guran T. et al. Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism // J. Clin. Endocrinol. Metab. 2015. Vol. 100. No. 5. P. E808–E814. DOI: 10.1210/jc.2015-1150 |
| [103] |
Pangas SA, Choi Y, Ballow DJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci USA. 2006;103(21):8090–8095. DOI: 10.1073/pnas.0601083103 |
| [104] |
Pangas S.A., Choi Y., Ballow D.J. et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8 // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. No. 21. P. 8090–8095. DOI: 10.1073/pnas.0601083103 |
| [105] |
Aittomäki K, Lucena JL, Pakarinen P, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 1995;82(6):959–968. DOI: 10.1016/0092-8674(95)90275-9 |
| [106] |
Aittomäki K., Lucena J.L., Pakarinen P. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure // Cell. 1995. Vol. 82. No. 6. P. 959–968. DOI: 10.1016/0092-8674(95)90275-9 |
| [107] |
Vaskivuo TE, Aittomäki K, Anttonen M, et al. Effects of follicle-stimulating hormone (FSH) and human chorionic gonadotropin in individuals with an inactivating mutation of the FSH receptor. Fertil Steril. 2002;78(1):108–113. DOI: 10.1016/s0015-0282(02)03148-5 |
| [108] |
Vaskivuo T.E., Aittomäki K., Anttonen M. et al. Effects of follicle-stimulating hormone (FSH) and human chorionic gonadotropin in individuals with an inactivating mutation of the FSH receptor // Fertil. Steril. 2002. Vol. 78. No. 1. P. 108–113. DOI: 10.1016/s0015-0282(02)03148-5 |
| [109] |
Meduri G, Touraine P, Beau I, et al. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies. J Clin Endocrinol Metab. 2003;88(8):3491–3498. DOI: 10.1210/jc.2003-030217 |
| [110] |
Meduri G., Touraine P., Beau I. et al. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies // J. Clin. Endocrinol. Metab. 2003. Vol. 88. No. 8. P 3491–3498. DOI: 10.1210/jc.2003-030217 |
| [111] |
Huang W, Cao Y, Shi L. Effects of FSHR polymorphisms on premature ovarian insufficiency in human beings: a meta-analysis. Reprod Biol Endocrinol. 2019;17(1):80. DOI: 10.1186/s12958-019-0528-1 |
| [112] |
Huang W., Cao Y., Shi L. Effects of FSHR polymorphisms on premature ovarian insufficiency in human beings: a meta-analysis // Reprod. Biol. Endocrinol. 2019. Vol. 17. No. 1. P. 80. DOI: 10.1186/s12958-019-0528-1 |
| [113] |
GeneCards. [Internet]. FIGLA gene (Protein Coding) folliculogenesis specific BHLH transcription factor. [cited 2021 Apr 25]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=FIGLA |
| [114] |
GeneCards. [Internet]. FIGLA gene (Protein Coding) folliculogenesis specific BHLH transcription factor. [дата обращения 25.04.2021]. Доступ по ссылке: https://www.genecards.org/cgi-bin/carddisp.pl?gene=FIGLA |
| [115] |
Hu W, Gauthier L, Baibakov B, Jimenez-Movilla M, Dean J. FIGLA, a basic helix-loop-helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes. Mol Cell Biol. 2010;30(14):3661–3671. DOI: 10.1128/MCB.00201-10 |
| [116] |
Hu W., Gauthier L., Baibakov B., Jimenez-Movilla M., Dean J. FIGLA, a basic helix-loop-helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes // Mol. Cell. Biol. 2010. Vol. 30. No. 14. P. 3661–3671. DOI: 10.1128/MCB.00201-10 |
| [117] |
Bayne RA, Martins da Silva SJ, Anderson RA. Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary. Mol Hum Reprod. 2004;10(6):373–381. DOI: 10.1093/molehr/gah056 |
| [118] |
Bayne R.A., Martins da Silva S.J., Anderson R.A. Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary // Mol. Hum. Reprod. 2004. Vol. 10. No. 6. P. 373–381. DOI: 10.1093/molehr/gah056 |
| [119] |
Tosh D, Rani HS, Murty US, et al. Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure. Menopause. 2015;22(5):520–526. DOI: 10.1097/GME.0000000000000340 |
| [120] |
Tosh D., Rani H.S., Murty U.S. et al. Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure // Menopause. 2015. Vol. 22. No. 5. P. 520–526. DOI: 10.1097/GME.0000000000000340 |
| [121] |
Pangas SA, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters. Hum Reprod Update. 2006;12(1):65–76. DOI: 10.1093/humupd/dmi033 |
| [122] |
Pangas S.A., Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters // Hum. Reprod. Update. 2006. Vol. 12. No. 1. P. 65–76. DOI: 10.1093/humupd/dmi033 |
| [123] |
Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis. Cell Mol Life Sci. 2006;63(5):579–590. DOI: 10.1007/s00018-005-5394-7 |
| [124] |
Choi Y., Rajkovic A. Genetics of early mammalian folliculogenesis // Cell. Mol. Life Sci. 2006. Vol. 63. No. 5. P. 579–590. DOI: 10.1007/s00018-005-5394-7 |
| [125] |
Chen B, Li L, Wang J, et al. Consanguineous familial study revealed biallelic FIGLA mutation associated with premature ovarian insufficiency. J Ovarian Res. 2018;11(1):48. DOI: 10.1186/s13048-018-0413-0 |
| [126] |
Chen B., Li L., Wang J. et al. Consanguineous familial study revealed biallelic FIGLA mutation associated with premature ovarian insufficiency // J. Ovarian. Res. 2018. Vol. 11. No. 1. 48. DOI: 10.1186/s13048-018-0413-0 |
| [127] |
Legros F, Malka F, Frachon P, Lombès A, Rojo M. Organization and dynamics of human mitochondrial DNA. J Cell Sci. 2004;117(Pt 13):2653–2662. DOI: 10.1242/jcs.01134 |
| [128] |
Legros F., Malka F., Frachon P., Lombès A., Rojo M. Organization and dynamics of human mitochondrial DNA // J. Cell. Sci. 2004. Vol. 117. Pt. 13. P. 2653–2662. DOI: 10.1242/jcs.01134 |
| [129] |
Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol. 2007;77:87–111. DOI: 10.1016/S0070-2153(06)77004-1 |
| [130] |
Shoubridge E.A., Wai T. Mitochondrial DNA and the mammalian oocyte // Curr. Top. Dev. Biol. 2007. Vol. 77. P. 87–111. DOI: 10.1016/S0070-2153(06)77004-1 |
| [131] |
Bonomi M, Somigliana E, Cacciatore C, et al. Blood cell mitochondrial DNA content and premature ovarian aging. PLoS One. 2012;7(8):e42423. DOI: 10.1371/journal.pone.0042423 |
| [132] |
Bonomi M., Somigliana E., Cacciatore C. et al. Blood cell mitochondrial DNA content and premature ovarian aging // PLoS One. 2012. Vol. 7. No. 8. P. e42423. DOI: 10.1371/journal.pone.0042423 |
| [133] |
Pagnamenta AT, Taanman JW, Wilson CJ, et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma. Hum Reprod. 2006;21(10):2467–2473. DOI: 10.1093/humrep/del076 |
| [134] |
Pagnamenta A.T., Taanman J.W., Wilson C.J. et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma // Hum. Reprod. 2006. Vol. 21. No. 10. P. 2467–2473. DOI: 10.1093/humrep/del076 |
| [135] |
Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet. 2004;364(9437):875–882. DOI: 10.1016/S0140-6736(04)16983-3 |
| [136] |
Luoma P., Melberg A., Rinne J.O. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study // Lancet. 2004. Vol. 364. No. 9437. P. 875–882. DOI: 10.1016/S0140-6736(04)16983-3 |
| [137] |
Morino H, Pierce SB, Matsuda Y, et al. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features. Neurology. 2014;83(22):2054–2061. DOI: 10.1212/WNL.0000000000001036 |
| [138] |
Morino H, Pierce SB, Matsuda Y, et al. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features // Neurology. 2014. Vol. 83. No. 22. P. 2054–2061. DOI: 10.1212/WNL.0000000000001036 |
| [139] |
Pierce SB, Walsh T, Chisholm KM, et al. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault syndrome. Am J Hum Genet. 2010;87(2):282–288. DOI: 10.1016/j.ajhg.2010.07.007 |
| [140] |
Pierce S.B., Walsh T., Chisholm K.M. et al. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault syndrome // Am. J. Hum. Genet. 2010. Vol. 87. No. 2. P. 282–288. DOI: 10.1016/j.ajhg.2010.07.007 |
| [141] |
Matthijs G, Schollen E, Pardon E, et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet. 1997;16(1):88–92. Corrected and republished from: Nat Genet. 1997;16(3):316. DOI: 10.1038/ng0597-88 |
| [142] |
Matthijs G., Schollen E., Pardon E. et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome) // Nat. Genet. 1997. Vol. 16. No. 1. P. 88–92. Corrected and republished from: Nat. Genet. 1997. Vol. 16. No. 3. P. 316. DOI: 10.1038/ng0597-88 |
| [143] |
Peng T, Lv C, Tan H, et al. Novel PMM2 missense mutation in a Chinese family with non-syndromic premature ovarian insufficiency. J Assist Reprod Genet. 2020;37(2):443–450. DOI: 10.1007/s10815-019-01675-8 |
| [144] |
Peng T., Lv C., Tan H. et al. Novel PMM2 missense mutation in a Chinese family with non-syndromic premature ovarian insufficiency // J. Assist. Reprod. Genet. 2020. Vol. 37. No. 2. P. 443–450. DOI: 10.1007/s10815-019-01675-8 |
| [145] |
Silva CA, Yamakami LY, Aikawa NE, et al. Autoimmune primary ovarian insufficiency. Autoimmun Rev. 2014;13(4–5):427–430. DOI: 10.1016/j.autrev.2014.01.003 |
| [146] |
Silva C.A., Yamakami L.Y., Aikawa N.E. et al. Autoimmune primary ovarian insufficiency // Autoimmun. Rev. 2014. Vol. 13. No. 4–5. P. 427–430. DOI: 10.1016/j.autrev.2014.01.003 |
| [147] |
Cervato S, Mariniello B, Lazzarotto F, et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives. Clin Endocrinol (Oxf). 2009;70(3):421–428. DOI: 10.1111/j.1365-2265.2008.03318.x |
| [148] |
Cervato S., Mariniello B., Lazzarotto F. et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives // Clin. Endocrinol. (Oxf.). 2009. Vol. 70. No. 3. P. 421–428. DOI: 10.1111/j.1365-2265.2008.03318.x |
| [149] |
MedlinePlus. [Internet]. AIRE gene autoimmune regulator. [cited 2021 Apr 25]. Available from: https://medlineplus.gov/genetics/gene/aire/ |
| [150] |
MedlinePlus. [Internet]. AIRE gene autoimmune regulator. [дата обращения 25.04.2021]. Доступ по ссылке: https://medlineplus.gov/genetics/gene/aire/ |
| [151] |
Kahaly GJ. Polyglandular autoimmune syndromes. Eur J Endocrinol. 2009;161(1):11–20. DOI: 10.1530/EJE-09-0044 |
| [152] |
Kahaly G.J. Polyglandular autoimmune syndromes // Eur. J. Endocrinol. 2009. Vol. 161. No. 1. P. 11–20. DOI: 10.1530/EJE-09-0044 |
| [153] |
Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2012;7:219–245. DOI: 10.1146/annurev-pathol-011811-132457 |
| [154] |
Santoro M.R., Bray S.M., Warren S.T. Molecular mechanisms of fragile X syndrome: a twenty-year perspective // Annu. Rev. Pathol. 2012. Vol. 7. P. 219–245. DOI: 10.1146/annurev-pathol-011811-132457 |
| [155] |
Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study--preliminary data. Am J Med Genet. 1999;83(4):322–325. |
| [156] |
Allingham-Hawkins D.J., Babul-Hirji R., Chitayat D. et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study — preliminary data // Am. J. Med. Genet. 1999. Vol. 83. No. 4. P. 322–325. |
| [157] |
Chen E, Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins. Biochimie. 2015;114:147–154. DOI: 10.1016/j.biochi.2015.02.005 |
| [158] |
Chen E., Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins // Biochimie. 2015. Vol. 114. P. 147–154. DOI: 10.1016/j.biochi.2015.02.005 |
| [159] |
Primerano B, Tassone F, Hagerman RJ, et al. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations. RNA. 2002;8(12):1482–1488. |
| [160] |
Primerano B., Tassone F., Hagerman R.J. et al. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations // RNA. 2002. Vol. 8. No. 12. P 1482–1488. |
| [161] |
Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update. 2018;24(2):119–134. DOI: 10.1093/humupd/dmy002 |
| [162] |
Winship A.L., Stringer J.M., Liew S.H., Hutt K.J. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing // Hum. Reprod. Update. 2018. Vol. 24. No. 2. P. 119–134. DOI: 10.1093/humupd/dmy002 |
| [163] |
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci. 2018;75(15):2777–2792. DOI: 10.1007/s00018-018-2833-9 |
| [164] |
Stringer J.M., Winship A., Liew S.H., Hutt K. The capacity of oocytes for DNA repair // Cell. Mol. Life Sci. 2018. Vol. 75. No. 15. P. 2777–2792. DOI: 10.1007/s00018-018-2833-9 |
| [165] |
Oktay K, Turan V, Titus S, et al. BRCA mutations, DNA repair deficiency, and ovarian aging. Biol Reprod. 2015;93(3):67. DOI: 10.1095/biolreprod.115.132290 |
| [166] |
Oktay K., Turan V., Titus S. et al. BRCA mutations, DNA repair deficiency, and ovarian aging // Biol. Reprod. 2015. Vol. 93. No. 3. P. 67. DOI: 10.1095/biolreprod.115.132290 |
| [167] |
Titus S, Li F, Stobezki R, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):172ra21. DOI: 10.1126/scitranslmed.3004925 |
| [168] |
Titus S., Li F., Stobezki R. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans // Sci. Transl. Med. 2013. Vol. 5. No. 172. P. 172ra21. DOI: 10.1126/scitranslmed.3004925 |
| [169] |
Ben-Aharon I, Levi M, Margel D, et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? Oncotarget. 2018;9(22):15931–15941. DOI: 10.18632/oncotarget.24638 |
| [170] |
Ben-Aharon I., Levi M., Margel D. et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? // Oncotarget. 2018. Vol. 9. No. 22. P. 15931–15941. DOI: 10.18632/oncotarget.24638 |
| [171] |
Rzepka-Górska I, Tarnowski B, Chudecka-Głaz A, et al. Premature menopause in patients with BRCA1 gene mutation. Breast Cancer Res Treat. 2006;100(1):59–63. DOI: 10.1007/s10549-006-9220-1 |
| [172] |
Rzepka-Górska I., Tarnowski B., Chudecka-Głaz A. et al. Premature menopause in patients with BRCA1 gene mutation // Breast. Cancer. Res. Treat. 2006. Vol. 100. No. 1. P. 59–63. DOI: 10.1007/s10549-006-9220-1 |
| [173] |
Finch A, Valentini A, Greenblatt E, et al. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation. Fertil Steril. 2013;99(6):1724–1728. DOI: 10.1016/j.fertnstert.2013.01.109 |
| [174] |
Finch A., Valentini A., Greenblatt E. et al. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation // Fertil. Steril. 2013. Vol. 99. No. 6. P. 1724–1728. DOI: 10.1016/j.fertnstert.2013.01.109 |
| [175] |
Lin WT, Beattie M, Chen LM, et al. Comparison of age at natural menopause in BRCA1/2 mutation carriers with a non-clinic-based sample of women in northern California. Cancer. 2013;119(9):1652–1659. DOI: 10.1002/cncr.27952 |
| [176] |
Lin W.T., Beattie M., Chen L.M. et al. Comparison of age at natural menopause in BRCA1/2 mutation carriers with a non-clinic-based sample of women in northern California // Cancer. 2013. Vol. 119. No. 9. P. 1652–1659. DOI: 10.1002/cncr.27952 |
| [177] |
Izhar R, Husain S, Tahir S, Husain S. Occult form of premature ovarian insufficiency in women with infertility and oligomenorrhea as assessed by poor ovarian response criteria. J Reprod Infertil. 2017;18(4):361–367. |
| [178] |
Izhar R., Husain S., Tahir S., Husain S. Occult form of premature ovarian insufficiency in women with infertility and oligomenorrhea as assessed by poor ovarian response criteria // J. Reprod. Infertil. 2017. Vol. 18. No. 4. P. 361–367. |
| [179] |
Esteves SC, Alviggi C, Humaidan P, et al. The POSEIDON criteria and its measure of success through the eyes of clinicians and embryologists. Front Endocrinol (Lausanne). 2019;10:814. DOI: 10.3389/fendo.2019.00814 |
| [180] |
Esteves S.C., Alviggi C., Humaidan P. et al. The POSEIDON criteria and its measure of success through the eyes of clinicians and embryologists // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 814. DOI: 10.3389/fendo.2019.00814 |
| [181] |
Humaidan P, La Marca A, Alviggi C, et al. Future perspectives of POSEIDON stratification for clinical practice and research. Front Endocrinol (Lausanne). 2019;10:439. DOI: 10.3389/fendo.2019.00439 |
| [182] |
Humaidan P., La Marca A., Alviggi C. et al. Future perspectives of POSEIDON stratification for clinical practice and research // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 439. DOI: 10.3389/fendo.2019.00439 |
| [183] |
Polyzos NP, Drakopoulos P. Management strategies for POSEIDON›s group 1. Front Endocrinol (Lausanne). 2019;10:679. DOI: 10.3389/fendo.2019.00679 |
| [184] |
Polyzos N.P., Drakopoulos P. Management strategies for POSEIDON’s group 1 // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 679. DOI: 10.3389/fendo.2019.00679 |
| [185] |
Sunkara SK, Ramaraju GA, Kamath MS. Management strategies for POSEIDON group 2. Front Endocrinol (Lausanne). 2020;11:105. DOI: 10.3389/fendo.2020.00105 |
| [186] |
Sunkara S.K., Ramaraju G.A., Kamath M.S. Management strategies for POSEIDON group 2 // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 105. DOI: 10.3389/fendo.2020.00105 |
| [187] |
Haahr T, Dosouto C, Alviggi C, et al. Management strategies for POSEIDON groups 3 and 4. Front Endocrinol (Lausanne). 2019;10:614. DOI: 10.3389/fendo.2019.00614 |
| [188] |
Haahr T., Dosouto C., Alviggi C. et al. Management strategies for POSEIDON groups 3 and 4 // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 614. DOI: 10.3389/fendo.2019.00614 |
Eсо-Vector
/
| 〈 |
|
〉 |