Evaluation of serotonin levels in full-term newborns of diabetic mothers
Nataliia A. Zvereva , Yuliya P. Milyutina , Alexander V. Arutjunyan , Inna I. Evsyukova
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (1) : 41 -50.
Evaluation of serotonin levels in full-term newborns of diabetic mothers
BACKGROUND: The growth of neurological and mental diseases in the offspring of patients with pre- and gestational diabetes mellitus determines the need to study the regulatory function of the serotoninergic system of the brain in newborns. This plays a key role in its morphofunctional development in early ontogenesis, which is necessary for timely diagnosis of disorders and prevention of long-term consequences.
AIM: The aim of this study was to evaluate serotonin levels in full-term newborns with diabetic fetopathy from mothers with pre- and gestational diabetes mellitus.
MATERIALS AND METHODS: The main group consisted of 45 newborns with diabetic fetopathy, of whom 30 individuals were from mothers with type 1 diabetes mellitus and 15 ones from mothers with gestational diabetes mellitus. The control group comprised 20 healthy full-term newborns from healthy mothers without pregnancy complications. Serotonin concentrations were determined in platelet-rich plasma of blood from the umbilical cord vein, and in a platelet suspension prepared from venous blood taken on the first day of life, using high-performance liquid chromatography with electrochemical detection.
RESULTS: Platelet-rich plasma serotonin level in umbilical cord blood taken from newborns of the main group was more than two times lower compared to children of healthy mothers. This parameter in venous blood taken from mothers with type 1 diabetes (0.744 ± 0.117 µmol/l) corresponded to that in healthy patients, while in mothers with gestational diabetes mellitus, it was significantly lower and amounted to 0.331 ± 0.071 µmol/l (p < 0.05). Moreover, platelet-rich plasma serotonin level in all newborns correlated with that in their mothers (R = 0.505; p < 0.05). Serotonin levels in venous blood platelets of newborns of the main group was almost 2.5 times lower than in healthy ones.
CONCLUSIONS: The data obtained indicate the need to use platelet serotonin values as a biochemical marker of disorders of functional brain development in children with diabetic fetopathy.
serotonin / newborn / diabetic fetopathy / pregestational diabetes mellitus / gestational diabetes mellitus
| [1] |
Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care. 2007;30(Suppl 2):S141–S146. doi: 10.2337/dc07-s206 |
| [2] |
Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective // Diabetes Care. 2007. Vol. 30, N. 2. P. 141–146. doi: 10.2337/dc07-s206 |
| [3] |
Damm P, Houshmand-Oeregaard A, Kelstrup L, et al. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396–1399. doi: 10.1007/s00125-016-3985-5 |
| [4] |
Damm P., Houshmand-Oeregaard A., Kelstrup L., et al. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark // Diabetologia. 2016. Vol. 59, N. 7. P. 1396–1399. doi: 10.1007/s00125-016-3985-5 |
| [5] |
Malaza N, Masete M, Adam S, et al. A systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes. Int J Environ Res Public Health. 2022;19(17):10846. doi: 10.3390/ijerph191710846 |
| [6] |
Malaza N., Masete M., Adam S., et al. Systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes // Int J Environ Res Public Health. 2022. Vol. 19. N. 17. P. 10846. doi: 10.3390/ijerph191710846 |
| [7] |
Kharitonova LA, Papysheva OV, Kataysh GA, et al. The state of health of children born to mothers with diabetes mellitus. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2018;63(3):26–31. EDN: XRHVDF doi: 10.21508/1027-4065-2018-63-3-26-31 |
| [8] |
Харитонова Л.А., Папышева О.В., Катайш Г.А., и др. Состояние здоровья детей от матерей с сахарным диабетом // Российский вестник перинатологии и педиатрии. 2018. Т. 63, № 3. С. 26–31. EDN: XRHVDF doi: 10.21508/1027-4065-2018-63-3-26-31 |
| [9] |
Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl 2):14–20. doi: 10.1159/000371628 |
| [10] |
Kc K., Shakya S., Zhang H. Gestational diabetes mellitus and macrosomia: a literature review // Ann. Nutr. Metab. 2015. Vol. 66, N 2 (suppl). P. 14–20. doi: 10.1159/000371628 |
| [11] |
Krzeczkowski JE, Boylan K, Arbuckle TE, et al. Neurodevelopment in 3–4 year old children exposed to maternal hyperglycemia or adiposity in utero. Early Hum Dev. 2018;125:8–16. doi: 10.1016/j.earlhumdev.2018.08.005 |
| [12] |
Krzeczkowski J.E., Boylan K., Arbuckle T.E., et al. Neurodevelopment in 3–4 year old children exposed to maternal hyperglycemia or adiposity in utero // Early Hum. Dev. 2018. Vol. 125. P. 8–16. doi: 10.1016/j.earlhumdev.2018.08.005 |
| [13] |
Perna R, Loughan AR, Le J, et al. Gestational diabetes: long-term central nervous system developmental and cognitive sequelae. Appl Neuropsychol Child. 2015;4(3):217–220. doi: 10.1080/21622965.2013.874951 |
| [14] |
Perna R., Loughan A.R., Le J., et al. Gestational diabetes: long-term central nervous system developmental and cognitive sequelae // Appl. Neuropsychol. Child. 2015. Vol. 4, N. 3. P. 217–220. doi: 10.1080/21622965.2013.874951 |
| [15] |
Papysheva OV, Morozov SG, Gribova IE, et al. Long-term neurological consequences in children born to mothers with gestational diabetes mellitus. Clinical Practice in Pediatrics. 2022;17(2):23–29. EDN: VCUECW doi: 10.20953/1817-7646-2022-2-23-29 |
| [16] |
Папышева О.В., Морозов С.Г., Грибова И.Е., и др. Отдаленные неврологические последствия у детей от матерей с гестационным сахарным диабетом // Вопросы практической педиатрии. 2022. Т. 17, № 2. С. 23–29. EDN: VCUECW doi: 10.20953/1817-7646-2022-2-23-29 |
| [17] |
Shcherbitskaiaia AD, Milyutina YuP, Zalozniaia IV, et al. The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus. Neurochem J. 2017;11(4):296–302. doi: 10.1134/S1819712417040080 |
| [18] |
Shcherbitskaiaia A.D., Milyutina Yu.P., Zalozniaia I.V., et al. The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus // Neurochem. J. 2017. Vol. 11, N. 4. P. 296–302. doi: 10.1134/S1819712417040080 |
| [19] |
Morris G, Fernandes BS, Puri BK, et al. Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust N Z J Psychiatry. 2018;52(10):924–948. doi: 10.1177/0004867418796955 |
| [20] |
Morris G., Fernandes B.S., Puri B.K., et al. Leaky brain in neurological and psychiatric disorders: drivers and consequences // Aust N Z J Psyhiatry. 2018. Vol. 52, N. 10. P. 924–948. doi: 10.1177/0004867418796955 |
| [21] |
Huang L, Yu X, Keim S, et al. Maternal prepregnancy obesity and child neurodevelopment in the Collaborative Perinatal Project. Int J Epidemiol. 2014;43(3):783–792. doi: 10.1093/ije/dyu030 |
| [22] |
Huang L., Yu X., Keim S., et al. Maternal obesity pre-pregnancy and child neurodevelopment in the collaborative perinatal project // Int J Epidemiol. 2014. Vol. 43, N. 3. P. 783–792. doi: 10.1093/ije/dyu030 |
| [23] |
Jenkins TA, Nguyen JC, Polglaze KE, et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1):56. doi: 10.3390/nu8010056 |
| [24] |
Jenkins T.A., Nguyen J.C., Polglaze K.E., et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the Gut-Brain Axis // Nutrients. 2016. Vol. 8, N. 1. P. 56. doi: 10.3390/nu8010056 |
| [25] |
Sidorova IS, Nikitina NA, Unanyan AL, et al. Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis. Russian Bulletin of Obstetrician-Gynecologist. 2022;22(1):35-44. doi: 10.17116/rosakush20222201135 |
| [26] |
Сидорова И.С., Никитина Н.А., Унанян А.Л., и др. Развитие головного мозга плода и влияние пренатальных пoвреждающих факторов на основные этапы нейрогенеза // Российский вестник акушера-гинеколога 2022. Т. 22, № 1. С. 35–44. doi: 10.17116/rosakush20222201135 |
| [27] |
Kepser LJ, Homberg JR. The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res. 2015;277:3–13. doi: 10.1016/j.bbr.2014.05.022 |
| [28] |
Kepser L.J., Homberg J.R. The neurodevelopmental effects of serotonin: a behavioural perspective // Behav Brain Res. 2015. Vol. 277. P. 3–13. doi: 10.1016/j.bbr.2014.05.022 |
| [29] |
Uzbekov MG, Murphy S, Rose SP. Ontogenesis of serotonin ‘receptors’ in different regions of rat brain. Brain Res. 1979;168(1):195–199. doi: 10.1016/0006-8993(79)90139-2 |
| [30] |
Uzbekov M.G., Murphy S., Rose S.P.R. Ontogenesis of serotonin receptors in different regions of rat brain // Brain Res. 1979. Vol. 168, N. 1. P. 195–199. doi: 10.1016/0006-8993(79)90139-2 |
| [31] |
Oreland L, Hallman J. Blood platelets as a peripheral marker for the central serotonin system. Nordisk Psykiatrisk. Tidsskrift. 1989;43(20 suppl):43–51. doi: 10.3109/08039488909100833 |
| [32] |
Oreland L., Hallman J. Blood platelets as a peripheral marker for the central serotonin system // Nordisk Psykiatrisk. Tidsskrift. 1989. Vol. 43, N. 20 (suppl.). P. 43–51. doi: 10.3109/08039488909100833 |
| [33] |
Cheibak LN, Katkova EV. Serotonin and its derivatives in the umbilical cord blood serum of premature newborn infants. Russian Bulletin of perinatology and pediatrics. 2010;(4):27–30. EDN: MVVABJ |
| [34] |
Шейбак Л.Н., Каткова Е.В. Серотонин и его производные в сыворотке пуповинной крови недоношенных новорожденных детей // Российский вестник перинатологии и педиатрии. 2010. Т. 55, № 4. С. 27–30. EDN: MVVABJ |
| [35] |
Cherechik TS, Cheibak LN. ndicators of serotonin metabolism in umbilical cord blood serum of full-term newborns and adaptation after birth. Bulletin of Russian State Medical University. 2011;(2):148–151. (In Russ.) |
| [36] |
Шерешик Т.С., Шейбак Л.Н. Показатели обмена серотонина в сыворотке пуповинной крови доношенных новорожденных детей и адаптация после рождения // Вестник РГМУ. 2011. № 2. С. 148–151. |
| [37] |
Anderson GM, Czarkowski K, Ravski N, et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. Pediatr Res. 2004;56(3):418–422. doi: 10.1203/01.PDR.0000136278.23672.A0 |
| [38] |
Anderson G.M., Czarkowski K., Ravski N., et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors // Pediatr Res. 2004. Vol. 56, N. 3. P. 418–422. doi: 10.1203/01.PDR.0000136278.23672.A0 |
| [39] |
Amiel-Tison C. Neurological evaluation of the maturity of newborn infants. Arch Dis Child. 1968;43(227):89–93. doi: 10.1136/adc.43.227.89 |
| [40] |
Amiel-Tison C. Neurological evaluation of the maturity of newborn infants // Arch Dis Child. 1968. Vol. 43, N. 227. P. 89–93. doi: 10.1136/adc.43.227.89 |
| [41] |
Zvereva NA, Milyutina YP, Arutjunyan AV, et al. Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation. Journal of Obstetrics and Women’s Diseases. 2022;71(6):5–14. EDN: UFWSWG doi: 10.17816/JOWD112611 |
| [42] |
Зверева Н.А., Милютина Ю.П., Арутюнян А.В., и др. Серотонин и циклическая организация сна у доношенных новорожденных детей с задержкой внутриутробного развития // Журнал акушерства и женских болезней. 2022. Т. 71, № 6. C. 5–14. EDN: UFWSWG doi: 10.17816/JOWD112611 |
| [43] |
Khoshnevisan K, Baharifar H, Torabi F, et al. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem. 2021;413(6):1615–1627. doi: 10.1007/s00216-020-03122-5 |
| [44] |
Khoshnevisan K., Baharifar H., Torabi F., et al. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model //Anal Bioanal Chem. 2021. Vol. 413, N. 6. P. 1615–1627. doi: 10.1007/s00216-020-03122-5 |
| [45] |
Vakov L. Prouchvaniia vŭrkhu bazalnoto krŭvno nivo na serotonina pri bolni ot zakharen diabet [Basal blood level of serotonin in diabetes mellitus patients]. Vutr Boles. 1984;23(1):79–84. |
| [46] |
Vakov L. Prouchvaniia vŭrkhu bazalnoto krŭvno nivo na serotonina pri bolni ot zakharen diabet [Basal blood level of serotonin in diabetes mellitus patients] // Vutr Boles. 1984. Vol. 23, N. 1. P. 79–84. |
| [47] |
Barradas MA, Gill DS, Fonseca VA, et al. Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest. 1988;18(4):399–404. doi: 10.1111/j.1365-2362.1988.tb01030.x |
| [48] |
Barradas M.A., Gill D.S, Fonseca V.A., et al. Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease // Eur J Clin Invest. 1988. Vol. 18, N. 4. P. 399–404. doi: 10.1111/j.1365-2362.1988.tb01030.x |
| [49] |
Hasegawa Y, Suehiro A, Higasa S, et al. Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus. Thromb Res. 2002;107(6):319–323. doi: 10.1016/s0049-3848(02)00348-1 |
| [50] |
Hasegawa Y., Suehiro A., Higasa S., et al. Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus // Thromb Res. 2002. Vol. 107, N. 6. P. 319–323. doi: 10.1016/s0049-3848(02)00348-1 |
| [51] |
Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online. 2009;19(2):207–215. doi: 10.1016/s1472-6483(10)60074-0 |
| [52] |
Viau M., Lafond J., Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies // Reprod Biomed Online. 2009. Vol. 19, N. 2. P. 207–215. doi: 10.1016/s1472-6483(10)60074-0 |
| [53] |
Gall V, Kosec V, Vranes HS, et al. Platelet serotonin concentration at term pregnancy and after birth: physiologic values for Croatian population. Coll Antropol. 2011;35(3):715–718. |
| [54] |
Gall V., Košec V., Vraneš H.S., et al. Platelet serotonin concentration at term pregnancy and after birth: physiologic values for Croatian population // Coll Antropol. 2011. Vol. 35, N. 3. P. 715–718. |
| [55] |
Furs VV, Dorochenko EM. Some indicators of tryptophan metabolism during physiological pregnancy. Journal of the Grodno State Medical University. 2011;(4):36–38. EDN: PZEPVT (In Russ.) |
| [56] |
Фурс В.В., Дорошенко Е.М. Некоторые показатели обмена триптофана при физиологически протекающей беременности // Журнал Гродненского государственного медицинского университета. 2011. № 4(36). C. 36–38. EDN: PZEPVT |
| [57] |
Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. doi: 10.1210/en.2017-03025 |
| [58] |
Kliman H.J., Quaratella S.B., Setaro A.C., et al. Pathway of maternal serotonin to the human embryo and fetus // Endocrinology. 2018. Vol. 159, N. 4. P. 1609–1629. doi: 10.1210/en.2017-03025 |
| [59] |
Perić M, Bečeheli I, Čičin-Šain L, et al. Serotonin system in the human placenta - the knowns and unknowns. Front Endocrinol. 2022;13. doi: 10.3389/fendo.2022.1061317 |
| [60] |
Perić M., Bečeheli I., Čičin-Šain L., et al. Serotonin system in the human placenta — the knowns and unknowns // Front Endocrinol. 2022. Vol. 13. doi: 10.3389/fendo.2022.1061317 |
| [61] |
Baković P, Kesić M, Perić M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. Int J Mol Sci. 2021;22(15):7807. doi: 10.3390/ijms22157807 |
| [62] |
Bakovic P., Kesic M., Peric M., et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface // Int J Mol Sci. 2021. Vol. 22, N. 15. P. 7807. doi: 10.3390/ijms22157807 |
| [63] |
Forstner D, Guettler J, Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. Int J Mol Sci. 2021;22(19). doi: 10.3390/ijms221910732 |
| [64] |
Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts // Int J Mol Sci. 2021. Vol. 22, N. 19. P. 10732. doi: 10.3390/ijms221910732 |
| [65] |
Cai Y, Li X, Zhou H, Zhou J. The serotonergic system dysfunction in diabetes mellitus. Front Cell Neurosci. 2022;16. doi: 10.3389/fncel.2022.899069 |
| [66] |
Cai Y., Li X., Zhou H., et al. The serotonergic system dysfunction in diabetes mellitus // Front Cell Neurosci. 2022. Vol. 16. doi: 10.3389/fncel.2022.899069 |
| [67] |
Zhao W, Zhao L, Zhao W. Determination of plasma serotonins level in patients with pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi. 1999;34(7):406–408. |
| [68] |
Zhao W., Zhao L., Zhao W. Determination of plasma serotonins level in patients with pregnancy induced hypertension // Zhonghua Fu Chan Ke Za Zhi. 1999. Vol. 34, N. 7. P. 406–408. |
| [69] |
Li Y, Hadden C, Singh P, et al. GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake. Proc Natl Acad Sci USA. 2014;111(52):E5697–E5705. doi: 10.1073/pnas.1416675112 |
| [70] |
Li Y., Hadden C., Singh P., et al. GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake // Proc Natl Acad Sci USA. 2014. Vol. 111, N. 52. P. E5697–E5705. doi: 10.1073/pnas.1416675112 |
| [71] |
Song JY, Lee KE, Byeon EJ, et al. Maternal gestational diabetes influences DNA methylation in the serotonin system in the human placenta. Life. 2022;12(11):1869. doi: 10.3390/life12111869 |
| [72] |
Song J.Y., Lee K.E., Byeon E.J., et al. Maternal gestational diabetes influences DNA methylation in the serotonin system in the human placenta // Life. 2022. Vol. 12, N. 11. P. 1869. doi: 10.3390/life12111869 |
| [73] |
Blazevic S, Horvaticek M, Kesic M, et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. PLoS One. 2017;12(6). doi: 10.1371/journal.pone.0179934 |
| [74] |
Blazevic S., Horvaticek M., Kesic M., et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus // PLoS One. 2017. Vol. 12, N. 6. doi: 10.1371/journal.pone.0179934 |
| [75] |
Shrestha D, Ouidir M, Workalemahu T, et al. Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain. Int J Obes. 2020;44(6):1406–1416. doi: 10.1038/s41366-020-0546-2 |
| [76] |
Shrestha D., Ouidir M., Workalemahu T., et al. Placental DNA methylation changes associated with maternal prepregnancy bmi and gestational weight gain // Int J Obes. 2020. Vol. 44, N. 6. P. 1406–1416. doi: 10.1038/s41366-020-0546-2 |
| [77] |
Horvatiček M, Perić M, Bečeheli I, et al. Maternal metabolic state and fetal sex and genotype modulate methylation of the serotonin receptor type 2A gene (HTR2A) in the human placenta. Biomedicines. 2022;10(2):467. doi: 10.3390/biomedicines10020467 |
| [78] |
Horvatiček M., Perić M., Bečeheli I., et al. Maternal metabolic state and fetal sex and genotype modulate methylation of the serotonin receptor type 2A gene (HTR2A) in the human placenta // Biomedicines. 2022. Vol. 10, N. 2. P. 467. doi: 10.3390/biomedicines10020467 |
| [79] |
Paquette AG, Lesseur C, Armstrong DA, et al. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics. 2013;8(8):796–801. doi: 10.4161/epi.25358 |
| [80] |
Paquette A.G., Lesseu, C., Armstrong D.A., et al. Placental HTR2A methylation is associated with infant neurobehavioral outcomes // Epigenetics. 2013. Vol. 8, N. 8. P. 796–801. doi: 10.4161/epi.25358 |
| [81] |
Xu P, Dong S, Wu L, et al. Maternal and placental DNA methylation changes associated with the pathogenesis of gestational diabetes mellitus. Nutrients. 2022;15(1):70. doi: 10.3390/nu15010070 |
| [82] |
Xu P., Dong S., Wu L., et al. Maternal and placental DNA methylation changes associated with the pathogenesis of gestational diabetes mellitus // Nutrients. 2023. Vol. 15, N. 1. P. 70. doi: 10.3390/nu15010070 |
| [83] |
Evsyukova II. Molecular mechanisms of the functioning system mother-placenta-fetus in women with obesity and gestational diabetes mellitus. Molecular medicine. 2020;18(1):11–15. EDN: ORKJZD doi: 10.29296/24999490-2020-01-02 |
| [84] |
Евсюкова И.И. Молекулярные механизмы функционирования системы «мать – плацента – плод» при ожирении и гестационном сахарном диабете // Молекулярная медицина. 2020. Т. 18, № 1. C. 11–15. EDN: ORKJZD doi: 10.29296/24999490-2020-01-02 |
| [85] |
Kim H, Toyofuku Y, Lynn FC, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16(7):804–808. doi: 10.1038/nm.2173 |
| [86] |
Kim H., Toyofuku Y., Lynn F.C., et al. Serotonin regulates pancreatic β-cell mass during pregnancy // Nat Med. 2010. Vol. 16, N. 7. P. 804–808. doi: 10.1038/nm.2173 |
| [87] |
Almaça J, Molina J, Menegaz D, et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. 2016;17(12):3281–3291. doi: 10.1016/j.celrep.2016.11.072 |
| [88] |
Almaça J., Molina J., Menegaz D., et al. Human beta cells produce and release serotonin inhibit glucagon secretion from alpha cells // Cell Rep. 2016. Vol. 17, N. 12. P. 3281–3291. doi: 10.1016/j.celrep.2016.11.072 |
| [89] |
Leitner M, Fragner L, Danner S, et al. Combined metabolomic analysis of plasma and urine reveals ahba, tryptophan and serotonin metabolism as potential risk factors in gestational diabetes mellitus (GDM). Front Mol Biosci. 2017;4:84. doi: 10.3389/fmolb.2017.00084 |
| [90] |
Leitner M., Fragner L., Danner S., et al. Combined metabolomic analysis of plasma and urine reveals AHBA, tryptophan and serotonin metabolism as potential risk factors in Gestational Diabetes Mellitus (GDM) // Front Mol Biosci. 2017. Vol. 4. P. 84. doi: 10.3389/fmolb.2017.00084 |
| [91] |
Goeden N, Velasquez J, Arnold KA, et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J Neurosci. 2016;36(22):6041–6049. doi: 10.1523/JNEUROSCI.2534-15.2016 |
| [92] |
Goeden N., Velasquez J., Arnold K.A., et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain // J Neurosci. 2016. Vol. 36, N. 22. P. 6041–6049. doi: 10.1523/JNEUROSCI.2534-15.2016 |
| [93] |
França DCH, França EL, Sobrevia L, et al. Integration of nutrigenomics, melatonin, serotonin and inflammatory cytokines in the pathophysiology of pregnancy-specific urinary incontinence in women with gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2023;1869(6). doi: 10.1016/j.bbadis.2023.166737 |
| [94] |
França D.C.H., França E.L., Sobrevia L., et al. Integration of nutrigenomics, melatonin, serotonin and inflammatory cytokines in the pathophysiology of pregnancy-specific urinary incontinence in women with gestational diabetes mellitus // Biochim Biophys Acta Mo. Basis Dis. 2023. Vol. 1869, N. 6. doi: 10.1016/j.bbadis.2023.166737 |
| [95] |
Liu D, Gao Q, Wang Y, et al. Placental dysfunction: The core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta. 2022;126:224–232. doi: 10.1016/j.placenta.2022.07.014 |
| [96] |
Liu D., Gao Q., Wang Y., et al. Placental disfunction: the core mechanism for poor neurodevelopmental outcomes in the offspring to preeclampsia pregnancies // Placenta. 2022. Vol. 126. P. 224–232. doi: 10.1016/j.placenta.2022.07.014 |
| [97] |
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99(1):271–283. doi: 10.1002/jnr.24603 |
| [98] |
Rosenfeld C.S. The placenta-brain-axis // J Neurosci Res. 2021. Vol. 99, N. 1. P. 271–283. doi: 10.1002/jnr.24603 |
| [99] |
Kolk SM, Rakic P. Development of prefrontal cortex. Neuropsychopharmacology. 2022;47(1):41–57. doi: 10.1038/s41386-021-01137-9 |
| [100] |
Kolk S.M., Rakic P. Development of prefrontal cortex // Neuropsychopharmacology. 2022. Vol. 47, N. 1. P. 41–57. doi: 10.1038/s41386-021-01137-9 |
| [101] |
Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. doi: 10.1038/nature09972 |
| [102] |
Bonnin A., Goeden N., Chen K., et al. A transient placental source of serotonin for the fetal forebrain // Nature. 2011. Vol.472. N. 7343. P. 347–350. doi: 10.1038/nature09972 |
| [103] |
Hanswijk SI, Spoelder M, Shan L, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21(16):5850. doi: 10.3390/ijms21165850 |
| [104] |
Hanswijk S.I., Spoelder M., Shan L., et al. Gestational factors throughout fetal neurodevelopment: the serotonin link // Int J Mol Sci. 2020. Vol. 21, N. 16. P. 5850. doi: 10.3390/ijms21165850 |
| [105] |
Suri D, Teixeira CM, Cagliostro MK, et al. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology. 2015;40(1):88–112. doi: 10.1038/npp.2014.231 |
| [106] |
Suri D., Teixeira C.M., Cagliostro M.K.C., et al. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors // Neuropsychopharmacol. 2015. Vol. 40, N. 1. P. 88–112. doi: 10.1038/npp.2014.231 |
| [107] |
Huang X, Kuang S, Applegate TJ, et al. Prenatal serotonin fluctuation affects serotoninergic development and related neural circuits in chicken embryos. Neuroscience. 2021;473:66–80. doi: 10.1016/j.neuroscience.2021.08.011 |
| [108] |
Huang X., Kuang S., Applegate T.J., et al. Prenatal serotonin fluctuation affects serotoninergic development and related neural circuits in chicken embryos // Neuroscience. 2021.Vol. 473. P. 66–80. doi: 10.1016/j.neuroscience.2021.08.011 |
| [109] |
Domingues RR, Fricke HP, Sheftel CM, et al. Effect of low and high doses of two selective serotonin reuptake inhibitors on pregnancy outcomes and neonatal mortality. Toxics. 2022;10(1):11. doi: 10.3390/toxics10010011 |
| [110] |
Domingues R.R., Fricke H.P., Sheftel C.M., et al. Effect of low and high doses of two selective serotonin reuptake inhibitors on pregnancy outcomes and neonatal mortality // Toxics. 2022. Vol. 10, N. 1. P. 11. doi: 10.3390/toxics10010011 |
| [111] |
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav. 2019;182:22–34. doi: 10.1016/j.pbb.2019.05.005 |
| [112] |
Dunn G.A., Nigg J.T., Sullivan E.L. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder // Pharmacol Biochem Behav. 2019. Vol. 182. P. 22–34. doi: 10.1016/j.pbb.2019.05.005 |
| [113] |
Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86(2):157–164. doi: 10.1038/s41390-019-0405-9 |
| [114] |
Kratimenos P., Penn A.A. Placental programming of neuropsychiatric disease // Ped Res. 2019. Vol. 86, N. 2. P. 157–164. doi: 10.1038/s41390-019-0405-9 |
Eсо-Vector
/
| 〈 |
|
〉 |