Proteomic predictors of preterm birth

Olga V. Pachuliia , Elena S. Vashukova , Roman A. Illarionov , Tatyana B. Postnikova , Anastasia R. Maltseva , Anastasia K. Popova , Ekaterina A. Kornyushina , Kristina A. Oganyan , Olesya N. Bespalova , Andrey S. Glotov

Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (5) : 89 -104.

PDF
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (5) : 89 -104. DOI: 10.17816/JOWD569036
Reviews
review-article

Proteomic predictors of preterm birth

Author information +
History +
PDF

Abstract

To date, the methods based on the detection of isolated biomarkers have been ineffective in predicting preterm birth. Probably, a reason for this is that these predictors are associated with any one link in pathogenesis and do not take into account another “scenario” for the pathological events. It is becoming increasingly clear that in order to improve the prediction of preterm birth, it is necessary to apply an approach that shall combine the acquisition of data on different biological levels of regulation.

Thus, the rapidly developing areas of genomics, transcriptomics, and metabolomics open up broad prospects for predicting preterm birth. These methods allow for not only measuring thousands of biomarkers in biological samples during pathology, but also evaluating biological changes that precede clinical manifestations. Meanwhile, a number of studies have demonstrated the leading role of proteins in all cellular reactions of the body, which has determined proteome-wide evaluation as one of the most promising areas of omic research. Proteomics can provide additional information about complex biochemical processes at the molecular level, the understanding of which is critical for predicting the various clinical phenotypes of preterm birth.

The studies presented in this literature review have shown promise in examining the maternal blood proteome to identify potentially effective predictors of preterm birth.

Keywords

proteins / biomarkers / mass spectrometry / proteome / proteomics / preterm birth / predictors

Cite this article

Download citation ▾
Olga V. Pachuliia, Elena S. Vashukova, Roman A. Illarionov, Tatyana B. Postnikova, Anastasia R. Maltseva, Anastasia K. Popova, Ekaterina A. Kornyushina, Kristina A. Oganyan, Olesya N. Bespalova, Andrey S. Glotov. Proteomic predictors of preterm birth. Journal of obstetrics and women's diseases, 2023, 72(5): 89-104 DOI:10.17816/JOWD569036

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Daskalakis G, Psarris A, Koutras A, et al. Maternal infection and preterm birth: from molecular basis to clinical implications. Children. 2023;10(5):907. DOI: 10.3390/children10050907

[2]

Daskalakis G., Psarris A., Koutras A. et al. Maternal infection and preterm birth: from molecular basis to clinical implications // Children. 2023. Vol. 10. No. 5. P. 907. DOI: 10.3390/children10050907

[3]

Manukhin IB, Firichenko SV, Mikailova LU, et al. Prediction and prevention of preterm birth: state-of-the-art. Russian Bulletin of Obstetrician-Gynecologist. 2016;(3):9–15. (In Russ.) DOI: 10.17116/rosakush20161639-15

[4]

Манухин И.Б., Фириченко С.В., Микаилова Л.У. и др. Прогнозирование и профилактика преждевременных родов: современное состояние проблемы // Российский вестник акушера-гинеколога. 2016. № 3. С. 9–15. DOI: 10.17116/rosakush20161639-15

[5]

Rizzo G, Mappa I, Bitsadze VO, et al. Prediction of preterm birth: the role cervical assessment by ultrasound and cervico-vaginal biomarkers. Annals of the Russian academy of medical sciences. 2020;75(4):269–277. (In Russ.) DOI: 10.15690/vramn1275

[6]

Риццо Д., Маппа И., Бицадзе В.О., и др. Прогнозирование преждевременных родов: оценка ультразвукового исследования шейки матки и цервикально-влагалищных биомаркеров // Вестник Российской академии медицинских наук. 2020. Т. 75. № 4. C. 269–277. DOI: 10.15690/vramn1275

[7]

Oskovi Kaplan ZA, Ozgu-Erdinc AS. Prediction of preterm birth: maternal characteristics, ultrasound markers, and biomarkers: an updated overview. J Pregnancy. 2018;2018. DOI: 10.1155/2018/8367571

[8]

Oskovi Kaplan Z.A., Ozgu-Erdinc A.S. Prediction of preterm birth: maternal characteristics, ultrasound markers, and biomarkers: an updated overview // J. Pregnancy. 2018. Vol. 2018. DOI: 10.1155/2018/8367571

[9]

Wadon M, Modi N, Wong HS, et al. Recent advances in the genetics of preterm birth. Ann Hum Genet. 2020;84(3):205–213. DOI: 10.1111/ahg.12373

[10]

Wadon M., Modi N., Wong H.S. et al. Recent advances in the genetics of preterm birth // Ann. Hum. Genet. 2020. Vol. 84. No. 3. P. 205–213. DOI: 10.1111/ahg.12373

[11]

Gupta JK, Alfirevic A. Systematic review of preterm birth multi-omic biomarker studies. Expert Rev Mol Med. 2022;24:1–24. DOI: 10.1017/erm.2022.13

[12]

Gupta J.K., Alfirevic A. Systematic review of preterm birth multi-omic biomarker studies // Expert. Rev. Mol. Med. 2022. Vol. 24. P. 1–24. DOI: 10.1017/erm.2022.13

[13]

Nikitina NA, Kiryanova MA, Ageev MB. Modern proteomic technologies in the study of pre-eclampsia. Gynecology, Obstetrics and Perinatology. 2022;21(6):86–92. (In Russ.) DOI: 10.20953/1726-1678-2022-6-86-92

[14]

Никитина Н.А., Кирьянова М.А., Агеев М.Б. Современные протеомные технологии в изучении преэклампсии // Вопросы гинекологии, акушерства и перинатологии. 2022. Т. 21. № 6. С. 86–92. DOI: 10.20953/1726-1678-2022-6-86-92

[15]

Kacerovsky M, Lenco J, Musilova I, et al. Proteomic biomarkers for spontaneous preterm birth: a systematic review of the literature. Reprod Sci. 2014;21(3):283–295. DOI: 10.1177/1933719113503415

[16]

Kacerovsky M., Lenco J., Musilova I., et al. Proteomic biomarkers for spontaneous preterm birth: a systematic review of the literature // Reprod. Sci. 2014. Vol. 21. No. 3. P. 283–295. DOI: 10.1177/1933719113503415

[17]

Zhang Z, Wu S, Stenoien DL, et al. High-throughput proteomics. Annu Rev Anal Chem. 2014;7:427–454. DOI: 10.1146/annurev-anchem-071213-020216

[18]

Zhang Z., Wu S., Stenoien D.L., et al. High-throughput proteomics // Annu. Rev. Anal. Chem. 2014. Vol. 7. P. 427–454. DOI: 10.1146/annurev-anchem-071213-020216

[19]

Sazonova NG, Makarenko TA, Olovyannikova RY, et al. Proteomic analysis methods and their role in the diagnosis of obstetric and gynecological pathology. Journal of Obstetrics and Women’s Diseases. 2019;68(1):69–82. (In Russ.) DOI: 10.17816/JOWD68169-82

[20]

Сазонова Н.Г., Макаренко Т.А., Оловянникова Р.Я., и др. Методики протеомного анализа и их роль в диагностике акушерской и гинекологической патологии // Журнал акушерства и женских болезней. 2019. Т. 68. № 1. C. 69–82. DOI: 10.17816/JOWD68169-82

[21]

Lo JO, Reddy AP, Wilmarth PA, et al. Proteomic analysis of cervical vaginal fluid proteins among women in recurrent preterm labor. J Matern Fetal Neonatal Med. 2014;27(12):1183–1188. DOI: 10.3109/14767058.2013.852172

[22]

Lo J.O., Reddy A.P., Wilmarth P.A., et al. Proteomic analysis of cervical vaginal fluid proteins among women in recurrent preterm labor // J. Matern. Fetal Neonatal. Med. 2014. Vol. 27. No. 12. P. 1183–1188. DOI: 10.3109/14767058.2013.852172

[23]

Chien CW, Lo YS, Wu HY, et al. Transcriptomic and proteomic profiling of human mesenchymal stem cell derived from umbilical cord in the study of preterm birth. Proteomics Clin Appl. 2020;14(1). DOI: 10.1002/prca.201900024

[24]

Chien C.W., Lo Y.S., Wu H.Y., et al. Transcriptomic and proteomic profiling of human mesenchymal stem cell derived from umbilical cord in the study of preterm birth // Proteomics Clin. Appl. 2020. Vol. 14. No. 1. DOI: 10.1002/prca.201900024

[25]

Tiensuu H, Haapalainen AM, Tissarinen P, et al. Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth. BMC Med. 2022;20(1):141. DOI: 10.1186/s12916-022-02339-8

[26]

Tiensuu H., Haapalainen A. M., Tissarinen P., et al. Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth // BMC Med. 2022. Vol. 20. No. 1. P. 141. DOI: 10.1186/s12916-022-02339-8

[27]

Romero R, Espinoza J, Rogers WT, et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling. J Matern Fetal Neonatal Med. 2008;21(6):367–388. DOI: 10.1080/14767050802045848

[28]

Romero R., Espinoza J., Rogers W.T., et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling // J. Matern. Fetal Neonatal. Med. 2008. Vol. 21. No. 6. P. 367–388. DOI: 10.1080/14767050802045848

[29]

Gomes J, Au F, Basak A, et al. Maternal blood biomarkers and adverse pregnancy outcomes: a systematic review and meta-analysis. Crit Rev Toxicol. 2019;49(6):461–478. DOI: 10.1080/10408444.2019.1629873

[30]

Gomes J., Au F., Basak A., et al. Maternal blood biomarkers and adverse pregnancy outcomes: a systematic review and meta-analysis // Crit. Rev. Toxicol. 2019. Vol. 49. No. 6. P. 461–478. DOI: 10.1080/10408444.2019.1629873

[31]

Klein J, Buffin-Meyer B, Mullen W, et al. Clinical proteomics in obstetrics and neonatology. Expert Rev Proteomics. 2014;11(1):75–89. DOI: 10.1586/14789450.2014.872564

[32]

Klein J., Buffin-Meyer B., Mullen W., et al. Clinical proteomics in obstetrics and neonatology // Expert. Rev. Proteomics. 2014. Vol. 11. No. 1. P. 75–89. DOI: 10.1586/14789450.2014.872564

[33]

Hornaday KK, Wood EM, Slater DM. Is there a maternal blood biomarker that can predict spontaneous preterm birth prior to labour onset? A systematic review. PLoS One. 2022;17(4). DOI: 10.1371/journal.pone.0265853

[34]

Hornaday K.K., Wood E.M., Slater D.M. Is there a maternal blood biomarker that can predict spontaneous preterm birth prior to labour onset? A systematic review // PLoS One. 2022. Vol. 17. No. 4. DOI: 10.1371/journal.pone.0265853

[35]

Esplin MS, Merrell K, Goldenberg R, et al. Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am J Obstet Gynecol. 2011;204(5):391–398. DOI: 10.1016/j.ajog.2010.09.021

[36]

Esplin M.S., Merrell K., Goldenberg R., et al. Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth // Am. J. Obstet. Gynecol. 2011. Vol. 204. No. 5. P. 391–398. DOI: 10.1016/j.ajog.2010.09.021

[37]

Parry S, Zhang H, Biggio J, et al. Maternal serum serpin B7 is associated with early spontaneous preterm birth. Am J Obstet Gynecol. 2014;211(6):678.e1–678.e12. DOI: 10.1016/j.ajog.2014.06.035

[38]

Parry S., Zhang H., Biggio J., et al. Maternal serum serpin B7 is associated with early spontaneous preterm birth // Am. J. Obstet. Gynecol. 2014. Vol. 211. No. 6. P. 678.e1–678.e12. DOI: 10.1016/j.ajog.2014.06.035

[39]

Gunko VO, Pogorelova TN, Linde VA. Proteomic profiling of the blood serum for prediction of premature delivery. Bull Exp Biol Med. 2016;161(6):829–832. DOI: 10.1007/s10517-016-3522-z

[40]

Gunko V.O., Pogorelova T.N., Linde V.A. Proteomic profiling of the blood serum for prediction of premature delivery // Bull. Exp. Biol. Med. 2016. Vol. 161. No. 6. P. 829–832. DOI: 10.1007/s10517-016-3522-z

[41]

D’Silva AM, Hyett JA, Coorssen JR. Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth. J Proteomics. 2018;178:31–42. DOI: 10.1016/j.jprot.2018.02.002

[42]

D’Silva A.M., Hyett J.A., Coorssen J.R. Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth // J. Proteomics. 2018. Vol. 178. P. 31–42. DOI: 10.1016/j.jprot.2018.02.002

[43]

Huang J, Yang Y, He P. Serum apolipoprotein A-II and alpha-2-antiplasmin levels in midtrimester can be used as predictors of preterm delivery. J Int Med Res. 2020;48(9). DOI: 10.1177/0300060520952280

[44]

Huang J., Yang Y., He P. Serum apolipoprotein A-II and alpha-2-antiplasmin levels in midtrimester can be used as predictors of preterm delivery // J. Int. Med. Res. 2020. Vol. 48. No. 9. DOI: 10.1177/0300060520952280

[45]

Markenson GR, Saade GR, Laurent LC, et al. Performance of a proteomic preterm delivery predictor in a large independent prospective cohort. Am J Obstet Gynecol MFM. 2020;2(3). DOI: 10.1016/j.ajogmf.2020.100140

[46]

Markenson G.R., Saade G.R., Laurent L.C. et al. Performance of a proteomic preterm delivery predictor in a large independent prospective cohort // Am. J. Obstet. Gynecol. MFM. 2020. Vol. 2. No. 3. DOI: 10.1016/j.ajogmf.2020.100140

[47]

Lynch AM, Wagner BD, Deterding RR, et al. The relationship of circulating proteins in early pregnancy with preterm birth. Am J Obstet Gynecol. 2016;214(4):517.e1–517.e8. DOI: 10.1016/j.ajog.2015.11.001

[48]

Lynch A.M., Wagner B.D., Deterding R.R., et al. The relationship of circulating proteins in early pregnancy with preterm birth // Am. J. Obstet. Gynecol. 2016. Vol. 214. No. 4. P. 517.e1–517.e8. DOI: 10.1016/j.ajog.2015.11.001

[49]

Hong S, Park KH, Kim YM, et al. A protein microarray analysis of plasma proteins for the prediction of spontaneous preterm delivery in women with preterm labor. Reprod Sci. 2020;27(5):1187–1196. DOI: 10.1007/s43032-019-00114-4

[50]

Hong S., Park K.H., Kim Y.M., et al. A protein microarray analysis of plasma proteins for the prediction of spontaneous preterm delivery in women with preterm labor // Reprod. Sci. 2020. Vol. 27. No. 5. P. 1187–1196. DOI: 10.1007/s43032-019-00114-4

[51]

Lee JE, Park KH, Kim HJ, et al. Proteomic identification of novel plasma biomarkers associated with spontaneous preterm birth in women with preterm labor without infection/inflammation. PLoS One. 2021;16(10). DOI: 10.1371/journal.pone.0259265

[52]

Lee J.E., Park K.H., Kim H.J., et al. Proteomic identification of novel plasma biomarkers associated with spontaneous preterm birth in women with preterm labor without infection/inflammation // PLoS One. 2021. Vol. 16. No. 10. DOI: 10.1371/journal.pone.0259265

[53]

Bai K, Li X, Zhong J, et al. Placenta-derived exosomes as a modulator in maternal immune tolerance during pregnancy. Front Immunol. 2021;12. DOI: 10.3389/fimmu.2021.671093

[54]

Bai K., Li X., Zhong J., et al. Placenta-derived exosomes as a modulator in maternal immune tolerance during pregnancy // Front. Immunol. 2021. Vol. 12. DOI: 10.3389/fimmu.2021.671093

[55]

Ezrin AM, Brohman B, Willmot J, et al. Circulating serum-derived microparticles provide novel proteomic biomarkers of spontaneous preterm birth. Am J Perinatol. 2015;32(6):605–614. DOI: 10.1055/s-0035-1547322

[56]

Ezrin A.M., Brohman B., Willmot J., et al. Circulating serum-derived microparticles provide novel proteomic biomarkers of spontaneous preterm birth // Am. J. Perinatol. 2015. Vol. 32. No. 6. P. 605–614. DOI: 10.1055/s-0035-1547322

[57]

Cantonwine DE, Zhang Z, Rosenblatt K, et al. Evaluation of proteomic biomarkers associated with circulating microparticles as an effective means to stratify the risk of spontaneous preterm birth. Am J Obstet Gynecol. 2016;214(5):631.e1–631.e11. DOI: 10.1016/j.ajog.2016.02.005

[58]

Cantonwine D.E., Zhang Z., Rosenblatt K., et al. Evaluation of proteomic biomarkers associated with circulating microparticles as an effective means to stratify the risk of spontaneous preterm birth // Am. J. Obstet. Gynecol. 2016. Vol. 214. No. 5. P. 631.e1–631.e11. DOI: 10.1016/j.ajog.2016.02.005

[59]

Menon R, Dixon CL, Sheller-Miller S, et al. Quantitative proteomics by SWATH-MS of maternal plasma exosomes determine pathways associated with term and preterm birth. Endocrinology. 2019;160(3):639–650. DOI: 10.1210/en.2018-00820

[60]

Menon R., Dixon C.L., Sheller-Miller S., et al. Quantitative proteomics by SWATH-MS of maternal plasma exosomes determine pathways associated with term and preterm birth // Endocrinology. 2019. Vol. 160. No. 3. P. 639–650. DOI: 10.1210/en.2018-00820

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/