Role of molecular signaling pathways in the pathogenesis of adenomyosis
Maria A. Shalina , Maria I. Yarmolinskaya , Elena A. Netreba , Alexandra K. Beganova
Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (3) : 121 -134.
Role of molecular signaling pathways in the pathogenesis of adenomyosis
The prevalence of genital endometriosis and adenomyosis, in particular, is tending to increase. The lack of a complete understanding of the pathogenetic mechanisms and multifactorial causes of adenomyosis, the low effectiveness of existing drug therapy, and the importance of preserving reproductive function make it necessary to further study the pathogenesis of the disease, search for new non-invasive highly informative diagnostic methods and develop a new strategy for pathogenically based drug therapy. The review presents current data on the role of signaling pathways in the pathogenesis of the development of adenomyosis based on domestic and foreign literature sources retrieved from the electronic databases PubMed, CyberLeninka, and Google Scholar in the period from 1999 to 2020. Considerable emphasis is placed on the discussion of the research results in recent years. Based on the analysis, the role of transforming growth factor â (TGFβ), vascular endothelial growth factor (VEGF), dual-specificity protein phosphatase (PTEN), Notch receptors, and eukaryotic translation initiation factors (eIFs) in the signaling of adenomyosis is presented. Further advanced study of signaling pathways in the pathogenesis of adenomyosis will allow developing highly specific and highly sensitive markers for non-invasive diagnostics, as well as new directions for drug treatment of the disease.
adenomyosis / genital endometriosis / adenomyosis signaling pathways / Notch1/Numb/Snail signaling / Snail / Slug / VEGF / PTEN / E2/Slug/VEGF / TGF-β1/Smad3
| [1] |
Benagiano G, Brosens I, Habiba M. Structural and molecular features of the endomyometrium in endometriosis and adenomyosis. Hum Reprod Update. 2014;20(3):386–402. DOI: 10.1093/humupd/dmt052 |
| [2] |
Benagiano G., Brosens I., Habiba M. Structural and molecular features of the endomyometrium in endometriosis and adenomyosis // Hum. Reprod. Update. 2014. Vol. 20. No. 3. P. 386–402. DOI: 10.1093/humupd/dmt052 |
| [3] |
Parazzini F, Mais V, Cipriani S, et al. Determinants of adenomyosis in women who underwent hysterectomy for benign gynecological conditions: results from a prospective multicentric study in Italy. Eur J Obstet Gynecol Reprod Biol. 2009;143(2):103–106. DOI: 10.1016/j.ejogrb.2008.12.010 |
| [4] |
Parazzini F., Mais V., Cipriani S. et al. Determinants of adenomyosis in women who underwent hysterectomy for benign gynecological conditions: results from a prospective multicentric study in Italy // Eur. J. Obstet. Gynecol. Reprod. Biol. 2009. Vol. 143. No. 2. P. 103–106. DOI: 10.1016/j.ejogrb.2008.12.010 |
| [5] |
Reinhold C, Tafazoli F, Mehio A, et al. Uterine adenomyosis: endovaginal US and MR imaging features with histopathologic correlation. RadioGraphics. 1999;19(suppl):S147–S160. DOI: 10.1148/radiographics.19.suppl_1.g99oc13s147 |
| [6] |
Reinhold C., Tafazoli F., Mehio A. et al. Uterine adenomyosis: endovaginal US and MR imaging features with histopathologic correlation // RadioGraphics. 1999. Vol. 19. Suppl. P. S147–S160. DOI: 10.1148/radiographics.19.suppl_1.g99oc13s147 |
| [7] |
Sammour A, Pirwany I, Usubutun A, et al. Correlations between extent and spread of adenomyosis and clinical symptoms. Gynecol Obstet Invest. 2002;54(4):213–216. DOI: doi.org/10.1159/000068385 |
| [8] |
Sammour A., Pirwany I., Usubutun A. et al. Correlations between extent and spread of adenomyosis and clinical symptoms // Gynecol. Obstet. Invest. 2002. Vol. 54. No. 4. P. 213–216. DOI: 10.1159/000068385 |
| [9] |
Qi S, Zhao X, Li M, et al. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis. Reprod Biol Endocrinol. 2015;13:96. DOI: 10.1186/s12958-015-0084-2 |
| [10] |
Qi S., Zhao X., Li M. et al. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis // Reprod. Biol. Endocrinol. 2015. Vol. 13. P. 96. DOI: 10.1186/s12958-015-0084-2 |
| [11] |
Guo SW. The Pathogenesis of adenomyosis vis-à-vis endometriosis. J Clin Med. 2020;9(2):485. DOI: 10.3390/jcm9020485 |
| [12] |
Guo S.W. The Pathogenesis of adenomyosis vis-à-vis endometriosis // J. Clin. Med. 2020. Vol. 9. No. 2. P. 485. DOI: 10.3390/jcm9020485 |
| [13] |
Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280(4):529–538. DOI: 10.1007/s00404-009-1191-0 |
| [14] |
Leyendecker G., Wildt L., Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair // Arch. Gynecol. Obstet. 2009. Vol. 280. No. 4. P. 529–538. DOI: 10.1007/s00404-009-1191-0 |
| [15] |
Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. DOI: 10.1016/j.mce.2016.03.015 |
| [16] |
Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation // Mol. Cell. Endocrinol. 2016. Vol. 428. P. 1–16. DOI: 10.1016/j.mce.2016.03.015 |
| [17] |
Baranov V, Malysheva O, Yarmolinskaya M. Pathogenomics of endometriosis development. Int J Mol Sci. 2018;19(7):1852–1863. DOI: 10.3390/ijms19071852 |
| [18] |
Baranov V., Malysheva O., Yarmolinskaya M. Pathogenomics of endometriosis development // Int. J. Mol. Sci. 2018. Vol. 19. No. 7. P. 1852–1863. DOI: 10.3390/ijms19071852 |
| [19] |
Luft FC. Targeting epithelial-mesenchymal transition. J Mol Med. 2015;93(7):703–705. DOI: 10.1007/s00109-015-1302-2 |
| [20] |
Luft F.C. Targeting epithelial-mesenchymal transition // J. Mol. Med. 2015. Vol. 93. No. 7. P. 703–705. DOI: 10.1007/s00109-015-1302-2 |
| [21] |
Samatov T, Tonevitsky A, Schumacher U. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer. 2013;12(1):107. DOI: 10.1186/1476-4598-12-107 |
| [22] |
Samatov T., Tonevitsky A., Schumacher U. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds // Mol. Cancer. 2013. Vol. 12. No. 1. P. 107. DOI: 10.1186/1476-4598-12-107 |
| [23] |
Yarmolinskaya MI, Shalina MA, Khachaturyan AR. Adenomyosis: from scientific discoveries to the practical aspects of prescribing drug therapy. Obstetrics and Gynecology. 2020;(3):182–190. (In Russ). DOI: 10.18565/aig.2020.3.182-190 |
| [24] |
Ярмолинская М.И., Шалина М.А., Хачатурян А.Р. и др. Аденомиоз: от научных открытий к практическим аспектам назначения медикаментозной терапии // Акушерство и гинекология. 2020. № 3. C. 182–190. DOI: 10.18565/aig.2020.3.182-190 |
| [25] |
Navas T, Kinders RJ, Lawrence SM, et al. Clinical evolution of epithelial-mesenchymal transition in human carcinomas. Cancer Res. 2020;80(2):304–318. DOI: 10.1158/0008-5472.can-18-3539 |
| [26] |
Navas T., Kinders R.J., Lawrence S.M. et al. Clinical evolution of epithelial-mesenchymal transition in human carcinomas // Cancer Res. 2020. Vol. 80. No. 2. P. 304–318. DOI: 10.1158/0008-5472.can-18-3539 |
| [27] |
Pon YL, Zhou HY, Cheung AN, et al. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res. 2008;68(16):6524–6532. DOI: 10.1158/0008-5472.can-07-6302 |
| [28] |
Pon Y.L., Zhou H.Y., Cheung A.N. et al. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells // Cancer Res. 2008. Vol. 68. No. 16. P. 6524–6532. DOI: 10.1158/0008-5472.can-07-6302 |
| [29] |
Papageorgis P. TGF signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015;2015:587193. DOI: 10.1155/2015/587193 |
| [30] |
Papageorgis P. TGF signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis // J. Oncol. 2015. Vol. 2015. P. 587193. DOI: 10.1155/2015/587193 |
| [31] |
Yarmolinskaya MI, Molotkov AS, Denisova VM. Matrix metaloproteinases and inhibitors: classification, mechanism of action (review). Journal of obstetrics and women’s diseases. 2012;61(1):113–125. (In Russ) |
| [32] |
Ярмолинская М.И., Молотков А.С., Денисова В.М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия // Журнал акушерства и женских болезней. 2012. Т. 61. № 1. C. 113–125. |
| [33] |
Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res. 2019;42(1):14–24. DOI: 10.1007/s12272-018-01108-7 |
| [34] |
Cho E.S., Kang H.E., Kim N.H., Yook J.I. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT) // Arch. Pharm. Res. 2019. Vol. 42. No. 1. P. 14–24. DOI: 10.1007/s12272-018-01108-7 |
| [35] |
Greening DW, Gopal SK, Mathias RA, et al. Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol. 2015;40:60–71. DOI: 10.1016/j.semcdb.2015.02.008 |
| [36] |
Greening D.W., Gopal S.K., Mathias R.A. et al. Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression // Semin. Cell. Dev. Biol. 2015. Vol. 40. P. 60–71. |
| [37] |
Khan KN, Kitajima M, Hiraki K, et al. Involvement of hepatocyte growth factor-induced epithelial-mesenchymal transition in human adenomyosis. Biol Reprod. 2015;92(2):35. DOI: 10.1095/biolreprod.114.124891 |
| [38] |
Khan K.N., Kitajima M., Hiraki K. et al. Involvement of hepatocyte growth factor-induced epithelial-mesenchymal transition in human adenomyosis // Biol. Reprod. 2015. Vol. 92. No. 2. P. 35. DOI: 10.1095/biolreprod.114.124891 |
| [39] |
Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene. 2013;33(14):1755–1763. DOI: 10.1038/onc.2013.128 |
| [40] |
Zheng H., Kang Y. Multilayer control of the EMT master regulators // Oncogene. 2013. Vol. 33. No. 14. P. 1755–1763. DOI: 10.1038/onc.2013.128 |
| [41] |
Makker A, Goel M. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer. 2016;23(2):R85–R111. DOI: 10.1530/erc-15-0218 |
| [42] |
Makker A., Goel M. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update // Endocr. Relat. Cancer. 2016. Vol. 23. No. 2. P. R85–R111. |
| [43] |
Zhang Q, Duan J, Olson M, et al. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. Reprod Sci. 2016;23(10):1409–1421. DOI: 10.1177/1933719116641763 |
| [44] |
Zhang Q., Duan J., Olson M. et al. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons // Reprod. Sci. 2016. Vol. 23. No. 10. P. 1409–1421. DOI: 10.1177/1933719116641763 |
| [45] |
Huang T, Chen Y, Chou T, et al. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med. 2014;18(7):1358–1371. DOI: 10.1111/jcmm.12300 |
| [46] |
Huang T., Chen Y., Chou T. et al. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells // J. Cell. Mol. Med. 2014. Vol. 18. No. 7. P. 1358–1371. DOI: 10.1111/jcmm.12300 |
| [47] |
Nieto M. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–166. DOI: 10.1038/nrm757 |
| [48] |
Nieto M. The snail superfamily of zinc-finger transcription factors // Nat. Rev. Mol. Cell. Biol. 2002. Vol. 3. No. 3. P. 155–166. DOI: 10.1038/nrm757 |
| [49] |
Dong C, Wu Y, Yao J, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012;122(4):1469–1486. DOI: 10.1172/jci57349 |
| [50] |
Dong C., Wu Y., Yao J. et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer // J. Clin. Invest. 2012. Vol. 122. No. 4. P. 1469–1486. DOI: 10.1172/jci57349 |
| [51] |
Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15(3):195–206. DOI: 10.1016/j.ccr.2009.01.023 |
| [52] |
Kudo-Saito C., Shirako H., Takeuchi T., Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells // Cancer Cell. 2009. Vol. 15. No. 3. P. 195–206. DOI: 10.1016/j.ccr.2009.01.023 |
| [53] |
Avtanski D, Garcia A, Caraballo B, et al. In vitro effects of resistin on epithelial to mesenchymal transition (EMT) in MCF-7 and MDA-MB-231 breast cancer cells — qRT-PCR and Westen blot analyses data. Data Brief. 2019;25:104118. DOI: 10.1016/j.dib.2019.104118 |
| [54] |
Avtanski D., Garcia A., Caraballo B. et al. In vitro effects of resistin on epithelial to mesenchymal transition (EMT) in MCF-7 and MDA-MB-231 breast cancer cells — qRT-PCR and Westen blot analyses data // Data Brief. 2019. Vol. 25. P. 104118. DOI: 10.1016/j.dib.2019.104118 |
| [55] |
Ganesan R, Mallets E, Gomez-Cambronero J. The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol Oncol. 2016;10(5):663–676. DOI: 10.1016/j.molonc.2015.12.006 |
| [56] |
Ganesan R., Mallets E., Gomez-Cambronero J. The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion // Mol. Oncol. 2016. Vol. 10. No. 5. P. 663–676. DOI: 10.1016/j.molonc.2015.12.006 |
| [57] |
Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91. DOI: 10.1186/1471-2407-12-91 |
| [58] |
Haslehurst A.M., Koti M., Dharsee M. et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer // BMC Cancer. 2012. Vol. 12. P. 91. DOI: 10.1186/1471-2407-12-91 |
| [59] |
Olmeda D, Montes A, Moreno-Bueno G, et al. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene. 2008;27(34):4690–4701. DOI: 10.1038/onc.2008.118 |
| [60] |
Olmeda D., Montes A., Moreno-Bueno G. et al. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines // Oncogene. 2008. Vol. 27. No. 34. P. 4690–4701. DOI: 10.1038/onc.2008.118 |
| [61] |
Liu X, Shen M, Qi Q, et al. Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis. Hum Reprod. 2016;31(4):734–749. DOI: 10.1093/humrep/dew018 |
| [62] |
Liu X., Shen M., Qi Q. et al. Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis // Hum. Reprod. 2016. Vol. 31. No. 4. P. 734–749. DOI: 10.1093/humrep/dew018 |
| [63] |
Babunashvili EL, Buyanova SN, Shchukina NA. Role of different genetic alterations in the pathogenesis of uterine myoma and secondary messenger systems as potential pharmacodynamics targets. Rossijskij vestnik akushera-ginekologa. 2018;18(3):41–48. (In Russ.). DOI: 10.17116/rosakush201818341-48 |
| [64] |
Бабунашвили Е.Л., Буянова С.Н., Щукина Н.А. Роль различных генетических альтераций в патогенезе миомы матки и систем вторичных мессенджеров как потенциальных фармакодинамических мишеней // Российский вестник акушера-гинеколога. 2018. Т. 18. № 3. C. 41–48. DOI: 10.17116/rosakush201818341-48 |
| [65] |
Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86(2):913–920. DOI: 10.1210/jcem.86.2.7237 |
| [66] |
Lee B.S., Nowak R.A. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta // J. Clin. Endocrinol. Metab. 2001. Vol. 86. No. 2. P. 913–920. DOI: 10.1210/jcem.86.2.7237 |
| [67] |
Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor 3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178–184. DOI: 10.1016/j.fertnstert.2012.04.002 |
| [68] |
Salama S.A., Diaz-Arrastia C.R., Kilic G.S., Kamel M.W. 2-Methoxyestradiol causes functional repression of transforming growth factor 3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells // Fertil. Steril. 2012. Vol. 98. No. 1. P. 178–184. DOI: 10.1016/j.fertnstert.2012.04.002 |
| [69] |
Laping NJ, Everitt JI, Frazier KS, et al. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 2007;13(10):3087–3099. DOI: 10.1158/1078-0432.ccr-06-1811 |
| [70] |
Laping N.J., Everitt J.I., Frazier K.S. et al. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats // Clin. Cancer Res. 2007. Vol. 13. No. 10. P. 3087–3099. DOI: 10.1158/1078-0432.ccr-06-1811 |
| [71] |
Reichl P, Haider C, Grubinger M, Mikulits W. TGF- in epithelial to mesenchymal transition and metastasis of liver carcinoma. Curr Pharm Des. 2012;18(27):4135–4147. DOI: 10.2174/138161212802430477 |
| [72] |
Reichl P., Haider C., Grubinger M., Mikulits W. TGF- in epithelial to mesenchymal transition and metastasis of liver carcinoma // Curr. Pharm. Des. 2012. Vol. 18. No. 27. P. 4135–4147. DOI: 10.2174/138161212802430477 |
| [73] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. DOI: 10.1038/nrm3758 |
| [74] |
Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial-mesenchymal transition // Nat. Rev. Mol. Cell. Biol. 2014. Vol. 15. No. 3. P. 178–196. DOI: 10.1038/nrm3758 |
| [75] |
Barcena de Arellano ML, Arnold J, Lang H, et al. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine. 2013;62(2):253–261. DOI: 10.1016/j.cyto.2013.03.003 |
| [76] |
Barcena de Arellano M.L., Arnold J., Lang H. et al. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine. 2013. Vol. 62. No. 2. P. 253–261. DOI: 10.1016/j.cyto.2013.03.003 |
| [77] |
Yarmolinskaya MI, Ajlamazyan EK. Genital’nyj endometrioz. Razlichnye grani problemy. Saint Petersburg: Eko-Vektor; 2017. (In Russ.) |
| [78] |
Ярмолинская М.И., Айламазян Э.К. Генитальный эндометриоз. Различные грани проблемы. Санкт-Петербург: Эко-Вектор, 2017. |
| [79] |
Solomahina MA. Kliniko – morfologicheskaja harakteristika adenomioza [dissertation abstract]. Moscow; 2006. (In Russ). [cited 2020 Dec 09]. Available from: http://medical-diss.com/docreader/280727/a?#?page=1 |
| [80] |
Соломахина М.А. Клинико-морфологическая характеристика аденомиоза: автореф. … дис. кан. мед. наук. Москва, 2009. [дата обращения 09.12.2020]. Доступ по ссылке: http://medical-diss.com/docreader/280727/a?#?page=1 |
| [81] |
Orazov MR, Nosenko EN, Radzinsky VE, et al. Proangiogenic features in chronic pelvic pain caused by adenomyosis. Gynecol Endocrinol. 2016;32(suppl. 2):7–10. DOI: 10.1080/09513590.2016.1232902 |
| [82] |
Orazov M.R., Nosenko E.N., Radzinsky V.E. et al. Proangiogenic features in chronic pelvic pain caused by adenomyosis // Gynecol. Endocrinol. 2016. Vol. 32. Suppl. 2. P. 7–10. DOI: 10.1080/09513590.2016.1232902 |
| [83] |
Sahoo SS, Lombard JM, Ius Y, et al. Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women. Mol Cancer Res. 2018;16(2):309–321. DOI: 10.1158/1541-7786.mcr-17-0466 |
| [84] |
Sahoo S.S., Lombard J.M., Ius Y. et al. Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women // Mol. Cancer Res. 2018. Vol. 16. No. 2. P. 309–321. DOI: 10.1158/1541-7786.mcr-17-0466 |
| [85] |
Li J, Ma J, Fei X, et al. Roles of cell migration and invasion mediated by Twist in endometriosis. J Obstet Gynaecol Res. 2019;45(8):1488–1496. DOI: 10.1111/jog.14001 |
| [86] |
Li J., Ma J., Fei X. et al. Roles of cell migration and invasion mediated by Twist in endometriosis // J. Obstet. Gynaecol. Res. 2019. Vol. 45. No. 8. P. 1488–1496. DOI: 10.1111/jog.14001 |
| [87] |
Furuya M, Masuda H, Hara K, et al. ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstet Gynecol Scand. 2017;96(9):1128–1135. DOI: 10.1111/aogs.13179 |
| [88] |
Furuya M., Masuda H., Hara K. et al. ZEB1 expression is a potential indicator of invasive endometriosis // Acta. Obstet. Gynecol. Scand. 2017. Vol. 96. No. 9. P. 1128–1135. DOI: 10.1111/aogs.13179 |
| [89] |
Qian X, Anzovino A, Kim S, et al. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene. 2014;33(26):3411–3421. DOI: 10.1038/onc.2013.310 |
| [90] |
Qian X., Anzovino A., Kim S. et al. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties // Oncogene. 2014. Vol. 33. No. 26. P. 3411–3421. DOI: 10.1038/onc.2013.310 |
| [91] |
Lee Y, Chen M, Pandolfi P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nature Reviews Molecular Cell Biology. 2018;19(9):547–562. DOI: 10.1038/s41580-018-0015-0 |
| [92] |
Lee Y., Chen M., Pandolfi P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects // Nature Reviews Molecular Cell Biology. 2018. Vol. 19. No. 9. P. 547–562. DOI: 10.1038/s41580-018-0015-0 |
| [93] |
Hu H, Li H, He Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis. Exp Ther Med. 2017;14(4):3805–3811. DOI: 10.3892/etm.2017.5013 |
| [94] |
Hu H., Li H., He Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis // Exp. Ther. Med. 2017. Vol. 14. No. 4. P. 3805–3811. DOI: 10.3892/etm.2017.5013 |
| [95] |
Shkljar AA. Diagnostika, hirurgicheskoe lechenie i reabilitacija zhenshhin reproduktivnogo vozrasta s uzlovoj formoj adenomioza [dissertation]. Moscow; 2015. (In Russ.). [cited 2020 Dec 09]. Available from: http://www.science.ncagp.ru/upfiles/pdf/ShklyarAA_diss.pdf |
| [96] |
Шкляр А.А. Диагностика, хирургическое лечение и реабилитация женщин репродуктивного возраста с узловой формой аденомиоза: дис. ... канд. мед. наук. Москва, 2015. [дата обращения 09.12.2020]. Доступ по ссылке: http://www.science.ncagp.ru/upfiles/pdf/ShklyarAA_diss.pdf |
| [97] |
Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets. 2010;11(6):745–751. DOI: 10.2174/138945010791170860 |
| [98] |
Wang Z., Li Y., Kong D., Sarkar F.H. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness // Curr. Drug. Targets. 2010. Vol. 11. No. 6. P. 745–751. DOI: 10.2174/138945010791170860 |
| [99] |
Groot AJ, Vooijs MA. The role of Adams in Notch signaling. Adv Exp Med Biol. 2012;727:15–36. DOI: 10.1007/978-1-4614-0899-4_2 |
| [100] |
Groot A.J., Vooijs M.A. The role of Adams in Notch signaling // Adv. Exp. Med. Biol. 2012. Vol. 727. P. 15–36. DOI: 10.1007/978-1-4614-0899-4_2 |
| [101] |
Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(pt.3):499–511. DOI: 10.1242/jcs.00224 |
| [102] |
Bolos V., Peinado H., Perez-Moreno M.A. et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors // J. Cell. Sci. 2003. Vol. 116. Pt. 3. P. 499–511. DOI: 10.1242/jcs.00224 |
| [103] |
Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett. 2006;580(12):2860–2868. DOI: 10.1016/j.febslet.2006.03.024 |
| [104] |
Wilson A., Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer // FEBS Lett. 2006 Vol. 580. No. 12. P. 2860–2868. DOI: 10.1016/j.febslet.2006.03.024 |
| [105] |
Wang Z, Zhang Y, Li Y, et al. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 2006;5(3):483–493. DOI: 10.1158/1535-7163.mct-05-0299 |
| [106] |
Wang Z., Zhang Y., Li Y. et al. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells // Mol. Cancer Ther. 2006. Vol. 5. No. 3. P. 483–493. DOI: 10.1158/1535-7163.mct-05-0299 |
| [107] |
Reedijk M, Odorcic S, ChangL, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530–8537. DOI: 10.1158/0008-5472.can-05-1069 |
| [108] |
Reedijk M., Odorcic S., Chang L. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival // Cancer Res. 2005. Vol. 65. No. 18. P. 8530–8537. DOI: 10.1158/0008-5472.can-05-1069 |
| [109] |
Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem. 2006;281(52):39819–39830. DOI: 10.1074/jbc.m603578200 |
| [110] |
Kunnimalaiyaan M., Vaccaro A.M., Ndiaye M.A., Chen H. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells // J. Biol. Chem. 2006. Vol. 281. No. 52. P. 39819–39830. DOI: 10.1074/jbc.m603578200 |
| [111] |
Cobellis L, Caprio F, Trabucco E, et al. The pattern of expression of Notch protein members in normal and pathological endometrium. J Anat. 2008;213(4):464–472. DOI: 10.1111/j.1469-7580.2008.00963.x |
| [112] |
Cobellis L., Caprio F., Trabucco E. et al. The pattern of expression of Notch protein members in normal and pathological endometrium // J. Anat. 2008. Vol. 213. No. 4. P. 464–472. DOI: 10.1111/j.1469-7580.2008.00963.x |
| [113] |
Matsuno Y, Coelho AL, Jarai G, et al. Notch signaling mediates TGF-1-induced epithelial-mesenchymal transition through the induction of Snai1. Int J Biochem Cell Biol. 2012;44(5):776–789. DOI: 10.1016/j.biocel.2012.01.021 |
| [114] |
Matsuno Y., Coelho A.L., Jarai G. et al. Notch signaling mediates TGF-1-induced epithelial-mesenchymal transition through the induction of Snai1 // Int. J. Biochem. Cell. Biol. 2012. Vol. 44. No. 5. P. 776–789. DOI: 10.1016/j.biocel.2012.01.021 |
| [115] |
Leong KG, Niessen K, Kulic I, et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 2007;204(12):2935–2948. DOI: 10.1084/jem.20071082 |
| [116] |
Leong K.G., Niessen K., Kulic I. et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin // J. Exp. Med. 2007. Vol. 204. No. 12. P. 2935–2948. DOI: 10.1084/jem.20071082 |
| [117] |
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8. DOI: 10.1126/scisignal.2005189 |
| [118] |
Gonzalez D.M., Medici D. Signaling mechanisms of the epithelial-mesenchymal transition // Sci. Signal. 2014. Vol. 7. No. 344. P. re8. DOI: 10.1126/scisignal.2005189 |
| [119] |
Wu K, Chen K, Wang C, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74(3):829–839. DOI: 10.1158/0008-5472.can-13-2466 |
| [120] |
Wu K., Chen K., Wang C. et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation // Cancer Res. 2014. Vol. 74. No. 3. P. 829–839. DOI: 10.1158/0008-5472.can-13-2466 |
| [121] |
Mikhailik A, Mazella J, Liang S, Tseng L. Notch ligand-dependent gene expression in human endometrial stromal cells. Biochem Biophys Res Commun. 2009;388(3):479–482. DOI: 10.1016/j.bbrc.2009.07.037 |
| [122] |
Mikhailik A., Mazella J., Liang S., Tseng L. Notch ligand-dependent gene expression in human endometrial stromal cells // Biochem. Biophys. Res. Commun. 2009. Vol. 388. No. 3. P. 479–482. DOI: h10.1016/j.bbrc.2009.07.037 |
| [123] |
Mitsuhashi Y, Horiuchi A, Miyamoto T, et al. Prognostic significance of Notch signalling molecules and their involvement in the invasiveness of endometrial carcinoma cells. Histopathology. 2012;60(5):826–837. DOI: 10.1111/j.1365-2559.2011.04158.x |
| [124] |
Mitsuhashi Y., Horiuchi A., Miyamoto T. et al. Prognostic significance of Notch signalling molecules and their involvement in the invasiveness of endometrial carcinoma cells // Histopathology. 2012. Vol. 60. No. 5. P. 826–837. DOI: 10.1111/j.1365-2559.2011.04158.x |
| [125] |
Mori M, Miyamoto T, Yakushiji H, et al. Effects of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) on cell proliferation and apoptosis in Ishikawa endometrial cancer cells. Hum Cell. 2012;25(1):9–15. DOI: 10.1007/s13577-011-0038-8 |
| [126] |
Mori M., Miyamoto T., Yakushiji H. et al. Effects of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) on cell proliferation and apoptosis in Ishikawa endometrial cancer cells // Hum. Cell. 2012. Vol. 25. No. 1. P. 9–15. DOI: 10.1007/s13577-011-0038-8 |
| [127] |
Wei Y, Zhang Z, Liao H, et al. Nuclear estrogen receptor-mediated Notch signaling and GPR30-mediated PI3K/AKT signaling in the regulation of endometrial cancer cell proliferation. Oncol Rep. 2012;27(2):504–510. DOI: 10.3892/or.2011.1536 |
| [128] |
Wei Y., Zhang Z., Liao H. et al. Nuclear estrogen receptor-mediated Notch signaling and GPR30-mediated PI3K/AKT signaling in the regulation of endometrial cancer cell proliferation // Oncol. Rep. 2012. Vol. 27. No. 2. P. 504–510. DOI: 10.3892/or.2011.1536 |
| [129] |
Jiang X, Xing H, Kim TM, et al. Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity. Stem Cells. 2012;30(7):1313–1326. DOI: 10.1002/stem.1120 |
| [130] |
Jiang X., Xing H., Kim T.M. et al. Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity // Stem. Cells. 2012. Vol. 30. No. 7. P. 1313–1326. DOI: 10.1002/stem.1120 |
| [131] |
Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–832. DOI: 10.1093/humrep/dev025 |
| [132] |
Ding D., Liu X., Duan J., Guo S.W. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence // Hum. Reprod. 2015. Vol. 30. No. 4. P. 812–832. DOI: 10.1093/humrep/dev025 |
| [133] |
Guo SW, Ding D, Shen M, Liu X. Dating endometriotic ovarian cysts based on the content of cyst fluid and its potential clinical implications. Reprod Sci. 2015;22(7):873–883. DOI: 10.1177/1933719115570907 |
| [134] |
Guo S.W., Ding D., Shen M., Liu X. Dating endometriotic ovarian cysts based on the content of cyst fluid and its potential clinical implications // Reprod. Sci. 2015. Vol. 22. No. 7. P. 873–883. DOI: 10.1177/1933719115570907 |
| [135] |
Parasuraman P, Mulligan P, Walker JA, et al. Interaction of p190A RhoGAP with eIF3A and other translation preinitiation factors suggests a role in protein biosynthesis. J Biol Chem. 2017;292(7):2679–2689. DOI: 10.1074/jbc.m116.769216 |
| [136] |
Parasuraman P., Mulligan P., Walker J.A. et al. Interaction of p190A RhoGAP with eIF3A and other translation preinitiation factors suggests a role in protein biosynthesis // J. Biol. Chem. 2017. Vol. 292. No. 7. P. 2679–2689. DOI: 10.1074/jbc.m116.769216 |
| [137] |
Cai X, Shen M, Liu X, Guo SW. Reduced expression of eukaryotic translation initiation factor 3 subunit e and its possible involvement in the epithelial-mesenchymal transition in endometriosis. Reprod Sci. 2018;25(1):102–109. DOI: 10.1177/1933719117702248 |
| [138] |
Cai X., Shen M., Liu X., Guo S.W. Reduced expression of eukaryotic translation initiation factor 3 subunit e and its possible involvement in the epithelial-mesenchymal transition in endometriosis // Reprod. Sci. 2018. Vol. 25. No. 1. P. 102–109. DOI: 10.1177/1933719117702248 |
| [139] |
Wu Q, Ding D, Liu X, Guo SW. Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci. 2015;22(9):1107–1114. DOI: 10.1177/1933719115572478 |
| [140] |
Wu Q., Ding D., Liu X., Guo S.W. Evidence for a hypercoagulable state in women with ovarian endometriomas // Reprod. Sci. 2015. Vol. 22. No. 9. P. 1107–1114. DOI: 10.1177/1933719115572478 |
| [141] |
Cai X, Shen M, Liu X, Nie J. The possible role of eukaryotic translation initiation factor 3 subunit e (eIF3e) in the epithelial-mesenchymal transition in adenomyosis. Reprod Sci. 2019;26(3):377–385. DOI: 10.1177/1933719118773490 |
| [142] |
Cai X., Shen M., Liu X., Nie J. The possible role of eukaryotic translation initiation factor 3 subunit e (eIF3e) in the epithelial-mesenchymal transition in adenomyosis // Reprod. Sci. 2019. Vol. 26. No. 3. P. 377–385. DOI: 10.1177/1933719118773490 |
Eсо-Vector
/
| 〈 |
|
〉 |